I: pbuilder: network access will be disabled during build I: Current time: Mon Apr 24 19:07:34 -12 2023 I: pbuilder-time-stamp: 1682406454 I: Building the build Environment I: extracting base tarball [/var/cache/pbuilder/bookworm-reproducible-base.tgz] I: copying local configuration W: --override-config is not set; not updating apt.conf Read the manpage for details. I: mounting /proc filesystem I: mounting /sys filesystem I: creating /{dev,run}/shm I: mounting /dev/pts filesystem I: redirecting /dev/ptmx to /dev/pts/ptmx I: policy-rc.d already exists I: Copying source file I: copying [libmath-prime-util-gmp-perl_0.52-2.dsc] I: copying [./libmath-prime-util-gmp-perl_0.52.orig.tar.gz] I: copying [./libmath-prime-util-gmp-perl_0.52-2.debian.tar.xz] I: Extracting source gpgv: Signature made Thu Oct 13 20:19:43 2022 -12 gpgv: using RSA key B23862C415D6565A4E86CBD7579C160D4C9E23E8 gpgv: Can't check signature: No public key dpkg-source: warning: cannot verify inline signature for ./libmath-prime-util-gmp-perl_0.52-2.dsc: no acceptable signature found dpkg-source: info: extracting libmath-prime-util-gmp-perl in libmath-prime-util-gmp-perl-0.52 dpkg-source: info: unpacking libmath-prime-util-gmp-perl_0.52.orig.tar.gz dpkg-source: info: unpacking libmath-prime-util-gmp-perl_0.52-2.debian.tar.xz I: Not using root during the build. I: Installing the build-deps I: user script /srv/workspace/pbuilder/4193625/tmp/hooks/D02_print_environment starting I: set BUILDDIR='/build' BUILDUSERGECOS='first user,first room,first work-phone,first home-phone,first other' BUILDUSERNAME='pbuilder1' BUILD_ARCH='amd64' DEBIAN_FRONTEND='noninteractive' DEB_BUILD_OPTIONS='buildinfo=+all reproducible=+all parallel=15' DISTRIBUTION='bookworm' HOME='/root' HOST_ARCH='amd64' IFS=' ' INVOCATION_ID='451d3f1beccd4f658e919916ffc055ca' LANG='C' LANGUAGE='en_US:en' LC_ALL='C' MAIL='/var/mail/root' OPTIND='1' PATH='/usr/sbin:/usr/bin:/sbin:/bin:/usr/games' PBCURRENTCOMMANDLINEOPERATION='build' PBUILDER_OPERATION='build' PBUILDER_PKGDATADIR='/usr/share/pbuilder' PBUILDER_PKGLIBDIR='/usr/lib/pbuilder' PBUILDER_SYSCONFDIR='/etc' PPID='4193625' PS1='# ' PS2='> ' PS4='+ ' PWD='/' SHELL='/bin/bash' SHLVL='2' SUDO_COMMAND='/usr/bin/timeout -k 18.1h 18h /usr/bin/ionice -c 3 /usr/bin/nice /usr/sbin/pbuilder --build --configfile /srv/reproducible-results/rbuild-debian/r-b-build.yaLTf6ct/pbuilderrc_f0lK --distribution bookworm --hookdir /etc/pbuilder/first-build-hooks --debbuildopts -b --basetgz /var/cache/pbuilder/bookworm-reproducible-base.tgz --buildresult /srv/reproducible-results/rbuild-debian/r-b-build.yaLTf6ct/b1 --logfile b1/build.log libmath-prime-util-gmp-perl_0.52-2.dsc' SUDO_GID='110' SUDO_UID='105' SUDO_USER='jenkins' TERM='unknown' TZ='/usr/share/zoneinfo/Etc/GMT+12' USER='root' _='/usr/bin/systemd-run' http_proxy='http://78.137.99.97:3128' I: uname -a Linux ionos1-amd64 5.10.0-21-amd64 #1 SMP Debian 5.10.162-1 (2023-01-21) x86_64 GNU/Linux I: ls -l /bin total 5632 -rwxr-xr-x 1 root root 1265648 Apr 23 09:23 bash -rwxr-xr-x 3 root root 39224 Sep 18 2022 bunzip2 -rwxr-xr-x 3 root root 39224 Sep 18 2022 bzcat lrwxrwxrwx 1 root root 6 Sep 18 2022 bzcmp -> bzdiff -rwxr-xr-x 1 root root 2225 Sep 18 2022 bzdiff lrwxrwxrwx 1 root root 6 Sep 18 2022 bzegrep -> bzgrep -rwxr-xr-x 1 root root 4893 Nov 27 2021 bzexe lrwxrwxrwx 1 root root 6 Sep 18 2022 bzfgrep -> bzgrep -rwxr-xr-x 1 root root 3775 Sep 18 2022 bzgrep -rwxr-xr-x 3 root root 39224 Sep 18 2022 bzip2 -rwxr-xr-x 1 root root 14568 Sep 18 2022 bzip2recover lrwxrwxrwx 1 root root 6 Sep 18 2022 bzless -> bzmore -rwxr-xr-x 1 root root 1297 Sep 18 2022 bzmore -rwxr-xr-x 1 root root 44016 Sep 20 2022 cat -rwxr-xr-x 1 root root 68656 Sep 20 2022 chgrp -rwxr-xr-x 1 root root 64496 Sep 20 2022 chmod -rwxr-xr-x 1 root root 72752 Sep 20 2022 chown -rwxr-xr-x 1 root root 151152 Sep 20 2022 cp -rwxr-xr-x 1 root root 125640 Jan 5 01:20 dash -rwxr-xr-x 1 root root 121904 Sep 20 2022 date -rwxr-xr-x 1 root root 89240 Sep 20 2022 dd -rwxr-xr-x 1 root root 102200 Sep 20 2022 df -rwxr-xr-x 1 root root 151344 Sep 20 2022 dir -rwxr-xr-x 1 root root 88656 Mar 22 22:02 dmesg lrwxrwxrwx 1 root root 8 Dec 19 01:33 dnsdomainname -> hostname lrwxrwxrwx 1 root root 8 Dec 19 01:33 domainname -> hostname -rwxr-xr-x 1 root root 43856 Sep 20 2022 echo -rwxr-xr-x 1 root root 41 Jan 24 02:43 egrep -rwxr-xr-x 1 root root 35664 Sep 20 2022 false -rwxr-xr-x 1 root root 41 Jan 24 02:43 fgrep -rwxr-xr-x 1 root root 85600 Mar 22 22:02 findmnt -rwsr-xr-x 1 root root 35128 Mar 22 20:35 fusermount -rwxr-xr-x 1 root root 203152 Jan 24 02:43 grep -rwxr-xr-x 2 root root 2346 Apr 9 2022 gunzip -rwxr-xr-x 1 root root 6447 Apr 9 2022 gzexe -rwxr-xr-x 1 root root 98136 Apr 9 2022 gzip -rwxr-xr-x 1 root root 22680 Dec 19 01:33 hostname -rwxr-xr-x 1 root root 72824 Sep 20 2022 ln -rwxr-xr-x 1 root root 53024 Mar 23 00:40 login -rwxr-xr-x 1 root root 151344 Sep 20 2022 ls -rwxr-xr-x 1 root root 207168 Mar 22 22:02 lsblk -rwxr-xr-x 1 root root 97552 Sep 20 2022 mkdir -rwxr-xr-x 1 root root 72912 Sep 20 2022 mknod -rwxr-xr-x 1 root root 43952 Sep 20 2022 mktemp -rwxr-xr-x 1 root root 59712 Mar 22 22:02 more -rwsr-xr-x 1 root root 59704 Mar 22 22:02 mount -rwxr-xr-x 1 root root 18744 Mar 22 22:02 mountpoint -rwxr-xr-x 1 root root 142968 Sep 20 2022 mv lrwxrwxrwx 1 root root 8 Dec 19 01:33 nisdomainname -> hostname lrwxrwxrwx 1 root root 14 Apr 2 18:25 pidof -> /sbin/killall5 -rwxr-xr-x 1 root root 43952 Sep 20 2022 pwd lrwxrwxrwx 1 root root 4 Apr 23 09:23 rbash -> bash -rwxr-xr-x 1 root root 52112 Sep 20 2022 readlink -rwxr-xr-x 1 root root 72752 Sep 20 2022 rm -rwxr-xr-x 1 root root 56240 Sep 20 2022 rmdir -rwxr-xr-x 1 root root 27560 Nov 2 04:31 run-parts -rwxr-xr-x 1 root root 126424 Jan 5 07:55 sed lrwxrwxrwx 1 root root 4 Jan 5 01:20 sh -> dash -rwxr-xr-x 1 root root 43888 Sep 20 2022 sleep -rwxr-xr-x 1 root root 85008 Sep 20 2022 stty -rwsr-xr-x 1 root root 72000 Mar 22 22:02 su -rwxr-xr-x 1 root root 39824 Sep 20 2022 sync -rwxr-xr-x 1 root root 531984 Apr 6 02:25 tar -rwxr-xr-x 1 root root 14520 Nov 2 04:31 tempfile -rwxr-xr-x 1 root root 109616 Sep 20 2022 touch -rwxr-xr-x 1 root root 35664 Sep 20 2022 true -rwxr-xr-x 1 root root 14568 Mar 22 20:35 ulockmgr_server -rwsr-xr-x 1 root root 35128 Mar 22 22:02 umount -rwxr-xr-x 1 root root 43888 Sep 20 2022 uname -rwxr-xr-x 2 root root 2346 Apr 9 2022 uncompress -rwxr-xr-x 1 root root 151344 Sep 20 2022 vdir -rwxr-xr-x 1 root root 72024 Mar 22 22:02 wdctl lrwxrwxrwx 1 root root 8 Dec 19 01:33 ypdomainname -> hostname -rwxr-xr-x 1 root root 1984 Apr 9 2022 zcat -rwxr-xr-x 1 root root 1678 Apr 9 2022 zcmp -rwxr-xr-x 1 root root 6460 Apr 9 2022 zdiff -rwxr-xr-x 1 root root 29 Apr 9 2022 zegrep -rwxr-xr-x 1 root root 29 Apr 9 2022 zfgrep -rwxr-xr-x 1 root root 2081 Apr 9 2022 zforce -rwxr-xr-x 1 root root 8103 Apr 9 2022 zgrep -rwxr-xr-x 1 root root 2206 Apr 9 2022 zless -rwxr-xr-x 1 root root 1842 Apr 9 2022 zmore -rwxr-xr-x 1 root root 4577 Apr 9 2022 znew I: user script /srv/workspace/pbuilder/4193625/tmp/hooks/D02_print_environment finished -> Attempting to satisfy build-dependencies -> Creating pbuilder-satisfydepends-dummy package Package: pbuilder-satisfydepends-dummy Version: 0.invalid.0 Architecture: amd64 Maintainer: Debian Pbuilder Team Description: Dummy package to satisfy dependencies with aptitude - created by pbuilder This package was created automatically by pbuilder to satisfy the build-dependencies of the package being currently built. Depends: debhelper-compat (= 13), libdevel-checklib-perl, libgmp-dev, perl-xs-dev, perl:native dpkg-deb: building package 'pbuilder-satisfydepends-dummy' in '/tmp/satisfydepends-aptitude/pbuilder-satisfydepends-dummy.deb'. Selecting previously unselected package pbuilder-satisfydepends-dummy. (Reading database ... 19596 files and directories currently installed.) Preparing to unpack .../pbuilder-satisfydepends-dummy.deb ... Unpacking pbuilder-satisfydepends-dummy (0.invalid.0) ... dpkg: pbuilder-satisfydepends-dummy: dependency problems, but configuring anyway as you requested: pbuilder-satisfydepends-dummy depends on debhelper-compat (= 13); however: Package debhelper-compat is not installed. pbuilder-satisfydepends-dummy depends on libdevel-checklib-perl; however: Package libdevel-checklib-perl is not installed. pbuilder-satisfydepends-dummy depends on libgmp-dev; however: Package libgmp-dev is not installed. pbuilder-satisfydepends-dummy depends on perl-xs-dev; however: Package perl-xs-dev is not installed. pbuilder-satisfydepends-dummy depends on perl:native. Setting up pbuilder-satisfydepends-dummy (0.invalid.0) ... Reading package lists... Building dependency tree... Reading state information... Initializing package states... Writing extended state information... Building tag database... pbuilder-satisfydepends-dummy is already installed at the requested version (0.invalid.0) pbuilder-satisfydepends-dummy is already installed at the requested version (0.invalid.0) The following NEW packages will be installed: autoconf{a} automake{a} autopoint{a} autotools-dev{a} bsdextrautils{a} debhelper{a} dh-autoreconf{a} dh-strip-nondeterminism{a} dwz{a} file{a} gettext{a} gettext-base{a} groff-base{a} intltool-debian{a} libarchive-zip-perl{a} libdebhelper-perl{a} libdevel-checklib-perl{a} libelf1{a} libfile-stripnondeterminism-perl{a} libgmp-dev{a} libgmpxx4ldbl{a} libicu72{a} libmagic-mgc{a} libmagic1{a} libperl-dev{a} libpipeline1{a} libsub-override-perl{a} libtool{a} libuchardet0{a} libxml2{a} m4{a} man-db{a} po-debconf{a} sensible-utils{a} The following packages are RECOMMENDED but will NOT be installed: curl libarchive-cpio-perl libltdl-dev libmail-sendmail-perl lynx wget 0 packages upgraded, 34 newly installed, 0 to remove and 0 not upgraded. Need to get 20.8 MB of archives. After unpacking 79.9 MB will be used. Writing extended state information... Get: 1 http://deb.debian.org/debian bookworm/main amd64 sensible-utils all 0.0.17+nmu1 [19.0 kB] Get: 2 http://deb.debian.org/debian bookworm/main amd64 libmagic-mgc amd64 1:5.44-3 [305 kB] Get: 3 http://deb.debian.org/debian bookworm/main amd64 libmagic1 amd64 1:5.44-3 [104 kB] Get: 4 http://deb.debian.org/debian bookworm/main amd64 file amd64 1:5.44-3 [42.5 kB] Get: 5 http://deb.debian.org/debian bookworm/main amd64 gettext-base amd64 0.21-12 [160 kB] Get: 6 http://deb.debian.org/debian bookworm/main amd64 libuchardet0 amd64 0.0.7-1 [67.8 kB] Get: 7 http://deb.debian.org/debian bookworm/main amd64 groff-base amd64 1.22.4-10 [916 kB] Get: 8 http://deb.debian.org/debian bookworm/main amd64 bsdextrautils amd64 2.38.1-5+b1 [86.6 kB] Get: 9 http://deb.debian.org/debian bookworm/main amd64 libpipeline1 amd64 1.5.7-1 [38.5 kB] Get: 10 http://deb.debian.org/debian bookworm/main amd64 man-db amd64 2.11.2-2 [1386 kB] Get: 11 http://deb.debian.org/debian bookworm/main amd64 m4 amd64 1.4.19-3 [287 kB] Get: 12 http://deb.debian.org/debian bookworm/main amd64 autoconf all 2.71-3 [332 kB] Get: 13 http://deb.debian.org/debian bookworm/main amd64 autotools-dev all 20220109.1 [51.6 kB] Get: 14 http://deb.debian.org/debian bookworm/main amd64 automake all 1:1.16.5-1.3 [823 kB] Get: 15 http://deb.debian.org/debian bookworm/main amd64 autopoint all 0.21-12 [495 kB] Get: 16 http://deb.debian.org/debian bookworm/main amd64 libdebhelper-perl all 13.11.4 [81.2 kB] Get: 17 http://deb.debian.org/debian bookworm/main amd64 libtool all 2.4.7-5 [517 kB] Get: 18 http://deb.debian.org/debian bookworm/main amd64 dh-autoreconf all 20 [17.1 kB] Get: 19 http://deb.debian.org/debian bookworm/main amd64 libarchive-zip-perl all 1.68-1 [104 kB] Get: 20 http://deb.debian.org/debian bookworm/main amd64 libsub-override-perl all 0.09-4 [9304 B] Get: 21 http://deb.debian.org/debian bookworm/main amd64 libfile-stripnondeterminism-perl all 1.13.1-1 [19.4 kB] Get: 22 http://deb.debian.org/debian bookworm/main amd64 dh-strip-nondeterminism all 1.13.1-1 [8620 B] Get: 23 http://deb.debian.org/debian bookworm/main amd64 libelf1 amd64 0.188-2.1 [174 kB] Get: 24 http://deb.debian.org/debian bookworm/main amd64 dwz amd64 0.15-1 [109 kB] Get: 25 http://deb.debian.org/debian bookworm/main amd64 libicu72 amd64 72.1-3 [9376 kB] Get: 26 http://deb.debian.org/debian bookworm/main amd64 libxml2 amd64 2.9.14+dfsg-1.2 [687 kB] Get: 27 http://deb.debian.org/debian bookworm/main amd64 gettext amd64 0.21-12 [1300 kB] Get: 28 http://deb.debian.org/debian bookworm/main amd64 intltool-debian all 0.35.0+20060710.6 [22.9 kB] Get: 29 http://deb.debian.org/debian bookworm/main amd64 po-debconf all 1.0.21+nmu1 [248 kB] Get: 30 http://deb.debian.org/debian bookworm/main amd64 debhelper all 13.11.4 [942 kB] Get: 31 http://deb.debian.org/debian bookworm/main amd64 libdevel-checklib-perl all 1.16-1 [18.5 kB] Get: 32 http://deb.debian.org/debian bookworm/main amd64 libgmpxx4ldbl amd64 2:6.2.1+dfsg1-1.1 [338 kB] Get: 33 http://deb.debian.org/debian bookworm/main amd64 libgmp-dev amd64 2:6.2.1+dfsg1-1.1 [641 kB] Get: 34 http://deb.debian.org/debian bookworm/main amd64 libperl-dev amd64 5.36.0-7 [1046 kB] Fetched 20.8 MB in 0s (56.4 MB/s) debconf: delaying package configuration, since apt-utils is not installed Selecting previously unselected package sensible-utils. (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 19596 files and directories currently installed.) Preparing to unpack .../00-sensible-utils_0.0.17+nmu1_all.deb ... Unpacking sensible-utils (0.0.17+nmu1) ... Selecting previously unselected package libmagic-mgc. Preparing to unpack .../01-libmagic-mgc_1%3a5.44-3_amd64.deb ... Unpacking libmagic-mgc (1:5.44-3) ... Selecting previously unselected package libmagic1:amd64. Preparing to unpack .../02-libmagic1_1%3a5.44-3_amd64.deb ... Unpacking libmagic1:amd64 (1:5.44-3) ... Selecting previously unselected package file. Preparing to unpack .../03-file_1%3a5.44-3_amd64.deb ... Unpacking file (1:5.44-3) ... Selecting previously unselected package gettext-base. Preparing to unpack .../04-gettext-base_0.21-12_amd64.deb ... Unpacking gettext-base (0.21-12) ... Selecting previously unselected package libuchardet0:amd64. Preparing to unpack .../05-libuchardet0_0.0.7-1_amd64.deb ... Unpacking libuchardet0:amd64 (0.0.7-1) ... Selecting previously unselected package groff-base. Preparing to unpack .../06-groff-base_1.22.4-10_amd64.deb ... Unpacking groff-base (1.22.4-10) ... Selecting previously unselected package bsdextrautils. Preparing to unpack .../07-bsdextrautils_2.38.1-5+b1_amd64.deb ... Unpacking bsdextrautils (2.38.1-5+b1) ... Selecting previously unselected package libpipeline1:amd64. Preparing to unpack .../08-libpipeline1_1.5.7-1_amd64.deb ... Unpacking libpipeline1:amd64 (1.5.7-1) ... Selecting previously unselected package man-db. Preparing to unpack .../09-man-db_2.11.2-2_amd64.deb ... Unpacking man-db (2.11.2-2) ... Selecting previously unselected package m4. Preparing to unpack .../10-m4_1.4.19-3_amd64.deb ... Unpacking m4 (1.4.19-3) ... Selecting previously unselected package autoconf. Preparing to unpack .../11-autoconf_2.71-3_all.deb ... Unpacking autoconf (2.71-3) ... Selecting previously unselected package autotools-dev. Preparing to unpack .../12-autotools-dev_20220109.1_all.deb ... Unpacking autotools-dev (20220109.1) ... Selecting previously unselected package automake. Preparing to unpack .../13-automake_1%3a1.16.5-1.3_all.deb ... Unpacking automake (1:1.16.5-1.3) ... Selecting previously unselected package autopoint. Preparing to unpack .../14-autopoint_0.21-12_all.deb ... Unpacking autopoint (0.21-12) ... Selecting previously unselected package libdebhelper-perl. Preparing to unpack .../15-libdebhelper-perl_13.11.4_all.deb ... Unpacking libdebhelper-perl (13.11.4) ... Selecting previously unselected package libtool. Preparing to unpack .../16-libtool_2.4.7-5_all.deb ... Unpacking libtool (2.4.7-5) ... Selecting previously unselected package dh-autoreconf. Preparing to unpack .../17-dh-autoreconf_20_all.deb ... Unpacking dh-autoreconf (20) ... Selecting previously unselected package libarchive-zip-perl. Preparing to unpack .../18-libarchive-zip-perl_1.68-1_all.deb ... Unpacking libarchive-zip-perl (1.68-1) ... Selecting previously unselected package libsub-override-perl. Preparing to unpack .../19-libsub-override-perl_0.09-4_all.deb ... Unpacking libsub-override-perl (0.09-4) ... Selecting previously unselected package libfile-stripnondeterminism-perl. Preparing to unpack .../20-libfile-stripnondeterminism-perl_1.13.1-1_all.deb ... Unpacking libfile-stripnondeterminism-perl (1.13.1-1) ... Selecting previously unselected package dh-strip-nondeterminism. Preparing to unpack .../21-dh-strip-nondeterminism_1.13.1-1_all.deb ... Unpacking dh-strip-nondeterminism (1.13.1-1) ... Selecting previously unselected package libelf1:amd64. Preparing to unpack .../22-libelf1_0.188-2.1_amd64.deb ... Unpacking libelf1:amd64 (0.188-2.1) ... Selecting previously unselected package dwz. Preparing to unpack .../23-dwz_0.15-1_amd64.deb ... Unpacking dwz (0.15-1) ... Selecting previously unselected package libicu72:amd64. Preparing to unpack .../24-libicu72_72.1-3_amd64.deb ... Unpacking libicu72:amd64 (72.1-3) ... Selecting previously unselected package libxml2:amd64. Preparing to unpack .../25-libxml2_2.9.14+dfsg-1.2_amd64.deb ... Unpacking libxml2:amd64 (2.9.14+dfsg-1.2) ... Selecting previously unselected package gettext. Preparing to unpack .../26-gettext_0.21-12_amd64.deb ... Unpacking gettext (0.21-12) ... Selecting previously unselected package intltool-debian. Preparing to unpack .../27-intltool-debian_0.35.0+20060710.6_all.deb ... Unpacking intltool-debian (0.35.0+20060710.6) ... Selecting previously unselected package po-debconf. Preparing to unpack .../28-po-debconf_1.0.21+nmu1_all.deb ... Unpacking po-debconf (1.0.21+nmu1) ... Selecting previously unselected package debhelper. Preparing to unpack .../29-debhelper_13.11.4_all.deb ... Unpacking debhelper (13.11.4) ... Selecting previously unselected package libdevel-checklib-perl. Preparing to unpack .../30-libdevel-checklib-perl_1.16-1_all.deb ... Unpacking libdevel-checklib-perl (1.16-1) ... Selecting previously unselected package libgmpxx4ldbl:amd64. Preparing to unpack .../31-libgmpxx4ldbl_2%3a6.2.1+dfsg1-1.1_amd64.deb ... Unpacking libgmpxx4ldbl:amd64 (2:6.2.1+dfsg1-1.1) ... Selecting previously unselected package libgmp-dev:amd64. Preparing to unpack .../32-libgmp-dev_2%3a6.2.1+dfsg1-1.1_amd64.deb ... Unpacking libgmp-dev:amd64 (2:6.2.1+dfsg1-1.1) ... Selecting previously unselected package libperl-dev:amd64. Preparing to unpack .../33-libperl-dev_5.36.0-7_amd64.deb ... Unpacking libperl-dev:amd64 (5.36.0-7) ... Setting up libpipeline1:amd64 (1.5.7-1) ... Setting up libicu72:amd64 (72.1-3) ... Setting up bsdextrautils (2.38.1-5+b1) ... Setting up libmagic-mgc (1:5.44-3) ... Setting up libdevel-checklib-perl (1.16-1) ... Setting up libarchive-zip-perl (1.68-1) ... Setting up libdebhelper-perl (13.11.4) ... Setting up libmagic1:amd64 (1:5.44-3) ... Setting up gettext-base (0.21-12) ... Setting up m4 (1.4.19-3) ... Setting up libperl-dev:amd64 (5.36.0-7) ... Setting up file (1:5.44-3) ... Setting up autotools-dev (20220109.1) ... Setting up libgmpxx4ldbl:amd64 (2:6.2.1+dfsg1-1.1) ... Setting up autopoint (0.21-12) ... Setting up autoconf (2.71-3) ... Setting up sensible-utils (0.0.17+nmu1) ... Setting up libuchardet0:amd64 (0.0.7-1) ... Setting up libsub-override-perl (0.09-4) ... Setting up libelf1:amd64 (0.188-2.1) ... Setting up libxml2:amd64 (2.9.14+dfsg-1.2) ... Setting up automake (1:1.16.5-1.3) ... update-alternatives: using /usr/bin/automake-1.16 to provide /usr/bin/automake (automake) in auto mode Setting up libfile-stripnondeterminism-perl (1.13.1-1) ... Setting up gettext (0.21-12) ... Setting up libgmp-dev:amd64 (2:6.2.1+dfsg1-1.1) ... Setting up libtool (2.4.7-5) ... Setting up intltool-debian (0.35.0+20060710.6) ... Setting up dh-autoreconf (20) ... Setting up dh-strip-nondeterminism (1.13.1-1) ... Setting up dwz (0.15-1) ... Setting up groff-base (1.22.4-10) ... Setting up po-debconf (1.0.21+nmu1) ... Setting up man-db (2.11.2-2) ... Not building database; man-db/auto-update is not 'true'. Setting up debhelper (13.11.4) ... Processing triggers for libc-bin (2.36-9) ... Reading package lists... Building dependency tree... Reading state information... Reading extended state information... Initializing package states... Writing extended state information... Building tag database... -> Finished parsing the build-deps I: Building the package I: Running cd /build/libmath-prime-util-gmp-perl-0.52/ && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games" HOME="/nonexistent/first-build" dpkg-buildpackage -us -uc -b && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games" HOME="/nonexistent/first-build" dpkg-genchanges -S > ../libmath-prime-util-gmp-perl_0.52-2_source.changes dpkg-buildpackage: info: source package libmath-prime-util-gmp-perl dpkg-buildpackage: info: source version 0.52-2 dpkg-buildpackage: info: source distribution unstable dpkg-buildpackage: info: source changed by Jelmer Vernooij dpkg-source --before-build . dpkg-buildpackage: info: host architecture amd64 debian/rules clean dh clean debian/rules override_dh_auto_clean make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.52' dh_auto_clean [ ! -d /build/libmath-prime-util-gmp-perl-0.52/inc.save ] || mv /build/libmath-prime-util-gmp-perl-0.52/inc.save /build/libmath-prime-util-gmp-perl-0.52/inc make[1]: Leaving directory '/build/libmath-prime-util-gmp-perl-0.52' dh_clean debian/rules binary dh binary dh_update_autotools_config dh_autoreconf debian/rules override_dh_auto_configure make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.52' [ ! -d /build/libmath-prime-util-gmp-perl-0.52/inc ] || mv /build/libmath-prime-util-gmp-perl-0.52/inc /build/libmath-prime-util-gmp-perl-0.52/inc.save dh_auto_configure /usr/bin/perl Makefile.PL INSTALLDIRS=vendor "OPTIMIZE=-g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2" "LD=x86_64-linux-gnu-gcc -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wl,-z,relro -Wl,-z,now" Checking if your kit is complete... Warning: the following files are missing in your kit: inc/Devel/CheckLib.pm Please inform the author. Generating a Unix-style Makefile Writing Makefile for Math::Prime::Util::GMP Writing MYMETA.yml and MYMETA.json make[1]: Leaving directory '/build/libmath-prime-util-gmp-perl-0.52' dh_auto_build make -j15 make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.52' Running Mkbootstrap for GMP () x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" prime_iterator.c x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" utility.c x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" primality.c x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" factor.c x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" pbrent63.c chmod 644 "GMP.bs" x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" squfof126.c x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" ecm.c x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" tinyqs.c x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" simpqs.c x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" bls75.c x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" ecpp.c x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" aks.c x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" gmp_main.c x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" real.c cp lib/Math/Prime/Util/GMP.pm blib/lib/Math/Prime/Util/GMP.pm x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" isaac.c x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" random_prime.c "/usr/bin/perl" "/usr/share/perl/5.36/ExtUtils/xsubpp" -typemap '/usr/share/perl/5.36/ExtUtils/typemap' XS.xs > XS.xsc "/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- GMP.bs blib/arch/auto/Math/Prime/Util/GMP/GMP.bs 644 mv XS.xsc XS.c x86_64-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.52\" -DXS_VERSION=\"0.52\" -fPIC "-I/usr/lib/x86_64-linux-gnu/perl/5.36/CORE" XS.c rm -f blib/arch/auto/Math/Prime/Util/GMP/GMP.so x86_64-linux-gnu-gcc -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.52=. -fstack-protector-strong -Wformat -Werror=format-security -Wl,-z,relro -Wl,-z,now -shared -L/usr/local/lib -fstack-protector-strong prime_iterator.o utility.o primality.o factor.o pbrent63.o squfof126.o ecm.o tinyqs.o simpqs.o bls75.o ecpp.o aks.o gmp_main.o real.o isaac.o random_prime.o XS.o -o blib/arch/auto/Math/Prime/Util/GMP/GMP.so \ -lgmp -lm \ chmod 755 blib/arch/auto/Math/Prime/Util/GMP/GMP.so Manifying 1 pod document make[1]: Leaving directory '/build/libmath-prime-util-gmp-perl-0.52' dh_auto_test make -j15 test TEST_VERBOSE=1 make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.52' "/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- GMP.bs blib/arch/auto/Math/Prime/Util/GMP/GMP.bs 644 PERL_DL_NONLAZY=1 "/usr/bin/perl" "-MExtUtils::Command::MM" "-MTest::Harness" "-e" "undef *Test::Harness::Switches; test_harness(1, 'blib/lib', 'blib/arch')" t/*.t t/01-load.t .................. 1..1 ok 1 - require Math::Prime::Util::GMP; ok t/02-can.t ................... 1..1 ok 1 - Math::Prime::Util::GMP->can(...) ok t/10-isprime.t ............... 1..227 ok 1 - 2 is prime ok 2 - 1 is not prime ok 3 - 0 is not prime ok 4 - -1 is not prime ok 5 - -2 is not prime ok 6 - 20 is not prime ok 7 - 2**2=4 is not prime ok 8 - 2**3=8 is not prime ok 9 - 2**4=16 is not prime ok 10 - 2**5=32 is not prime ok 11 - 2**6=64 is not prime ok 12 - 2**7=128 is not prime ok 13 - 2**8=256 is not prime ok 14 - 2**9=512 is not prime ok 15 - 2**10=1024 is not prime ok 16 - 2**11=2048 is not prime ok 17 - 2**12=4096 is not prime ok 18 - 2**13=8192 is not prime ok 19 - 2**14=16384 is not prime ok 20 - 2**15=32768 is not prime ok 21 - 2**16=65536 is not prime ok 22 - 2**17=131072 is not prime ok 23 - 2**18=262144 is not prime ok 24 - 2**19=524288 is not prime ok 25 - 2**20=1048576 is not prime ok 26 - is_prime 0..3572 ok 27 - A006945 number 9 is not prime ok 28 - A006945 number 2047 is not prime ok 29 - A006945 number 1373653 is not prime ok 30 - A006945 number 25326001 is not prime ok 31 - A006945 number 3215031751 is not prime ok 32 - A006945 number 2152302898747 is not prime ok 33 - A006945 number 3474749660383 is not prime ok 34 - A006945 number 341550071728321 is not prime ok 35 - A006945 number 341550071728321 is not prime ok 36 - A006945 number 3825123056546413051 is not prime ok 37 - Carmichael Number 561 is not prime ok 38 - Carmichael Number 1105 is not prime ok 39 - Carmichael Number 1729 is not prime ok 40 - Carmichael Number 2465 is not prime ok 41 - Carmichael Number 2821 is not prime ok 42 - Carmichael Number 6601 is not prime ok 43 - Carmichael Number 8911 is not prime ok 44 - Carmichael Number 10585 is not prime ok 45 - Carmichael Number 15841 is not prime ok 46 - Carmichael Number 29341 is not prime ok 47 - Carmichael Number 41041 is not prime ok 48 - Carmichael Number 46657 is not prime ok 49 - Carmichael Number 52633 is not prime ok 50 - Carmichael Number 62745 is not prime ok 51 - Carmichael Number 63973 is not prime ok 52 - Carmichael Number 75361 is not prime ok 53 - Carmichael Number 101101 is not prime ok 54 - Carmichael Number 340561 is not prime ok 55 - Carmichael Number 488881 is not prime ok 56 - Carmichael Number 852841 is not prime ok 57 - Carmichael Number 1857241 is not prime ok 58 - Carmichael Number 6733693 is not prime ok 59 - Carmichael Number 9439201 is not prime ok 60 - Carmichael Number 17236801 is not prime ok 61 - Carmichael Number 23382529 is not prime ok 62 - Carmichael Number 34657141 is not prime ok 63 - Carmichael Number 56052361 is not prime ok 64 - Carmichael Number 146843929 is not prime ok 65 - Carmichael Number 216821881 is not prime ok 66 - Pseudoprime (base 2) 341 is not prime ok 67 - Pseudoprime (base 2) 561 is not prime ok 68 - Pseudoprime (base 2) 645 is not prime ok 69 - Pseudoprime (base 2) 1105 is not prime ok 70 - Pseudoprime (base 2) 1387 is not prime ok 71 - Pseudoprime (base 2) 1729 is not prime ok 72 - Pseudoprime (base 2) 1905 is not prime ok 73 - Pseudoprime (base 2) 2047 is not prime ok 74 - Pseudoprime (base 2) 2465 is not prime ok 75 - Pseudoprime (base 2) 2701 is not prime ok 76 - Pseudoprime (base 2) 2821 is not prime ok 77 - Pseudoprime (base 2) 3277 is not prime ok 78 - Pseudoprime (base 2) 4033 is not prime ok 79 - Pseudoprime (base 2) 4369 is not prime ok 80 - Pseudoprime (base 2) 4371 is not prime ok 81 - Pseudoprime (base 2) 4681 is not prime ok 82 - Pseudoprime (base 2) 5461 is not prime ok 83 - Pseudoprime (base 2) 6601 is not prime ok 84 - Pseudoprime (base 2) 7957 is not prime ok 85 - Pseudoprime (base 2) 8321 is not prime ok 86 - Pseudoprime (base 2) 52633 is not prime ok 87 - Pseudoprime (base 2) 88357 is not prime ok 88 - Pseudoprime (base 3) 121 is not prime ok 89 - Pseudoprime (base 3) 703 is not prime ok 90 - Pseudoprime (base 3) 1891 is not prime ok 91 - Pseudoprime (base 3) 3281 is not prime ok 92 - Pseudoprime (base 3) 8401 is not prime ok 93 - Pseudoprime (base 3) 8911 is not prime ok 94 - Pseudoprime (base 3) 10585 is not prime ok 95 - Pseudoprime (base 3) 12403 is not prime ok 96 - Pseudoprime (base 3) 16531 is not prime ok 97 - Pseudoprime (base 3) 18721 is not prime ok 98 - Pseudoprime (base 3) 19345 is not prime ok 99 - Pseudoprime (base 3) 23521 is not prime ok 100 - Pseudoprime (base 3) 31621 is not prime ok 101 - Pseudoprime (base 3) 44287 is not prime ok 102 - Pseudoprime (base 3) 47197 is not prime ok 103 - Pseudoprime (base 3) 55969 is not prime ok 104 - Pseudoprime (base 3) 63139 is not prime ok 105 - Pseudoprime (base 3) 74593 is not prime ok 106 - Pseudoprime (base 3) 79003 is not prime ok 107 - Pseudoprime (base 3) 82513 is not prime ok 108 - Pseudoprime (base 3) 87913 is not prime ok 109 - Pseudoprime (base 3) 88573 is not prime ok 110 - Pseudoprime (base 3) 97567 is not prime ok 111 - Pseudoprime (base 5) 781 is not prime ok 112 - Pseudoprime (base 5) 1541 is not prime ok 113 - Pseudoprime (base 5) 5461 is not prime ok 114 - Pseudoprime (base 5) 5611 is not prime ok 115 - Pseudoprime (base 5) 7813 is not prime ok 116 - Pseudoprime (base 5) 13021 is not prime ok 117 - Pseudoprime (base 5) 14981 is not prime ok 118 - Pseudoprime (base 5) 15751 is not prime ok 119 - Pseudoprime (base 5) 24211 is not prime ok 120 - Pseudoprime (base 5) 25351 is not prime ok 121 - Pseudoprime (base 5) 29539 is not prime ok 122 - Pseudoprime (base 5) 38081 is not prime ok 123 - Pseudoprime (base 5) 40501 is not prime ok 124 - Pseudoprime (base 5) 44801 is not prime ok 125 - Pseudoprime (base 5) 53971 is not prime ok 126 - Pseudoprime (base 5) 79381 is not prime ok 127 - Primegap start 2 is prime ok 128 - Primegap start 3 is prime ok 129 - Primegap start 7 is prime ok 130 - Primegap start 23 is prime ok 131 - Primegap start 89 is prime ok 132 - Primegap start 113 is prime ok 133 - Primegap start 523 is prime ok 134 - Primegap start 887 is prime ok 135 - Primegap start 1129 is prime ok 136 - Primegap start 1327 is prime ok 137 - Primegap start 9551 is prime ok 138 - Primegap start 15683 is prime ok 139 - Primegap start 19609 is prime ok 140 - Primegap start 31397 is prime ok 141 - Primegap start 155921 is prime ok 142 - Primegap end 5 is prime ok 143 - Primegap end 11 is prime ok 144 - Primegap end 29 is prime ok 145 - Primegap end 97 is prime ok 146 - Primegap end 127 is prime ok 147 - Primegap end 541 is prime ok 148 - Primegap end 907 is prime ok 149 - Primegap end 1151 is prime ok 150 - Primegap end 1361 is prime ok 151 - Primegap end 9587 is prime ok 152 - Primegap end 15727 is prime ok 153 - Primegap end 19661 is prime ok 154 - Primegap end 31469 is prime ok 155 - Primegap end 156007 is prime ok 156 - Primegap end 360749 is prime ok 157 - Primegap end 370373 is prime ok 158 - Primegap end 492227 is prime ok 159 - Primegap end 1349651 is prime ok 160 - Primegap end 1357333 is prime ok 161 - Primegap end 2010881 is prime ok 162 - Primegap end 4652507 is prime ok 163 - Primegap end 17051887 is prime ok 164 - Primegap end 20831533 is prime ok 165 - Primegap end 47326913 is prime ok 166 - Primegap end 122164969 is prime ok 167 - Primegap end 189695893 is prime ok 168 - Primegap end 191913031 is prime ok 169 - Primegap end 10726905041 is prime ok 170 - Primegap end 387096383 is prime ok 171 - Primegap end 436273291 is prime ok 172 - Primegap end 1294268779 is prime ok 173 - Primegap end 1453168433 is prime ok 174 - Primegap end 2300942869 is prime ok 175 - Primegap end 3842611109 is prime ok 176 - Primegap end 4302407713 is prime ok 177 - Primegap end 20678048681 is prime ok 178 - Primegap end 22367085353 is prime ok 179 - Primegap end 25056082543 is prime ok 180 - Primegap end 42652618807 is prime ok 181 - Primegap end 127976334671 is prime ok 182 - Primegap end 182226896239 is prime ok 183 - Primegap end 241160624143 is prime ok 184 - Primegap end 297501075799 is prime ok 185 - Primegap end 303371455241 is prime ok 186 - Primegap end 304599508537 is prime ok 187 - Primegap end 416608695821 is prime ok 188 - Primegap end 461690510011 is prime ok 189 - Primegap end 614487453523 is prime ok 190 - Primegap end 738832927927 is prime ok 191 - Primegap end 1346294310749 is prime ok 192 - Primegap end 1408695493609 is prime ok 193 - Primegap end 1968188556461 is prime ok 194 - Primegap end 2614941710599 is prime ok 195 - Primegap end 7177162611713 is prime ok 196 - Primegap end 13829048559701 is prime ok 197 - Primegap end 19581334192423 is prime ok 198 - Primegap end 42842283925351 is prime ok 199 - Primegap end 90874329411493 is prime ok 200 - Primegap end 171231342420521 is prime ok 201 - Primegap end 1425172824437699411 is prime ok 202 - Primegap start 41437872381314257606025664648551531 is prime ok 203 - Primegap start 2533428381785258181145396408525147 is prime ok 204 - Primegap start 6429801387755251608076552195160813 is prime ok 205 - Primegap start 41553317381222258299076384479889759 is prime ok 206 - Primegap start 36315406071322208317982870602883 is prime ok 207 - Primegap start 45578379712061211117046756353187 is prime ok 208 - Primegap start 853188381785258606010648985968457 is prime ok 209 - Primegap start 888753381785258606882214366477061 is prime ok 210 - Large prime 225024267640198977569930286413453544441731198242501 is prime ok 211 - Large prime 117012619172903468336363755054149226979817746816041 is prime ok 212 - Large prime 531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127 is prime ok 213 - Large prime 92751329613360357106269703807871171087102857318174669180345062763478315192734600581256686043065309145579066294614789483004809764977045757613701500430172705662998376708484136826337990209855359024352422688815970711638591317382567474931186571722543217265405033315880950490013269952667650366965082529384527374177 is prime ok 214 - Large prime 32260744804243979022151766262161234411163230832614876909266661009538736040353215637132894501612353010543647977249384696464608093622417037943487940297713136625578440884358987868505411720686648801150726329314235915696991593215969719047680808482063865275910410329176506289872973203004139815308900515515244012185782792865548320042281725631557473818091156913398618606687353487817756951894689296125125745219508443864021389470338722761499570221166792212754530607135317650463501248358538246234526221292291399209816873396728066128587613467291339613990745570031925686037674992827058364602015693306309221496407276025345897341847 is prime ok 215 - Large prime 741396953013654360447130328344036195463451575964208809937212804294129714670068945580433523222395982402982697545970774900776520388371921559613345658117858514521005297959953114279118002815246386498175953512848112483829848122269294444605330839657412152438182209874755797291767504531960060238286549305381539583199152421722832641143066110744833138611455286547147404482909367418917279008726128416147000372123061195691620902127739725422428617685907314016736926212798020427887587562043320485749196280067057894293080208114019557078624547720775548197602227651474547221582994513675272163167738690346545549988775205966423807402030104516784101084806845639397870429182441506430010222493085299118475419254862008744168191879396758301572743283703529570334803330960201229624052255881219905504918044357793149162118185478553170626317902665884547746435111999694067410243494584529487741658481642249023103753134680734412840328449909896847175077758262986499427135151069709448521414215035574272868281224727572369419529536625125298888387473824456936636521457187215362102409447089422614360505828034680296548026192715652255266408626555770777003931789812374333546088379306076791601248774333377106632994883876629562024348840502578094204183502272143692446875343057 is prime ok 216 - Large composite 777777777777777777777777 is not prime ok 217 - Large composite 877777777777777777777777 is not prime ok 218 - Large composite 87777777777777777777777795475 is not prime ok 219 - Large composite 890745785790123461234805903467891234681234 is not prime ok 220 - Large composite 318665857834031151167461 is not prime ok 221 - Large composite 3317044064679887385961981 is not prime ok 222 - Large composite 6003094289670105800312596501 is not prime ok 223 - Large composite 59276361075595573263446330101 is not prime ok 224 - Large composite 564132928021909221014087501701 is not prime ok 225 - Large composite 1543267864443420616877677640751301 is not prime ok 226 - is_prime(2**135+33) = 2 ok 227 - is_prime is deterministic for 81-bit input ok t/11-primes.t ................ 1..63 ok 1 - primes(undef) ok 2 - primes(a) ok 3 - primes(-4) ok 4 - primes(2,undef) ok 5 - primes(2,x) ok 6 - primes(2,-4) ok 7 - primes(undef,7) ok 8 - primes(x,7) ok 9 - primes(-10,7) ok 10 - primes(undef,undef) ok 11 - primes(x,x) ok 12 - primes(-10,-4) ok 13 - primes(0) should return [] ok 14 - primes(18) should return [2 3 5 7 11 13 17] ok 15 - primes(1) should return [] ok 16 - primes(11) should return [2 3 5 7 11] ok 17 - primes(2) should return [2] ok 18 - primes(19) should return [2 3 5 7 11 13 17 19] ok 19 - primes(5) should return [2 3 5] ok 20 - primes(4) should return [2 3] ok 21 - primes(20) should return [2 3 5 7 11 13 17 19] ok 22 - primes(3) should return [2 3] ok 23 - primes(7) should return [2 3 5 7] ok 24 - primes(6) should return [2 3 5] ok 25 - primes(20,2) should return [] ok 26 - primes(2,20) should return [2 3 5 7 11 13 17 19] ok 27 - primes(4,8) should return [5 7] ok 28 - primes(3842610774,3842611108) should return [] ok 29 - primes(70,30) should return [] ok 30 - primes(3090,3162) should return [3109 3119 3121 3137] ok 31 - primes(2,2) should return [2] ok 32 - primes(3089,3163) should return [3089 3109 3119 3121 3137 3163] ok 33 - primes(3,9) should return [3 5 7] ok 34 - primes(30,70) should return [31 37 41 43 47 53 59 61 67] ok 35 - primes(2,3) should return [2 3] ok 36 - primes(2,5) should return [2 3 5] ok 37 - primes(3,6) should return [3 5] ok 38 - primes(3088,3164) should return [3089 3109 3119 3121 3137 3163] ok 39 - primes(3,7) should return [3 5 7] ok 40 - primes(3,3) should return [3] ok 41 - primes(2010734,2010880) should return [] ok 42 - primes(2010733,2010881) should return [2010733 2010881] ok 43 - primes(3842610773,3842611109) should return [3842610773 3842611109] ok 44 - Primes between 1_693_182_318_746_371 and 1_693_182_318_747_671 ok 45 - primes( 2^66, 2^66 + 100 ) ok 46 - count primes within a range ok 47 - Primes between 0 and 3572 ok 48 - Primes between 2 and 20 ok 49 - Primes between 30 and 70 ok 50 - Primes between 30 and 70 ok 51 - Primes between 20 and 2 ok 52 - Primes between 1 and 1 ok 53 - Primes between 2 and 2 ok 54 - Primes between 3 and 3 ok 55 - Primegap 21 inclusive ok 56 - Primegap 21 exclusive ok 57 - Primes between 3088 and 3164 ok 58 - Primes between 3089 and 3163 ok 59 - Primes between 3090 and 3162 ok 60 - use sieve_primes to partial sieve a range ok 61 - use sieve_range to sieve a large range ok 62 - Sieve twin primes 10^30 10^30+20000 ok 63 - Sieve twin primes 10^30+4832 10^20+18738 should be empty ok t/12-nextprime.t ............. 1..29 ok 1 - prev_prime 0..3572 ok 2 - next_prime 0..3572 ok 3 - next prime of 19609 is 19609+52 ok 4 - prev prime of 19609+52 is 19609 ok 5 - next prime of 360653 is 360653+96 ok 6 - prev prime of 360653+96 is 360653 ok 7 - next prime of 2010733 is 2010733+148 ok 8 - prev prime of 2010733+148 is 2010733 ok 9 - next prime of 19608 is 19609 ok 10 - next prime of 19610 is 19661 ok 11 - next prime of 19660 is 19661 ok 12 - prev prime of 19662 is 19661 ok 13 - prev prime of 19660 is 19609 ok 14 - prev prime of 19610 is 19609 ok 15 - Previous prime of 2 returns undef ok 16 - next_prime(2010733..2010880) = 2010881 ok 17 - prev_prime(2010734..2010881) = 2010733 ok 18 - next_prime(1234567890) == 1234567891) ok 19 - next_prime(8756....73456) = 8756....73779 ok 20 - prev_prime(1353....31156) = 1353....30917 ok 21 - surround_primes(2) ok 22 - surround_primes(2) ok 23 - surround_primes(29384928409238) ok 24 - surround_primes(2^64) ok 25 - surround_primes(2^65+41) ok 26 - surround_primes(2^65+41,89) ok 27 - surround_primes(2^65+41,90) ok 28 - twin primes 10^x ok 29 - next_twin_prime on record gaps ok t/13-primecount.t ............ 1..239 ok 1 - prime_count(0,1) == 0 ok 2 - prime_count(0,2) == 1 ok 3 - prime_count(0,3) == 2 ok 4 - prime_count(2,2) == 2 ok 5 - Pi(10000) = 1229 ok 6 - Pi(1000) = 168 ok 7 - Pi(10) = 4 ok 8 - Pi(100) = 25 ok 9 - Pi(65535) = 6542 ok 10 - Pi(1) = 0 ok 11 - prime_count(24113483758197309440,24113483758197310396) = 23 ok 12 - prime_count(45490240575506677760,45490240575506679266) = 45 ok 13 - prime_count(75458848506302300160,75458848506302301114) = 18 ok 14 - prime_count(161891136728481923072,161891136728481923850) = 18 ok 15 - prime_count(342679779996280025856,342679779996280027487) = 36 ok 16 - prime_count(759817770139002651712,759817770139002652700) = 26 ok 17 - prime_count(1747599191389174303424,1747599191389174303464) = 1 ok 18 - prime_count(3277252439479060606848,3277252439479060607688) = 12 ok 19 - prime_count(6887003433586725213696,6887003433586725213705) = 0 ok 20 - prime_count(9515645314265862127392,9515645314265862128163) = 15 ok 21 - prime_count(26114788673620260854784,26114788673620260855763) = 17 ok 22 - prime_count(50021095190478561709568,50021095190478561710552) = 16 ok 23 - prime_count(99293609391529723419136,99293609391529723420902) = 20 ok 24 - prime_count(192328541043198946838272,192328541043198946839023) = 18 ok 25 - prime_count(386730387965240293676544,386730387965240293678117) = 29 ok 26 - prime_count(735479117913496587353088,735479117913496587354687) = 32 ok 27 - prime_count(1330998807397722174706176,1330998807397722174706347) = 3 ok 28 - prime_count(2904510561226220349412352,2904510561226220349413930) = 21 ok 29 - prime_count(6847845859597286698824704,6847845859597286698826460) = 26 ok 30 - prime_count(9880100064397462397649408,9880100064397462397650566) = 17 ok 31 - prime_count(27282839498809356795298816,27282839498809356795300564) = 23 ok 32 - prime_count(41281035060688503590597632,41281035060688503590598867) = 15 ok 33 - prime_count(90374604407955267181195264,90374604407955267181195457) = 2 ok 34 - prime_count(200915297903707834362390528,200915297903707834362391737) = 22 ok 35 - prime_count(407168505212786768724781056,407168505212786768724782199) = 16 ok 36 - prime_count(817226365950024137449562112,817226365950024137449563070) = 14 ok 37 - prime_count(1621795554319024274899124224,1621795554319024274899125678) = 18 ok 38 - prime_count(3660769329531840549798248448,3660769329531840549798250278) = 23 ok 39 - prime_count(7314734077273801099596496896,7314734077273801099596498034) = 16 ok 40 - prime_count(10921064834678012199192993792,10921064834678012199192994171) = 5 ok 41 - prime_count(24344155473536054398385987584,24344155473536054398385988831) = 14 ok 42 - prime_count(46348470312928428796771975168,46348470312928428796771976813) = 28 ok 43 - prime_count(90920702154966737593543950336,90920702154966737593543951561) = 19 ok 44 - prime_count(233651247954773375187087900672,233651247954773375187087901872) = 16 ok 45 - prime_count(396231658265327350374175801344,396231658265327350374175803015) = 25 ok 46 - prime_count(734317226076915700748351602688,734317226076915700748351602878) = 0 ok 47 - prime_count(1696551122155337401496703205376,1696551122155337401496703205528) = 1 ok 48 - prime_count(3100618561736693802993406410752,3100618561736693802993406411961) = 22 ok 49 - prime_count(6306554584349917605986812821504,6306554584349917605986812822041) = 9 ok 50 - prime_count(12897043632271155211973625643008,12897043632271155211973625643214) = 3 ok 51 - prime_count(27070533331838590423947251286016,27070533331838590423947251286519) = 5 ok 52 - prime_count(44933719679228300847894502572032,44933719679228300847894502574007) = 26 ok 53 - prime_count(92067632902534481695789005144064,92067632902534481695789005144486) = 7 ok 54 - prime_count(219741981610812063391578010288128,219741981610812063391578010289366) = 22 ok 55 - prime_count(441164516482197726783156020576256,441164516482197726783156020576737) = 5 ok 56 - prime_count(783694033185045453566312041152512,783694033185045453566312041152692) = 1 ok 57 - prime_count(1754258052575393907132624082305024,1754258052575393907132624082305337) = 4 ok 58 - prime_count(3291172491135828814265248164610048,3291172491135828814265248164611897) = 21 ok 59 - prime_count(5255505796082429028530496329220096,5255505796082429028530496329221910) = 27 ok 60 - prime_count(12176969828012415257060992658440192,12176969828012415257060992658440427) = 5 ok 61 - prime_count(22889636161029770514121985316880384,22889636161029770514121985316881826) = 17 ok 62 - prime_count(44359130889092671028243970633760768,44359130889092671028243970633762444) = 17 ok 63 - prime_count(94248617103459242056487941267521536,94248617103459242056487941267522522) = 16 ok 64 - prime_count(191861723074481884112975882535043072,191861723074481884112975882535043603) = 10 ok 65 - prime_count(396766049747924068225951765070086144,396766049747924068225951765070087394) = 10 ok 66 - prime_count(884985931172514936451903530140172288,884985931172514936451903530140172881) = 9 ok 67 - prime_count(1969978340430920872903807060280344576,1969978340430920872903807060280346393) = 17 ok 68 - prime_count_lower(2^2) <= 2 ok 69 - prime_count_upper(2^2) >= 2 ok 70 - prime_count_lower(2^49) <= 17094432576778 ok 71 - prime_count_upper(2^49) >= 17094432576778 ok 72 - prime_count_lower(2^79) <= 11248065615133675809379 ok 73 - prime_count_upper(2^79) >= 11248065615133675809379 ok 74 - prime_count_lower(2^69) <= 12611864618760352880 ok 75 - prime_count_upper(2^69) >= 12611864618760352880 ok 76 - prime_count_lower(2^30) <= 54400028 ok 77 - prime_count_upper(2^30) >= 54400028 ok 78 - prime_count_lower(2^54) <= 494890204904784 ok 79 - prime_count_upper(2^54) >= 494890204904784 ok 80 - prime_count_lower(2^6) <= 18 ok 81 - prime_count_upper(2^6) >= 18 ok 82 - prime_count_lower(2^4) <= 6 ok 83 - prime_count_upper(2^4) >= 6 ok 84 - prime_count_lower(2^8) <= 54 ok 85 - prime_count_upper(2^8) >= 54 ok 86 - prime_count_lower(2^7) <= 31 ok 87 - prime_count_upper(2^7) >= 31 ok 88 - prime_count_lower(2^29) <= 28192750 ok 89 - prime_count_upper(2^29) >= 28192750 ok 90 - prime_count_lower(2^35) <= 1480206279 ok 91 - prime_count_upper(2^35) >= 1480206279 ok 92 - prime_count_lower(2^71) <= 48995571600129458363 ok 93 - prime_count_upper(2^71) >= 48995571600129458363 ok 94 - prime_count_lower(2^81) <= 43860397052947409356492 ok 95 - prime_count_upper(2^81) >= 43860397052947409356492 ok 96 - prime_count_lower(2^41) <= 80316571436 ok 97 - prime_count_upper(2^41) >= 80316571436 ok 98 - prime_count_lower(2^28) <= 14630843 ok 99 - prime_count_upper(2^28) >= 14630843 ok 100 - prime_count_lower(2^83) <= 171136408646923240987028 ok 101 - prime_count_upper(2^83) >= 171136408646923240987028 ok 102 - prime_count_lower(2^43) <= 305761713237 ok 103 - prime_count_upper(2^43) >= 305761713237 ok 104 - prime_count_lower(2^73) <= 190499823401327905601 ok 105 - prime_count_upper(2^73) >= 190499823401327905601 ok 106 - prime_count_lower(2^16) <= 6542 ok 107 - prime_count_upper(2^16) >= 6542 ok 108 - prime_count_lower(2^12) <= 564 ok 109 - prime_count_upper(2^12) >= 564 ok 110 - prime_count_lower(2^63) <= 216289611853439384 ok 111 - prime_count_upper(2^63) >= 216289611853439384 ok 112 - prime_count_lower(2^61) <= 55890484045084135 ok 113 - prime_count_upper(2^61) >= 55890484045084135 ok 114 - prime_count_lower(2^27) <= 7603553 ok 115 - prime_count_upper(2^27) >= 7603553 ok 116 - prime_count_lower(2^77) <= 2886507381056867953916 ok 117 - prime_count_upper(2^77) >= 2886507381056867953916 ok 118 - prime_count_lower(2^47) <= 4461632979717 ok 119 - prime_count_upper(2^47) >= 4461632979717 ok 120 - prime_count_lower(2^68) <= 6400771597544937806 ok 121 - prime_count_upper(2^68) >= 6400771597544937806 ok 122 - prime_count_lower(2^48) <= 8731188863470 ok 123 - prime_count_upper(2^48) >= 8731188863470 ok 124 - prime_count_lower(2^78) <= 5697549648954257752872 ok 125 - prime_count_upper(2^78) >= 5697549648954257752872 ok 126 - prime_count_lower(2^21) <= 155611 ok 127 - prime_count_upper(2^21) >= 155611 ok 128 - prime_count_lower(2^23) <= 564163 ok 129 - prime_count_upper(2^23) >= 564163 ok 130 - prime_count_lower(2^67) <= 3249254387052557215 ok 131 - prime_count_upper(2^67) >= 3249254387052557215 ok 132 - prime_count_lower(2^58) <= 7357400267843990 ok 133 - prime_count_upper(2^58) >= 7357400267843990 ok 134 - prime_count_lower(2^10) <= 172 ok 135 - prime_count_upper(2^10) >= 172 ok 136 - prime_count_lower(2^57) <= 3745011184713964 ok 137 - prime_count_upper(2^57) >= 3745011184713964 ok 138 - prime_count_lower(2^53) <= 252252704148404 ok 139 - prime_count_upper(2^53) >= 252252704148404 ok 140 - prime_count_lower(2^51) <= 65612899915304 ok 141 - prime_count_upper(2^51) >= 65612899915304 ok 142 - prime_count_lower(2^15) <= 3512 ok 143 - prime_count_upper(2^15) >= 3512 ok 144 - prime_count_lower(2^36) <= 2874398515 ok 145 - prime_count_upper(2^36) >= 2874398515 ok 146 - prime_count_lower(2^64) <= 425656284035217743 ok 147 - prime_count_upper(2^64) >= 425656284035217743 ok 148 - prime_count_lower(2^5) <= 11 ok 149 - prime_count_upper(2^5) >= 11 ok 150 - prime_count_lower(2^84) <= 338124238545210097236684 ok 151 - prime_count_upper(2^84) >= 338124238545210097236684 ok 152 - prime_count_lower(2^32) <= 203280221 ok 153 - prime_count_upper(2^32) >= 203280221 ok 154 - prime_count_lower(2^74) <= 375744164937699609596 ok 155 - prime_count_upper(2^74) >= 375744164937699609596 ok 156 - prime_count_lower(2^44) <= 597116381732 ok 157 - prime_count_upper(2^44) >= 597116381732 ok 158 - prime_count_lower(2^24) <= 1077871 ok 159 - prime_count_upper(2^24) >= 1077871 ok 160 - prime_count_lower(2^59) <= 14458792895301660 ok 161 - prime_count_upper(2^59) >= 14458792895301660 ok 162 - prime_count_lower(2^33) <= 393615806 ok 163 - prime_count_upper(2^33) >= 393615806 ok 164 - prime_count_lower(2^31) <= 105097565 ok 165 - prime_count_upper(2^31) >= 105097565 ok 166 - prime_count_lower(2^85) <= 668150111666935905701562 ok 167 - prime_count_upper(2^85) >= 668150111666935905701562 ok 168 - prime_count_lower(2^45) <= 1166746786182 ok 169 - prime_count_upper(2^45) >= 1166746786182 ok 170 - prime_count_lower(2^75) <= 741263521140740113483 ok 171 - prime_count_upper(2^75) >= 741263521140740113483 ok 172 - prime_count_lower(2^65) <= 837903145466607212 ok 173 - prime_count_upper(2^65) >= 837903145466607212 ok 174 - prime_count_lower(2^14) <= 1900 ok 175 - prime_count_upper(2^14) >= 1900 ok 176 - prime_count_lower(2^37) <= 5586502348 ok 177 - prime_count_upper(2^37) >= 5586502348 ok 178 - prime_count_lower(2^25) <= 2063689 ok 179 - prime_count_upper(2^25) >= 2063689 ok 180 - prime_count_lower(2^38) <= 10866266172 ok 181 - prime_count_upper(2^38) >= 10866266172 ok 182 - prime_count_lower(2^39) <= 21151907950 ok 183 - prime_count_upper(2^39) >= 21151907950 ok 184 - prime_count_lower(2^60) <= 28423094496953330 ok 185 - prime_count_upper(2^60) >= 28423094496953330 ok 186 - prime_count_lower(2^9) <= 97 ok 187 - prime_count_upper(2^9) >= 97 ok 188 - prime_count_lower(2^80) <= 22209558889635384205844 ok 189 - prime_count_upper(2^80) >= 22209558889635384205844 ok 190 - prime_count_lower(2^70) <= 24855455363362685793 ok 191 - prime_count_upper(2^70) >= 24855455363362685793 ok 192 - prime_count_lower(2^40) <= 41203088796 ok 193 - prime_count_upper(2^40) >= 41203088796 ok 194 - prime_count_lower(2^52) <= 128625503610475 ok 195 - prime_count_upper(2^52) >= 128625503610475 ok 196 - prime_count_lower(2^20) <= 82025 ok 197 - prime_count_upper(2^20) >= 82025 ok 198 - prime_count_lower(2^3) <= 4 ok 199 - prime_count_upper(2^3) >= 4 ok 200 - prime_count_lower(2^56) <= 1906879381028850 ok 201 - prime_count_upper(2^56) >= 1906879381028850 ok 202 - prime_count_lower(2^11) <= 309 ok 203 - prime_count_upper(2^11) >= 309 ok 204 - prime_count_lower(2^13) <= 1028 ok 205 - prime_count_upper(2^13) >= 1028 ok 206 - prime_count_lower(2^86) <= 1320486952377516565496055 ok 207 - prime_count_upper(2^86) >= 1320486952377516565496055 ok 208 - prime_count_lower(2^76) <= 1462626667154509638735 ok 209 - prime_count_upper(2^76) >= 1462626667154509638735 ok 210 - prime_count_lower(2^62) <= 109932807585469973 ok 211 - prime_count_upper(2^62) >= 109932807585469973 ok 212 - prime_count_lower(2^46) <= 2280998753949 ok 213 - prime_count_upper(2^46) >= 2280998753949 ok 214 - prime_count_lower(2^82) <= 86631124695994360074872 ok 215 - prime_count_upper(2^82) >= 86631124695994360074872 ok 216 - prime_count_lower(2^72) <= 96601075195075186855 ok 217 - prime_count_upper(2^72) >= 96601075195075186855 ok 218 - prime_count_lower(2^66) <= 1649819700464785589 ok 219 - prime_count_upper(2^66) >= 1649819700464785589 ok 220 - prime_count_lower(2^34) <= 762939111 ok 221 - prime_count_upper(2^34) >= 762939111 ok 222 - prime_count_lower(2^42) <= 156661034233 ok 223 - prime_count_upper(2^42) >= 156661034233 ok 224 - prime_count_lower(2^50) <= 33483379603407 ok 225 - prime_count_upper(2^50) >= 33483379603407 ok 226 - prime_count_lower(2^22) <= 295947 ok 227 - prime_count_upper(2^22) >= 295947 ok 228 - prime_count_lower(2^17) <= 12251 ok 229 - prime_count_upper(2^17) >= 12251 ok 230 - prime_count_lower(2^26) <= 3957809 ok 231 - prime_count_upper(2^26) >= 3957809 ok 232 - prime_count_lower(2^18) <= 23000 ok 233 - prime_count_upper(2^18) >= 23000 ok 234 - prime_count_lower(2^19) <= 43390 ok 235 - prime_count_upper(2^19) >= 43390 ok 236 - prime_count_lower(2^55) <= 971269945245201 ok 237 - prime_count_upper(2^55) >= 971269945245201 ok 238 - prime_count_lower(2^1) <= 1 ok 239 - prime_count_upper(2^1) >= 1 ok t/15-probprime.t ............. 1..149 ok 1 - 2 is prime ok 2 - 1 is not prime ok 3 - 0 is not prime ok 4 - -1 is not prime ok 5 - -2 is not prime ok 6 - 20 is not prime ok 7 - A006945 number 9 is not prime ok 8 - A006945 number 2047 is not prime ok 9 - A006945 number 1373653 is not prime ok 10 - A006945 number 25326001 is not prime ok 11 - A006945 number 3215031751 is not prime ok 12 - A006945 number 2152302898747 is not prime ok 13 - A006945 number 3474749660383 is not prime ok 14 - A006945 number 341550071728321 is not prime ok 15 - A006945 number 341550071728321 is not prime ok 16 - A006945 number 3825123056546413051 is not prime ok 17 - Carmichael Number 561 is not prime ok 18 - Carmichael Number 1105 is not prime ok 19 - Carmichael Number 1729 is not prime ok 20 - Carmichael Number 2465 is not prime ok 21 - Carmichael Number 2821 is not prime ok 22 - Carmichael Number 6601 is not prime ok 23 - Carmichael Number 8911 is not prime ok 24 - Carmichael Number 10585 is not prime ok 25 - Carmichael Number 15841 is not prime ok 26 - Carmichael Number 29341 is not prime ok 27 - Carmichael Number 41041 is not prime ok 28 - Carmichael Number 46657 is not prime ok 29 - Carmichael Number 52633 is not prime ok 30 - Carmichael Number 62745 is not prime ok 31 - Carmichael Number 63973 is not prime ok 32 - Carmichael Number 75361 is not prime ok 33 - Carmichael Number 101101 is not prime ok 34 - Carmichael Number 340561 is not prime ok 35 - Carmichael Number 488881 is not prime ok 36 - Carmichael Number 852841 is not prime ok 37 - Carmichael Number 1857241 is not prime ok 38 - Carmichael Number 6733693 is not prime ok 39 - Carmichael Number 9439201 is not prime ok 40 - Carmichael Number 17236801 is not prime ok 41 - Carmichael Number 23382529 is not prime ok 42 - Carmichael Number 34657141 is not prime ok 43 - Carmichael Number 56052361 is not prime ok 44 - Carmichael Number 146843929 is not prime ok 45 - Carmichael Number 216821881 is not prime ok 46 - Pseudoprime (base 2) 341 is not prime ok 47 - Pseudoprime (base 2) 561 is not prime ok 48 - Pseudoprime (base 2) 645 is not prime ok 49 - Pseudoprime (base 2) 1105 is not prime ok 50 - Pseudoprime (base 2) 1387 is not prime ok 51 - Pseudoprime (base 2) 1729 is not prime ok 52 - Pseudoprime (base 2) 1905 is not prime ok 53 - Pseudoprime (base 2) 2047 is not prime ok 54 - Pseudoprime (base 2) 2465 is not prime ok 55 - Pseudoprime (base 2) 2701 is not prime ok 56 - Pseudoprime (base 2) 2821 is not prime ok 57 - Pseudoprime (base 2) 3277 is not prime ok 58 - Pseudoprime (base 2) 4033 is not prime ok 59 - Pseudoprime (base 2) 4369 is not prime ok 60 - Pseudoprime (base 2) 4371 is not prime ok 61 - Pseudoprime (base 2) 4681 is not prime ok 62 - Pseudoprime (base 2) 5461 is not prime ok 63 - Pseudoprime (base 2) 6601 is not prime ok 64 - Pseudoprime (base 2) 7957 is not prime ok 65 - Pseudoprime (base 2) 8321 is not prime ok 66 - Pseudoprime (base 2) 52633 is not prime ok 67 - Pseudoprime (base 2) 88357 is not prime ok 68 - Pseudoprime (base 3) 121 is not prime ok 69 - Pseudoprime (base 3) 703 is not prime ok 70 - Pseudoprime (base 3) 1891 is not prime ok 71 - Pseudoprime (base 3) 3281 is not prime ok 72 - Pseudoprime (base 3) 8401 is not prime ok 73 - Pseudoprime (base 3) 8911 is not prime ok 74 - Pseudoprime (base 3) 10585 is not prime ok 75 - Pseudoprime (base 3) 12403 is not prime ok 76 - Pseudoprime (base 3) 16531 is not prime ok 77 - Pseudoprime (base 3) 18721 is not prime ok 78 - Pseudoprime (base 3) 19345 is not prime ok 79 - Pseudoprime (base 3) 23521 is not prime ok 80 - Pseudoprime (base 3) 31621 is not prime ok 81 - Pseudoprime (base 3) 44287 is not prime ok 82 - Pseudoprime (base 3) 47197 is not prime ok 83 - Pseudoprime (base 3) 55969 is not prime ok 84 - Pseudoprime (base 3) 63139 is not prime ok 85 - Pseudoprime (base 3) 74593 is not prime ok 86 - Pseudoprime (base 3) 79003 is not prime ok 87 - Pseudoprime (base 3) 82513 is not prime ok 88 - Pseudoprime (base 3) 87913 is not prime ok 89 - Pseudoprime (base 3) 88573 is not prime ok 90 - Pseudoprime (base 3) 97567 is not prime ok 91 - Pseudoprime (base 5) 781 is not prime ok 92 - Pseudoprime (base 5) 1541 is not prime ok 93 - Pseudoprime (base 5) 5461 is not prime ok 94 - Pseudoprime (base 5) 5611 is not prime ok 95 - Pseudoprime (base 5) 7813 is not prime ok 96 - Pseudoprime (base 5) 13021 is not prime ok 97 - Pseudoprime (base 5) 14981 is not prime ok 98 - Pseudoprime (base 5) 15751 is not prime ok 99 - Pseudoprime (base 5) 24211 is not prime ok 100 - Pseudoprime (base 5) 25351 is not prime ok 101 - Pseudoprime (base 5) 29539 is not prime ok 102 - Pseudoprime (base 5) 38081 is not prime ok 103 - Pseudoprime (base 5) 40501 is not prime ok 104 - Pseudoprime (base 5) 44801 is not prime ok 105 - Pseudoprime (base 5) 53971 is not prime ok 106 - Pseudoprime (base 5) 79381 is not prime ok 107 - Primegap start 2 is prime ok 108 - Primegap start 3 is prime ok 109 - Primegap start 7 is prime ok 110 - Primegap start 23 is prime ok 111 - Primegap start 89 is prime ok 112 - Primegap start 113 is prime ok 113 - Primegap start 523 is prime ok 114 - Primegap start 887 is prime ok 115 - Primegap start 1129 is prime ok 116 - Primegap start 1327 is prime ok 117 - Primegap start 9551 is prime ok 118 - Primegap start 15683 is prime ok 119 - Primegap start 19609 is prime ok 120 - Primegap start 31397 is prime ok 121 - Primegap start 155921 is prime ok 122 - Primegap end 5 is prime ok 123 - Primegap end 11 is prime ok 124 - Primegap end 29 is prime ok 125 - Primegap end 97 is prime ok 126 - Primegap end 127 is prime ok 127 - Primegap end 541 is prime ok 128 - Primegap end 907 is prime ok 129 - Primegap end 1151 is prime ok 130 - Primegap end 1361 is prime ok 131 - Primegap end 9587 is prime ok 132 - Primegap end 15727 is prime ok 133 - Primegap end 19661 is prime ok 134 - Primegap end 31469 is prime ok 135 - Primegap end 156007 is prime ok 136 - Primegap end 360749 is prime ok 137 - Primegap end 370373 is prime ok 138 - Primegap end 492227 is prime ok 139 - Primegap end 1349651 is prime ok 140 - Primegap end 1357333 is prime ok 141 - Primegap end 2010881 is prime ok 142 - Primegap end 4652507 is prime ok 143 - Primegap end 17051887 is prime ok 144 - Primegap end 20831533 is prime ok 145 - Primegap end 47326913 is prime ok 146 - Primegap end 122164969 is prime ok 147 - Primegap end 189695893 is prime ok 148 - Primegap end 191913031 is prime ok 149 - Primegap end 10726905041 is prime ok t/16-provableprime.t ......... 1..138 ok 1 - 2 is prime ok 2 - 1 is not prime ok 3 - 0 is not prime ok 4 - -1 is not prime ok 5 - -2 is not prime ok 6 - 20 is not prime ok 7 - 2152302898747 is not prime ok 8 - 3474749660383 is not prime ok 9 - 341550071728321 is not prime ok 10 - 341550071728321 is not prime ok 11 - 3825123056546413051 is not prime ok 12 - 561 is not prime ok 13 - 1105 is not prime ok 14 - 1729 is not prime ok 15 - 2465 is not prime ok 16 - 2821 is not prime ok 17 - 6601 is not prime ok 18 - 8911 is not prime ok 19 - 10585 is not prime ok 20 - 15841 is not prime ok 21 - 29341 is not prime ok 22 - 41041 is not prime ok 23 - 46657 is not prime ok 24 - 52633 is not prime ok 25 - 4681 is not prime ok 26 - 5461 is not prime ok 27 - 6601 is not prime ok 28 - 7957 is not prime ok 29 - 8321 is not prime ok 30 - 52633 is not prime ok 31 - 88357 is not prime ok 32 - 44287 is not prime ok 33 - 47197 is not prime ok 34 - 55969 is not prime ok 35 - 63139 is not prime ok 36 - 74593 is not prime ok 37 - 79003 is not prime ok 38 - 82513 is not prime ok 39 - 87913 is not prime ok 40 - 88573 is not prime ok 41 - 97567 is not prime ok 42 - 44801 is not prime ok 43 - 53971 is not prime ok 44 - 79381 is not prime ok 45 - 2 is prime ok 46 - 3 is prime ok 47 - 7 is prime ok 48 - 23 is prime ok 49 - 89 is prime ok 50 - 113 is prime ok 51 - 523 is prime ok 52 - 887 is prime ok 53 - 1129 is prime ok 54 - 1327 is prime ok 55 - 9551 is prime ok 56 - 15683 is prime ok 57 - 19609 is prime ok 58 - 31397 is prime ok 59 - 155921 is prime ok 60 - 5 is prime ok 61 - 11 is prime ok 62 - 29 is prime ok 63 - 97 is prime ok 64 - 127 is prime ok 65 - 541 is prime ok 66 - 907 is prime ok 67 - 1151 is prime ok 68 - 1361 is prime ok 69 - 9587 is prime ok 70 - 15727 is prime ok 71 - 19661 is prime ok 72 - 31469 is prime ok 73 - 156007 is prime ok 74 - 360749 is prime ok 75 - 370373 is prime ok 76 - 492227 is prime ok 77 - 1349651 is prime ok 78 - 1357333 is prime ok 79 - 2010881 is prime ok 80 - 4652507 is prime ok 81 - 17051887 is prime ok 82 - 20831533 is prime ok 83 - 47326913 is prime ok 84 - 122164969 is prime ok 85 - 189695893 is prime ok 86 - 191913031 is prime ok 87 - 10726905041 is prime ok 88 - 9223372036854775837 is prime ok 89 - 18446744073709551629 is prime ok 90 - 73786976294838206473 is prime ok 91 - 147573952589676412931 is prime ok 92 - 295147905179352825889 is prime ok 93 - 590295810358705651741 is prime ok 94 - 1180591620717411303449 is prime ok 95 - 2361183241434822606859 is prime ok 96 - 18889465931478580854821 is prime ok 97 - 37778931862957161709601 is prime ok 98 - 75557863725914323419151 is prime ok 99 - 302231454903657293676551 is prime ok 100 - 604462909807314587353111 is prime ok 101 - 38685626227668133590597803 is prime ok 102 - 1237940039285380274899124357 is prime ok 103 - 9903520314283042199192993897 is prime ok 104 - 316912650057057350374175801351 is prime ok 105 - 2535301200456458802993406410833 is prime ok 106 - 162259276829213363391578010288167 is prime ok 107 - 1298074214633706907132624082305051 is prime ok 108 - 10384593717069655257060992658440473 is prime ok 109 - 1329227995784915872903807060280345027 is prime ok 110 - 680564733841876926926749214863536422929 is prime ok 111 - 43556142965880123323311949751266331066401 is prime ok 112 - 87112285931760246646623899502532662132821 is prime ok 113 - 713623846352979940529142984724747568191373381 is prime ok 114 - 2854495385411919762116571938898990272765493293 is prime ok 115 - 196159429230833773869868419475239575503198607639501078831 is prime ok 116 - 3138550867693340381917894711603833208051177722232017256453 is prime ok 117 - 12554203470773361527671578846415332832204710888928069025857 is prime ok 118 - 102844034832575377634685573909834406561420991602098741459288097 is prime ok 119 - 210624583337114373395836055367340864637790190801098222508621955201 is prime ok 120 - 14821387422376473014217086081112052205218558037201992197050570753012880593911817 is prime ok 121 - 3351951982485649274893506249551461531869841455148098344430890360930441007518386744200468574541725856922507964546621512713438470702986642486608412251521039 is prime ok 122 - is_prime(2**128+51) = 2 ok 123 - is_provable_prime(2**128+165) == 2 ok 124 - is_provable_prime_with_cert(0) ok 125 - is_provable_prime_with_cert(2) ok 126 - is_provable_prime_with_cert(96953) ok 127 - is_provable_prime_with_cert(848301847013166693538593241183) ok 128 - is_provable_prime_with_cert(316912650057057350374175801351) ok 129 - is_provable_prime_with_cert(3138550867693340381917894711603833208051177722232017256453) is prime ok 130 - is_provable_prime_with_cert(3138550867693340381917894711603833208051177722232017256453) ok 131 - is_aks_prime(74903) ok 132 - is_miller_prime(4835703278458516698824747) ok 133 - is_miller_prime(4835703278458516698824747,1) ok 134 - is_nminus1_prime(340282366920938463463374607431768211507) ok 135 - is_nplus1_prime(391) is false ok 136 - is_nplus1_prime(63699643930293116661668059033734770664712983894089510286262271) ok 137 - is_bls75_prime(19568952034128395861091890269105913923337787205640409156470109155604436042237347889151) ok 138 - is_ecpp_prime(340282366920938463463374607431768211507) ok t/17-pseudoprime.t ........... 1..1093 ok 1 - is_strong_pseudoprime with no base fails ok 2 - is_strong_pseudoprime with base undef fails ok 3 - is_strong_pseudoprime with base '' fails ok 4 - is_strong_pseudoprime with base 0 fails ok 5 - is_strong_pseudoprime with base 1 fails ok 6 - is_strong_pseudoprime with base -7 fails ok 7 - is_strong_pseudoprime(undef,2) is invalid ok 8 - is_strong_pseudoprime('',2) is invalid ok 9 - is_strong_pseudoprime(-7,2) is invalid ok 10 - is_strong_lucas_pseudoprime(undef) is invalid ok 11 - is_strong_lucas_pseudoprime('') is invalid ok 12 - is_strong_lucas_pseudoprime(-7) is invalid ok 13 - spsp(0, 2) shortcut composite ok 14 - spsp(1, 2) shortcut composite ok 15 - spsp(2, 2) shortcut prime ok 16 - spsp(2, 2) shortcut prime ok 17 - slpsp(1) shortcut composite ok 18 - slpsp(3) shortcut prime ok 19 - 1729 is an Euler-Plumb pseudoprime ok 20 - 1905 is an Euler-Plumb pseudoprime ok 21 - 2047 is an Euler-Plumb pseudoprime ok 22 - 2465 is an Euler-Plumb pseudoprime ok 23 - 3277 is an Euler-Plumb pseudoprime ok 24 - 4033 is an Euler-Plumb pseudoprime ok 25 - 4681 is an Euler-Plumb pseudoprime ok 26 - 8321 is an Euler-Plumb pseudoprime ok 27 - 12801 is an Euler-Plumb pseudoprime ok 28 - 15841 is an Euler-Plumb pseudoprime ok 29 - 16705 is an Euler-Plumb pseudoprime ok 30 - 18705 is an Euler-Plumb pseudoprime ok 31 - 25761 is an Euler-Plumb pseudoprime ok 32 - 29341 is an Euler-Plumb pseudoprime ok 33 - 33153 is an Euler-Plumb pseudoprime ok 34 - 34945 is an Euler-Plumb pseudoprime ok 35 - 41041 is an Euler-Plumb pseudoprime ok 36 - 42799 is an Euler-Plumb pseudoprime ok 37 - 46657 is an Euler-Plumb pseudoprime ok 38 - 49141 is an Euler-Plumb pseudoprime ok 39 - 52633 is an Euler-Plumb pseudoprime ok 40 - 65281 is an Euler-Plumb pseudoprime ok 41 - 74665 is an Euler-Plumb pseudoprime ok 42 - 75361 is an Euler-Plumb pseudoprime ok 43 - 80581 is an Euler-Plumb pseudoprime ok 44 - 85489 is an Euler-Plumb pseudoprime ok 45 - 87249 is an Euler-Plumb pseudoprime ok 46 - 88357 is an Euler-Plumb pseudoprime ok 47 - 90751 is an Euler-Plumb pseudoprime ok 48 - Pseudoprime (base 28178) 28179 passes MR ok 49 - Pseudoprime (base 28178) 29381 passes MR ok 50 - Pseudoprime (base 28178) 30353 passes MR ok 51 - Pseudoprime (base 28178) 34441 passes MR ok 52 - Pseudoprime (base 28178) 35371 passes MR ok 53 - Pseudoprime (base 28178) 37051 passes MR ok 54 - Pseudoprime (base 28178) 38503 passes MR ok 55 - Pseudoprime (base 28178) 43387 passes MR ok 56 - Pseudoprime (base 28178) 50557 passes MR ok 57 - Pseudoprime (base 28178) 51491 passes MR ok 58 - Pseudoprime (base 28178) 57553 passes MR ok 59 - Pseudoprime (base 28178) 79003 passes MR ok 60 - Pseudoprime (base 28178) 82801 passes MR ok 61 - Pseudoprime (base 28178) 83333 passes MR ok 62 - Pseudoprime (base 28178) 87249 passes MR ok 63 - Pseudoprime (base 28178) 88507 passes MR ok 64 - Pseudoprime (base 28178) 97921 passes MR ok 65 - Pseudoprime (base 28178) 99811 passes MR ok 66 - Pseudoprime (base 1795265022) 1795265023 passes MR ok 67 - Pseudoprime (base 1795265022) 1797174457 passes MR ok 68 - Pseudoprime (base 1795265022) 1797741901 passes MR ok 69 - Pseudoprime (base 1795265022) 1804469753 passes MR ok 70 - Pseudoprime (base 1795265022) 1807751977 passes MR ok 71 - Pseudoprime (base 1795265022) 1808043283 passes MR ok 72 - Pseudoprime (base 1795265022) 1808205701 passes MR ok 73 - Pseudoprime (base 1795265022) 1813675681 passes MR ok 74 - Pseudoprime (base 1795265022) 1816462201 passes MR ok 75 - Pseudoprime (base 1795265022) 1817936371 passes MR ok 76 - Pseudoprime (base 1795265022) 1819050257 passes MR ok 77 - Pseudoprime (base 29) 15 passes MR ok 78 - Pseudoprime (base 29) 91 passes MR ok 79 - Pseudoprime (base 29) 341 passes MR ok 80 - Pseudoprime (base 29) 469 passes MR ok 81 - Pseudoprime (base 29) 871 passes MR ok 82 - Pseudoprime (base 29) 2257 passes MR ok 83 - Pseudoprime (base 29) 4371 passes MR ok 84 - Pseudoprime (base 29) 4411 passes MR ok 85 - Pseudoprime (base 29) 5149 passes MR ok 86 - Pseudoprime (base 29) 6097 passes MR ok 87 - Pseudoprime (base 29) 8401 passes MR ok 88 - Pseudoprime (base 29) 11581 passes MR ok 89 - Pseudoprime (base 29) 12431 passes MR ok 90 - Pseudoprime (base 29) 15577 passes MR ok 91 - Pseudoprime (base 29) 16471 passes MR ok 92 - Pseudoprime (base 29) 19093 passes MR ok 93 - Pseudoprime (base 29) 25681 passes MR ok 94 - Pseudoprime (base 29) 28009 passes MR ok 95 - Pseudoprime (base 29) 29539 passes MR ok 96 - Pseudoprime (base 29) 31417 passes MR ok 97 - Pseudoprime (base 29) 33001 passes MR ok 98 - Pseudoprime (base 29) 48133 passes MR ok 99 - Pseudoprime (base 29) 49141 passes MR ok 100 - Pseudoprime (base 29) 54913 passes MR ok 101 - Pseudoprime (base 29) 79003 passes MR ok 102 - Pseudoprime (base 325) 341 passes MR ok 103 - Pseudoprime (base 325) 343 passes MR ok 104 - Pseudoprime (base 325) 697 passes MR ok 105 - Pseudoprime (base 325) 1141 passes MR ok 106 - Pseudoprime (base 325) 2059 passes MR ok 107 - Pseudoprime (base 325) 2149 passes MR ok 108 - Pseudoprime (base 325) 3097 passes MR ok 109 - Pseudoprime (base 325) 3537 passes MR ok 110 - Pseudoprime (base 325) 4033 passes MR ok 111 - Pseudoprime (base 325) 4681 passes MR ok 112 - Pseudoprime (base 325) 4941 passes MR ok 113 - Pseudoprime (base 325) 5833 passes MR ok 114 - Pseudoprime (base 325) 6517 passes MR ok 115 - Pseudoprime (base 325) 7987 passes MR ok 116 - Pseudoprime (base 325) 8911 passes MR ok 117 - Pseudoprime (base 325) 12403 passes MR ok 118 - Pseudoprime (base 325) 12913 passes MR ok 119 - Pseudoprime (base 325) 15043 passes MR ok 120 - Pseudoprime (base 325) 16021 passes MR ok 121 - Pseudoprime (base 325) 20017 passes MR ok 122 - Pseudoprime (base 325) 22261 passes MR ok 123 - Pseudoprime (base 325) 23221 passes MR ok 124 - Pseudoprime (base 325) 24649 passes MR ok 125 - Pseudoprime (base 325) 24929 passes MR ok 126 - Pseudoprime (base 325) 31841 passes MR ok 127 - Pseudoprime (base 325) 35371 passes MR ok 128 - Pseudoprime (base 325) 38503 passes MR ok 129 - Pseudoprime (base 325) 43213 passes MR ok 130 - Pseudoprime (base 325) 44173 passes MR ok 131 - Pseudoprime (base 325) 47197 passes MR ok 132 - Pseudoprime (base 325) 50041 passes MR ok 133 - Pseudoprime (base 325) 55909 passes MR ok 134 - Pseudoprime (base 325) 56033 passes MR ok 135 - Pseudoprime (base 325) 58969 passes MR ok 136 - Pseudoprime (base 325) 59089 passes MR ok 137 - Pseudoprime (base 325) 61337 passes MR ok 138 - Pseudoprime (base 325) 65441 passes MR ok 139 - Pseudoprime (base 325) 68823 passes MR ok 140 - Pseudoprime (base 325) 72641 passes MR ok 141 - Pseudoprime (base 325) 76793 passes MR ok 142 - Pseudoprime (base 325) 78409 passes MR ok 143 - Pseudoprime (base 325) 85879 passes MR ok 144 - 15 is an Euler pseudoprime to base 29 ok 145 - 91 is an Euler pseudoprime to base 29 ok 146 - 341 is an Euler pseudoprime to base 29 ok 147 - 469 is an Euler pseudoprime to base 29 ok 148 - 871 is an Euler pseudoprime to base 29 ok 149 - 2257 is an Euler pseudoprime to base 29 ok 150 - 4371 is an Euler pseudoprime to base 29 ok 151 - 4411 is an Euler pseudoprime to base 29 ok 152 - 5149 is an Euler pseudoprime to base 29 ok 153 - 5185 is an Euler pseudoprime to base 29 ok 154 - 6097 is an Euler pseudoprime to base 29 ok 155 - 8401 is an Euler pseudoprime to base 29 ok 156 - 8841 is an Euler pseudoprime to base 29 ok 157 - 11581 is an Euler pseudoprime to base 29 ok 158 - 12431 is an Euler pseudoprime to base 29 ok 159 - 15577 is an Euler pseudoprime to base 29 ok 160 - 15841 is an Euler pseudoprime to base 29 ok 161 - 16471 is an Euler pseudoprime to base 29 ok 162 - 19093 is an Euler pseudoprime to base 29 ok 163 - 22281 is an Euler pseudoprime to base 29 ok 164 - 25681 is an Euler pseudoprime to base 29 ok 165 - 27613 is an Euler pseudoprime to base 29 ok 166 - 28009 is an Euler pseudoprime to base 29 ok 167 - 29539 is an Euler pseudoprime to base 29 ok 168 - 31417 is an Euler pseudoprime to base 29 ok 169 - 33001 is an Euler pseudoprime to base 29 ok 170 - 41041 is an Euler pseudoprime to base 29 ok 171 - 46657 is an Euler pseudoprime to base 29 ok 172 - 48133 is an Euler pseudoprime to base 29 ok 173 - 49141 is an Euler pseudoprime to base 29 ok 174 - 54913 is an Euler pseudoprime to base 29 ok 175 - 57889 is an Euler pseudoprime to base 29 ok 176 - 79003 is an Euler pseudoprime to base 29 ok 177 - 98301 is an Euler pseudoprime to base 29 ok 178 - 341 is a pseudoprime to base 2 ok 179 - 561 is a pseudoprime to base 2 ok 180 - 645 is a pseudoprime to base 2 ok 181 - 1105 is a pseudoprime to base 2 ok 182 - 1387 is a pseudoprime to base 2 ok 183 - 1729 is a pseudoprime to base 2 ok 184 - 1905 is a pseudoprime to base 2 ok 185 - 2047 is a pseudoprime to base 2 ok 186 - 2465 is a pseudoprime to base 2 ok 187 - 2701 is a pseudoprime to base 2 ok 188 - 2821 is a pseudoprime to base 2 ok 189 - 3277 is a pseudoprime to base 2 ok 190 - 4033 is a pseudoprime to base 2 ok 191 - 4369 is a pseudoprime to base 2 ok 192 - 4371 is a pseudoprime to base 2 ok 193 - 4681 is a pseudoprime to base 2 ok 194 - 5461 is a pseudoprime to base 2 ok 195 - 6601 is a pseudoprime to base 2 ok 196 - 7957 is a pseudoprime to base 2 ok 197 - 8321 is a pseudoprime to base 2 ok 198 - 8481 is a pseudoprime to base 2 ok 199 - 8911 is a pseudoprime to base 2 ok 200 - 10261 is a pseudoprime to base 2 ok 201 - 10585 is a pseudoprime to base 2 ok 202 - 11305 is a pseudoprime to base 2 ok 203 - 12801 is a pseudoprime to base 2 ok 204 - 13741 is a pseudoprime to base 2 ok 205 - 13747 is a pseudoprime to base 2 ok 206 - 13981 is a pseudoprime to base 2 ok 207 - 14491 is a pseudoprime to base 2 ok 208 - 15709 is a pseudoprime to base 2 ok 209 - 15841 is a pseudoprime to base 2 ok 210 - 16705 is a pseudoprime to base 2 ok 211 - 18705 is a pseudoprime to base 2 ok 212 - 18721 is a pseudoprime to base 2 ok 213 - 19951 is a pseudoprime to base 2 ok 214 - 23001 is a pseudoprime to base 2 ok 215 - 23377 is a pseudoprime to base 2 ok 216 - 25761 is a pseudoprime to base 2 ok 217 - 29341 is a pseudoprime to base 2 ok 218 - Pseudoprime (base 5) 781 passes MR ok 219 - Pseudoprime (base 5) 1541 passes MR ok 220 - Pseudoprime (base 5) 5461 passes MR ok 221 - Pseudoprime (base 5) 5611 passes MR ok 222 - Pseudoprime (base 5) 7813 passes MR ok 223 - Pseudoprime (base 5) 13021 passes MR ok 224 - Pseudoprime (base 5) 14981 passes MR ok 225 - Pseudoprime (base 5) 15751 passes MR ok 226 - Pseudoprime (base 5) 24211 passes MR ok 227 - Pseudoprime (base 5) 25351 passes MR ok 228 - Pseudoprime (base 5) 29539 passes MR ok 229 - Pseudoprime (base 5) 38081 passes MR ok 230 - Pseudoprime (base 5) 40501 passes MR ok 231 - Pseudoprime (base 5) 44801 passes MR ok 232 - Pseudoprime (base 5) 53971 passes MR ok 233 - Pseudoprime (base 5) 79381 passes MR ok 234 - Pseudoprime (base 61) 217 passes MR ok 235 - Pseudoprime (base 61) 341 passes MR ok 236 - Pseudoprime (base 61) 1261 passes MR ok 237 - Pseudoprime (base 61) 2701 passes MR ok 238 - Pseudoprime (base 61) 3661 passes MR ok 239 - Pseudoprime (base 61) 6541 passes MR ok 240 - Pseudoprime (base 61) 6697 passes MR ok 241 - Pseudoprime (base 61) 7613 passes MR ok 242 - Pseudoprime (base 61) 13213 passes MR ok 243 - Pseudoprime (base 61) 16213 passes MR ok 244 - Pseudoprime (base 61) 22177 passes MR ok 245 - Pseudoprime (base 61) 23653 passes MR ok 246 - Pseudoprime (base 61) 23959 passes MR ok 247 - Pseudoprime (base 61) 31417 passes MR ok 248 - Pseudoprime (base 61) 50117 passes MR ok 249 - Pseudoprime (base 61) 61777 passes MR ok 250 - Pseudoprime (base 61) 63139 passes MR ok 251 - Pseudoprime (base 61) 67721 passes MR ok 252 - Pseudoprime (base 61) 76301 passes MR ok 253 - Pseudoprime (base 61) 77421 passes MR ok 254 - Pseudoprime (base 61) 79381 passes MR ok 255 - Pseudoprime (base 61) 80041 passes MR ok 256 - Pseudoprime (base 23) 169 passes MR ok 257 - Pseudoprime (base 23) 265 passes MR ok 258 - Pseudoprime (base 23) 553 passes MR ok 259 - Pseudoprime (base 23) 1271 passes MR ok 260 - Pseudoprime (base 23) 2701 passes MR ok 261 - Pseudoprime (base 23) 4033 passes MR ok 262 - Pseudoprime (base 23) 4371 passes MR ok 263 - Pseudoprime (base 23) 4681 passes MR ok 264 - Pseudoprime (base 23) 6533 passes MR ok 265 - Pseudoprime (base 23) 6541 passes MR ok 266 - Pseudoprime (base 23) 7957 passes MR ok 267 - Pseudoprime (base 23) 8321 passes MR ok 268 - Pseudoprime (base 23) 8651 passes MR ok 269 - Pseudoprime (base 23) 8911 passes MR ok 270 - Pseudoprime (base 23) 9805 passes MR ok 271 - Pseudoprime (base 23) 14981 passes MR ok 272 - Pseudoprime (base 23) 18721 passes MR ok 273 - Pseudoprime (base 23) 25201 passes MR ok 274 - Pseudoprime (base 23) 31861 passes MR ok 275 - Pseudoprime (base 23) 34133 passes MR ok 276 - Pseudoprime (base 23) 44173 passes MR ok 277 - Pseudoprime (base 23) 47611 passes MR ok 278 - Pseudoprime (base 23) 47783 passes MR ok 279 - Pseudoprime (base 23) 50737 passes MR ok 280 - Pseudoprime (base 23) 57401 passes MR ok 281 - Pseudoprime (base 23) 62849 passes MR ok 282 - Pseudoprime (base 23) 82513 passes MR ok 283 - Pseudoprime (base 23) 96049 passes MR ok 284 - Pseudoprime (base 1005905886) 1005905887 passes MR ok 285 - Pseudoprime (base 1005905886) 1007713171 passes MR ok 286 - Pseudoprime (base 1005905886) 1008793699 passes MR ok 287 - Pseudoprime (base 1005905886) 1010415421 passes MR ok 288 - Pseudoprime (base 1005905886) 1010487061 passes MR ok 289 - Pseudoprime (base 1005905886) 1010836369 passes MR ok 290 - Pseudoprime (base 1005905886) 1012732873 passes MR ok 291 - Pseudoprime (base 1005905886) 1015269391 passes MR ok 292 - Pseudoprime (base 1005905886) 1016250247 passes MR ok 293 - Pseudoprime (base 1005905886) 1018405741 passes MR ok 294 - Pseudoprime (base 1005905886) 1020182041 passes MR ok 295 - Pseudoprime (base 642735) 653251 passes MR ok 296 - Pseudoprime (base 642735) 653333 passes MR ok 297 - Pseudoprime (base 642735) 663181 passes MR ok 298 - Pseudoprime (base 642735) 676651 passes MR ok 299 - Pseudoprime (base 642735) 714653 passes MR ok 300 - Pseudoprime (base 642735) 759277 passes MR ok 301 - Pseudoprime (base 642735) 794683 passes MR ok 302 - Pseudoprime (base 642735) 805141 passes MR ok 303 - Pseudoprime (base 642735) 844097 passes MR ok 304 - Pseudoprime (base 642735) 872191 passes MR ok 305 - Pseudoprime (base 642735) 874171 passes MR ok 306 - Pseudoprime (base 642735) 894671 passes MR ok 307 - Pseudoprime (base 19) 9 passes MR ok 308 - Pseudoprime (base 19) 49 passes MR ok 309 - Pseudoprime (base 19) 169 passes MR ok 310 - Pseudoprime (base 19) 343 passes MR ok 311 - Pseudoprime (base 19) 1849 passes MR ok 312 - Pseudoprime (base 19) 2353 passes MR ok 313 - Pseudoprime (base 19) 2701 passes MR ok 314 - Pseudoprime (base 19) 4033 passes MR ok 315 - Pseudoprime (base 19) 4681 passes MR ok 316 - Pseudoprime (base 19) 6541 passes MR ok 317 - Pseudoprime (base 19) 6697 passes MR ok 318 - Pseudoprime (base 19) 7957 passes MR ok 319 - Pseudoprime (base 19) 9997 passes MR ok 320 - Pseudoprime (base 19) 12403 passes MR ok 321 - Pseudoprime (base 19) 13213 passes MR ok 322 - Pseudoprime (base 19) 13747 passes MR ok 323 - Pseudoprime (base 19) 15251 passes MR ok 324 - Pseudoprime (base 19) 16531 passes MR ok 325 - Pseudoprime (base 19) 18769 passes MR ok 326 - Pseudoprime (base 19) 19729 passes MR ok 327 - Pseudoprime (base 19) 24761 passes MR ok 328 - Pseudoprime (base 19) 30589 passes MR ok 329 - Pseudoprime (base 19) 31621 passes MR ok 330 - Pseudoprime (base 19) 31861 passes MR ok 331 - Pseudoprime (base 19) 32477 passes MR ok 332 - Pseudoprime (base 19) 41003 passes MR ok 333 - Pseudoprime (base 19) 49771 passes MR ok 334 - Pseudoprime (base 19) 63139 passes MR ok 335 - Pseudoprime (base 19) 64681 passes MR ok 336 - Pseudoprime (base 19) 65161 passes MR ok 337 - Pseudoprime (base 19) 66421 passes MR ok 338 - Pseudoprime (base 19) 68257 passes MR ok 339 - Pseudoprime (base 19) 73555 passes MR ok 340 - Pseudoprime (base 19) 96049 passes MR ok 341 - Pseudoprime (base 3046413974) 3046413975 passes MR ok 342 - Pseudoprime (base 3046413974) 3048698683 passes MR ok 343 - Pseudoprime (base 3046413974) 3051199817 passes MR ok 344 - Pseudoprime (base 3046413974) 3068572849 passes MR ok 345 - Pseudoprime (base 3046413974) 3069705673 passes MR ok 346 - Pseudoprime (base 3046413974) 3070556233 passes MR ok 347 - Pseudoprime (base 3046413974) 3079010071 passes MR ok 348 - Pseudoprime (base 3046413974) 3089940811 passes MR ok 349 - Pseudoprime (base 3046413974) 3090723901 passes MR ok 350 - Pseudoprime (base 3046413974) 3109299161 passes MR ok 351 - Pseudoprime (base 3046413974) 3110951251 passes MR ok 352 - Pseudoprime (base 3046413974) 3113625601 passes MR ok 353 - 323 is a Lucas-Selfridge pseudoprime ok 354 - 377 is a Lucas-Selfridge pseudoprime ok 355 - 1159 is a Lucas-Selfridge pseudoprime ok 356 - 1829 is a Lucas-Selfridge pseudoprime ok 357 - 3827 is a Lucas-Selfridge pseudoprime ok 358 - 5459 is a Lucas-Selfridge pseudoprime ok 359 - 5777 is a Lucas-Selfridge pseudoprime ok 360 - 9071 is a Lucas-Selfridge pseudoprime ok 361 - 9179 is a Lucas-Selfridge pseudoprime ok 362 - 10877 is a Lucas-Selfridge pseudoprime ok 363 - 11419 is a Lucas-Selfridge pseudoprime ok 364 - 11663 is a Lucas-Selfridge pseudoprime ok 365 - 13919 is a Lucas-Selfridge pseudoprime ok 366 - 14839 is a Lucas-Selfridge pseudoprime ok 367 - 16109 is a Lucas-Selfridge pseudoprime ok 368 - 16211 is a Lucas-Selfridge pseudoprime ok 369 - 18407 is a Lucas-Selfridge pseudoprime ok 370 - 18971 is a Lucas-Selfridge pseudoprime ok 371 - 19043 is a Lucas-Selfridge pseudoprime ok 372 - Pseudoprime (base 17) 9 passes MR ok 373 - Pseudoprime (base 17) 91 passes MR ok 374 - Pseudoprime (base 17) 145 passes MR ok 375 - Pseudoprime (base 17) 781 passes MR ok 376 - Pseudoprime (base 17) 1111 passes MR ok 377 - Pseudoprime (base 17) 2821 passes MR ok 378 - Pseudoprime (base 17) 4033 passes MR ok 379 - Pseudoprime (base 17) 4187 passes MR ok 380 - Pseudoprime (base 17) 5365 passes MR ok 381 - Pseudoprime (base 17) 5833 passes MR ok 382 - Pseudoprime (base 17) 6697 passes MR ok 383 - Pseudoprime (base 17) 7171 passes MR ok 384 - Pseudoprime (base 17) 15805 passes MR ok 385 - Pseudoprime (base 17) 19729 passes MR ok 386 - Pseudoprime (base 17) 21781 passes MR ok 387 - Pseudoprime (base 17) 22791 passes MR ok 388 - Pseudoprime (base 17) 24211 passes MR ok 389 - Pseudoprime (base 17) 26245 passes MR ok 390 - Pseudoprime (base 17) 31621 passes MR ok 391 - Pseudoprime (base 17) 33001 passes MR ok 392 - Pseudoprime (base 17) 33227 passes MR ok 393 - Pseudoprime (base 17) 34441 passes MR ok 394 - Pseudoprime (base 17) 35371 passes MR ok 395 - Pseudoprime (base 17) 38081 passes MR ok 396 - Pseudoprime (base 17) 42127 passes MR ok 397 - Pseudoprime (base 17) 49771 passes MR ok 398 - Pseudoprime (base 17) 71071 passes MR ok 399 - Pseudoprime (base 17) 74665 passes MR ok 400 - Pseudoprime (base 17) 77293 passes MR ok 401 - Pseudoprime (base 17) 78881 passes MR ok 402 - Pseudoprime (base 17) 88831 passes MR ok 403 - Pseudoprime (base 17) 96433 passes MR ok 404 - Pseudoprime (base 17) 97921 passes MR ok 405 - Pseudoprime (base 17) 98671 passes MR ok 406 - 4181 is a Frobenius (1,-1) pseudoprime ok 407 - 5777 is a Frobenius (1,-1) pseudoprime ok 408 - 6721 is a Frobenius (1,-1) pseudoprime ok 409 - 10877 is a Frobenius (1,-1) pseudoprime ok 410 - 13201 is a Frobenius (1,-1) pseudoprime ok 411 - 15251 is a Frobenius (1,-1) pseudoprime ok 412 - 34561 is a Frobenius (1,-1) pseudoprime ok 413 - 51841 is a Frobenius (1,-1) pseudoprime ok 414 - 64079 is a Frobenius (1,-1) pseudoprime ok 415 - 64681 is a Frobenius (1,-1) pseudoprime ok 416 - 67861 is a Frobenius (1,-1) pseudoprime ok 417 - 68251 is a Frobenius (1,-1) pseudoprime ok 418 - 75077 is a Frobenius (1,-1) pseudoprime ok 419 - 90061 is a Frobenius (1,-1) pseudoprime ok 420 - 96049 is a Frobenius (1,-1) pseudoprime ok 421 - 97921 is a Frobenius (1,-1) pseudoprime ok 422 - 100127 is a Frobenius (1,-1) pseudoprime ok 423 - Pseudoprime (base 13) 85 passes MR ok 424 - Pseudoprime (base 13) 1099 passes MR ok 425 - Pseudoprime (base 13) 5149 passes MR ok 426 - Pseudoprime (base 13) 7107 passes MR ok 427 - Pseudoprime (base 13) 8911 passes MR ok 428 - Pseudoprime (base 13) 9637 passes MR ok 429 - Pseudoprime (base 13) 13019 passes MR ok 430 - Pseudoprime (base 13) 14491 passes MR ok 431 - Pseudoprime (base 13) 17803 passes MR ok 432 - Pseudoprime (base 13) 19757 passes MR ok 433 - Pseudoprime (base 13) 20881 passes MR ok 434 - Pseudoprime (base 13) 22177 passes MR ok 435 - Pseudoprime (base 13) 23521 passes MR ok 436 - Pseudoprime (base 13) 26521 passes MR ok 437 - Pseudoprime (base 13) 35371 passes MR ok 438 - Pseudoprime (base 13) 44173 passes MR ok 439 - Pseudoprime (base 13) 45629 passes MR ok 440 - Pseudoprime (base 13) 54097 passes MR ok 441 - Pseudoprime (base 13) 56033 passes MR ok 442 - Pseudoprime (base 13) 57205 passes MR ok 443 - Pseudoprime (base 13) 75241 passes MR ok 444 - Pseudoprime (base 13) 83333 passes MR ok 445 - Pseudoprime (base 13) 85285 passes MR ok 446 - Pseudoprime (base 13) 86347 passes MR ok 447 - Pseudoprime (base 31) 15 passes MR ok 448 - Pseudoprime (base 31) 49 passes MR ok 449 - Pseudoprime (base 31) 133 passes MR ok 450 - Pseudoprime (base 31) 481 passes MR ok 451 - Pseudoprime (base 31) 931 passes MR ok 452 - Pseudoprime (base 31) 6241 passes MR ok 453 - Pseudoprime (base 31) 8911 passes MR ok 454 - Pseudoprime (base 31) 9131 passes MR ok 455 - Pseudoprime (base 31) 10963 passes MR ok 456 - Pseudoprime (base 31) 11041 passes MR ok 457 - Pseudoprime (base 31) 14191 passes MR ok 458 - Pseudoprime (base 31) 17767 passes MR ok 459 - Pseudoprime (base 31) 29341 passes MR ok 460 - Pseudoprime (base 31) 56033 passes MR ok 461 - Pseudoprime (base 31) 58969 passes MR ok 462 - Pseudoprime (base 31) 68251 passes MR ok 463 - Pseudoprime (base 31) 79003 passes MR ok 464 - Pseudoprime (base 31) 83333 passes MR ok 465 - Pseudoprime (base 31) 87061 passes MR ok 466 - Pseudoprime (base 31) 88183 passes MR ok 467 - Pseudoprime (base 1340600841) 1345289261 passes MR ok 468 - Pseudoprime (base 1340600841) 1345582981 passes MR ok 469 - Pseudoprime (base 1340600841) 1347743101 passes MR ok 470 - Pseudoprime (base 1340600841) 1348964401 passes MR ok 471 - Pseudoprime (base 1340600841) 1350371821 passes MR ok 472 - Pseudoprime (base 1340600841) 1353332417 passes MR ok 473 - Pseudoprime (base 1340600841) 1355646961 passes MR ok 474 - Pseudoprime (base 1340600841) 1357500901 passes MR ok 475 - Pseudoprime (base 1340600841) 1361675929 passes MR ok 476 - Pseudoprime (base 1340600841) 1364378203 passes MR ok 477 - Pseudoprime (base 1340600841) 1366346521 passes MR ok 478 - Pseudoprime (base 1340600841) 1367104639 passes MR ok 479 - Pseudoprime (base 2) 2047 passes MR ok 480 - Pseudoprime (base 2) 3277 passes MR ok 481 - Pseudoprime (base 2) 4033 passes MR ok 482 - Pseudoprime (base 2) 4681 passes MR ok 483 - Pseudoprime (base 2) 8321 passes MR ok 484 - Pseudoprime (base 2) 15841 passes MR ok 485 - Pseudoprime (base 2) 29341 passes MR ok 486 - Pseudoprime (base 2) 42799 passes MR ok 487 - Pseudoprime (base 2) 49141 passes MR ok 488 - Pseudoprime (base 2) 52633 passes MR ok 489 - Pseudoprime (base 2) 65281 passes MR ok 490 - Pseudoprime (base 2) 74665 passes MR ok 491 - Pseudoprime (base 2) 80581 passes MR ok 492 - Pseudoprime (base 2) 85489 passes MR ok 493 - Pseudoprime (base 2) 88357 passes MR ok 494 - Pseudoprime (base 2) 90751 passes MR ok 495 - Pseudoprime (base 2) 1194649 passes MR ok 496 - 271441 is a Perrin pseudoprime ok 497 - 904631 is a Perrin pseudoprime ok 498 - 16532714 is a Perrin pseudoprime ok 499 - 24658561 is a Perrin pseudoprime ok 500 - 27422714 is a Perrin pseudoprime ok 501 - 27664033 is a Perrin pseudoprime ok 502 - 46672291 is a Perrin pseudoprime ok 503 - 102690901 is a Perrin pseudoprime ok 504 - 130944133 is a Perrin pseudoprime ok 505 - 196075949 is a Perrin pseudoprime ok 506 - 214038533 is a Perrin pseudoprime ok 507 - 517697641 is a Perrin pseudoprime ok 508 - 545670533 is a Perrin pseudoprime ok 509 - 801123451 is a Perrin pseudoprime ok 510 - Pseudoprime (base 75088) 75089 passes MR ok 511 - Pseudoprime (base 75088) 79381 passes MR ok 512 - Pseudoprime (base 75088) 81317 passes MR ok 513 - Pseudoprime (base 75088) 91001 passes MR ok 514 - Pseudoprime (base 75088) 100101 passes MR ok 515 - Pseudoprime (base 75088) 111361 passes MR ok 516 - Pseudoprime (base 75088) 114211 passes MR ok 517 - Pseudoprime (base 75088) 136927 passes MR ok 518 - Pseudoprime (base 75088) 148289 passes MR ok 519 - Pseudoprime (base 75088) 169641 passes MR ok 520 - Pseudoprime (base 75088) 176661 passes MR ok 521 - Pseudoprime (base 75088) 191407 passes MR ok 522 - Pseudoprime (base 75088) 195649 passes MR ok 523 - 3239 is an almost extra strong Lucas pseudoprime (increment 2) ok 524 - 4531 is an almost extra strong Lucas pseudoprime (increment 2) ok 525 - 5777 is an almost extra strong Lucas pseudoprime (increment 2) ok 526 - 10877 is an almost extra strong Lucas pseudoprime (increment 2) ok 527 - 12209 is an almost extra strong Lucas pseudoprime (increment 2) ok 528 - 21899 is an almost extra strong Lucas pseudoprime (increment 2) ok 529 - 31631 is an almost extra strong Lucas pseudoprime (increment 2) ok 530 - 31831 is an almost extra strong Lucas pseudoprime (increment 2) ok 531 - 32129 is an almost extra strong Lucas pseudoprime (increment 2) ok 532 - 34481 is an almost extra strong Lucas pseudoprime (increment 2) ok 533 - 36079 is an almost extra strong Lucas pseudoprime (increment 2) ok 534 - 37949 is an almost extra strong Lucas pseudoprime (increment 2) ok 535 - 47849 is an almost extra strong Lucas pseudoprime (increment 2) ok 536 - 50959 is an almost extra strong Lucas pseudoprime (increment 2) ok 537 - 51641 is an almost extra strong Lucas pseudoprime (increment 2) ok 538 - 62479 is an almost extra strong Lucas pseudoprime (increment 2) ok 539 - 73919 is an almost extra strong Lucas pseudoprime (increment 2) ok 540 - 75077 is an almost extra strong Lucas pseudoprime (increment 2) ok 541 - 97109 is an almost extra strong Lucas pseudoprime (increment 2) ok 542 - 100127 is an almost extra strong Lucas pseudoprime (increment 2) ok 543 - 108679 is an almost extra strong Lucas pseudoprime (increment 2) ok 544 - 113573 is an almost extra strong Lucas pseudoprime (increment 2) ok 545 - 116899 is an almost extra strong Lucas pseudoprime (increment 2) ok 546 - 154697 is an almost extra strong Lucas pseudoprime (increment 2) ok 547 - 161027 is an almost extra strong Lucas pseudoprime (increment 2) ok 548 - Pseudoprime (base 3613982119) 3626488471 passes MR ok 549 - Pseudoprime (base 3613982119) 3630467017 passes MR ok 550 - Pseudoprime (base 3613982119) 3643480501 passes MR ok 551 - Pseudoprime (base 3613982119) 3651840727 passes MR ok 552 - Pseudoprime (base 3613982119) 3653628247 passes MR ok 553 - Pseudoprime (base 3613982119) 3654142177 passes MR ok 554 - Pseudoprime (base 3613982119) 3672033223 passes MR ok 555 - Pseudoprime (base 3613982119) 3672036061 passes MR ok 556 - Pseudoprime (base 3613982119) 3675774019 passes MR ok 557 - Pseudoprime (base 3613982119) 3687246109 passes MR ok 558 - Pseudoprime (base 3613982119) 3690036017 passes MR ok 559 - Pseudoprime (base 3613982119) 3720856369 passes MR ok 560 - Pseudoprime (base 73) 205 passes MR ok 561 - Pseudoprime (base 73) 259 passes MR ok 562 - Pseudoprime (base 73) 533 passes MR ok 563 - Pseudoprime (base 73) 1441 passes MR ok 564 - Pseudoprime (base 73) 1921 passes MR ok 565 - Pseudoprime (base 73) 2665 passes MR ok 566 - Pseudoprime (base 73) 3439 passes MR ok 567 - Pseudoprime (base 73) 5257 passes MR ok 568 - Pseudoprime (base 73) 15457 passes MR ok 569 - Pseudoprime (base 73) 23281 passes MR ok 570 - Pseudoprime (base 73) 24617 passes MR ok 571 - Pseudoprime (base 73) 26797 passes MR ok 572 - Pseudoprime (base 73) 27787 passes MR ok 573 - Pseudoprime (base 73) 28939 passes MR ok 574 - Pseudoprime (base 73) 34219 passes MR ok 575 - Pseudoprime (base 73) 39481 passes MR ok 576 - Pseudoprime (base 73) 44671 passes MR ok 577 - Pseudoprime (base 73) 45629 passes MR ok 578 - Pseudoprime (base 73) 64681 passes MR ok 579 - Pseudoprime (base 73) 67069 passes MR ok 580 - Pseudoprime (base 73) 76429 passes MR ok 581 - Pseudoprime (base 73) 79501 passes MR ok 582 - Pseudoprime (base 73) 93521 passes MR ok 583 - 121 is an Euler pseudoprime to base 3 ok 584 - 703 is an Euler pseudoprime to base 3 ok 585 - 1729 is an Euler pseudoprime to base 3 ok 586 - 1891 is an Euler pseudoprime to base 3 ok 587 - 2821 is an Euler pseudoprime to base 3 ok 588 - 3281 is an Euler pseudoprime to base 3 ok 589 - 7381 is an Euler pseudoprime to base 3 ok 590 - 8401 is an Euler pseudoprime to base 3 ok 591 - 8911 is an Euler pseudoprime to base 3 ok 592 - 10585 is an Euler pseudoprime to base 3 ok 593 - 12403 is an Euler pseudoprime to base 3 ok 594 - 15457 is an Euler pseudoprime to base 3 ok 595 - 15841 is an Euler pseudoprime to base 3 ok 596 - 16531 is an Euler pseudoprime to base 3 ok 597 - 18721 is an Euler pseudoprime to base 3 ok 598 - 19345 is an Euler pseudoprime to base 3 ok 599 - 23521 is an Euler pseudoprime to base 3 ok 600 - 24661 is an Euler pseudoprime to base 3 ok 601 - 28009 is an Euler pseudoprime to base 3 ok 602 - 29341 is an Euler pseudoprime to base 3 ok 603 - 31621 is an Euler pseudoprime to base 3 ok 604 - 41041 is an Euler pseudoprime to base 3 ok 605 - 44287 is an Euler pseudoprime to base 3 ok 606 - 46657 is an Euler pseudoprime to base 3 ok 607 - 47197 is an Euler pseudoprime to base 3 ok 608 - 49141 is an Euler pseudoprime to base 3 ok 609 - 50881 is an Euler pseudoprime to base 3 ok 610 - 52633 is an Euler pseudoprime to base 3 ok 611 - 55969 is an Euler pseudoprime to base 3 ok 612 - 63139 is an Euler pseudoprime to base 3 ok 613 - 63973 is an Euler pseudoprime to base 3 ok 614 - 74593 is an Euler pseudoprime to base 3 ok 615 - 75361 is an Euler pseudoprime to base 3 ok 616 - 79003 is an Euler pseudoprime to base 3 ok 617 - 82513 is an Euler pseudoprime to base 3 ok 618 - 87913 is an Euler pseudoprime to base 3 ok 619 - 88573 is an Euler pseudoprime to base 3 ok 620 - 93961 is an Euler pseudoprime to base 3 ok 621 - 97567 is an Euler pseudoprime to base 3 ok 622 - Pseudoprime (base 11) 133 passes MR ok 623 - Pseudoprime (base 11) 793 passes MR ok 624 - Pseudoprime (base 11) 2047 passes MR ok 625 - Pseudoprime (base 11) 4577 passes MR ok 626 - Pseudoprime (base 11) 5041 passes MR ok 627 - Pseudoprime (base 11) 12403 passes MR ok 628 - Pseudoprime (base 11) 13333 passes MR ok 629 - Pseudoprime (base 11) 14521 passes MR ok 630 - Pseudoprime (base 11) 17711 passes MR ok 631 - Pseudoprime (base 11) 23377 passes MR ok 632 - Pseudoprime (base 11) 43213 passes MR ok 633 - Pseudoprime (base 11) 43739 passes MR ok 634 - Pseudoprime (base 11) 47611 passes MR ok 635 - Pseudoprime (base 11) 48283 passes MR ok 636 - Pseudoprime (base 11) 49601 passes MR ok 637 - Pseudoprime (base 11) 50737 passes MR ok 638 - Pseudoprime (base 11) 50997 passes MR ok 639 - Pseudoprime (base 11) 56057 passes MR ok 640 - Pseudoprime (base 11) 58969 passes MR ok 641 - Pseudoprime (base 11) 68137 passes MR ok 642 - Pseudoprime (base 11) 74089 passes MR ok 643 - Pseudoprime (base 11) 85879 passes MR ok 644 - Pseudoprime (base 11) 86347 passes MR ok 645 - Pseudoprime (base 11) 87913 passes MR ok 646 - Pseudoprime (base 11) 88831 passes MR ok 647 - Pseudoprime (base 553174392) 553174393 passes MR ok 648 - Pseudoprime (base 553174392) 553945231 passes MR ok 649 - Pseudoprime (base 553174392) 554494951 passes MR ok 650 - Pseudoprime (base 553174392) 554892787 passes MR ok 651 - Pseudoprime (base 553174392) 555429169 passes MR ok 652 - Pseudoprime (base 553174392) 557058133 passes MR ok 653 - Pseudoprime (base 553174392) 557163157 passes MR ok 654 - Pseudoprime (base 553174392) 557165209 passes MR ok 655 - Pseudoprime (base 553174392) 558966793 passes MR ok 656 - Pseudoprime (base 553174392) 559407061 passes MR ok 657 - Pseudoprime (base 553174392) 560291719 passes MR ok 658 - Pseudoprime (base 553174392) 561008251 passes MR ok 659 - Pseudoprime (base 553174392) 563947141 passes MR ok 660 - 989 is an almost extra strong Lucas pseudoprime (increment 1) ok 661 - 3239 is an almost extra strong Lucas pseudoprime (increment 1) ok 662 - 5777 is an almost extra strong Lucas pseudoprime (increment 1) ok 663 - 10469 is an almost extra strong Lucas pseudoprime (increment 1) ok 664 - 10877 is an almost extra strong Lucas pseudoprime (increment 1) ok 665 - 27971 is an almost extra strong Lucas pseudoprime (increment 1) ok 666 - 29681 is an almost extra strong Lucas pseudoprime (increment 1) ok 667 - 30739 is an almost extra strong Lucas pseudoprime (increment 1) ok 668 - 31631 is an almost extra strong Lucas pseudoprime (increment 1) ok 669 - 39059 is an almost extra strong Lucas pseudoprime (increment 1) ok 670 - 72389 is an almost extra strong Lucas pseudoprime (increment 1) ok 671 - 73919 is an almost extra strong Lucas pseudoprime (increment 1) ok 672 - 75077 is an almost extra strong Lucas pseudoprime (increment 1) ok 673 - 100127 is an almost extra strong Lucas pseudoprime (increment 1) ok 674 - 113573 is an almost extra strong Lucas pseudoprime (increment 1) ok 675 - 125249 is an almost extra strong Lucas pseudoprime (increment 1) ok 676 - 137549 is an almost extra strong Lucas pseudoprime (increment 1) ok 677 - 137801 is an almost extra strong Lucas pseudoprime (increment 1) ok 678 - 153931 is an almost extra strong Lucas pseudoprime (increment 1) ok 679 - 154697 is an almost extra strong Lucas pseudoprime (increment 1) ok 680 - 155819 is an almost extra strong Lucas pseudoprime (increment 1) ok 681 - Pseudoprime (base 203659041) 204172939 passes MR ok 682 - Pseudoprime (base 203659041) 204456793 passes MR ok 683 - Pseudoprime (base 203659041) 206407057 passes MR ok 684 - Pseudoprime (base 203659041) 206976001 passes MR ok 685 - Pseudoprime (base 203659041) 207373483 passes MR ok 686 - Pseudoprime (base 203659041) 209301121 passes MR ok 687 - Pseudoprime (base 203659041) 210339397 passes MR ok 688 - Pseudoprime (base 203659041) 211867969 passes MR ok 689 - Pseudoprime (base 203659041) 212146507 passes MR ok 690 - Pseudoprime (base 203659041) 212337217 passes MR ok 691 - Pseudoprime (base 203659041) 212355793 passes MR ok 692 - Pseudoprime (base 203659041) 214400629 passes MR ok 693 - Pseudoprime (base 203659041) 214539841 passes MR ok 694 - Pseudoprime (base 203659041) 215161459 passes MR ok 695 - 91 is a pseudoprime to base 3 ok 696 - 121 is a pseudoprime to base 3 ok 697 - 286 is a pseudoprime to base 3 ok 698 - 671 is a pseudoprime to base 3 ok 699 - 703 is a pseudoprime to base 3 ok 700 - 949 is a pseudoprime to base 3 ok 701 - 1105 is a pseudoprime to base 3 ok 702 - 1541 is a pseudoprime to base 3 ok 703 - 1729 is a pseudoprime to base 3 ok 704 - 1891 is a pseudoprime to base 3 ok 705 - 2465 is a pseudoprime to base 3 ok 706 - 2665 is a pseudoprime to base 3 ok 707 - 2701 is a pseudoprime to base 3 ok 708 - 2821 is a pseudoprime to base 3 ok 709 - 3281 is a pseudoprime to base 3 ok 710 - 3367 is a pseudoprime to base 3 ok 711 - 3751 is a pseudoprime to base 3 ok 712 - 4961 is a pseudoprime to base 3 ok 713 - 5551 is a pseudoprime to base 3 ok 714 - 6601 is a pseudoprime to base 3 ok 715 - 7381 is a pseudoprime to base 3 ok 716 - 8401 is a pseudoprime to base 3 ok 717 - 8911 is a pseudoprime to base 3 ok 718 - 10585 is a pseudoprime to base 3 ok 719 - 11011 is a pseudoprime to base 3 ok 720 - 12403 is a pseudoprime to base 3 ok 721 - 14383 is a pseudoprime to base 3 ok 722 - 15203 is a pseudoprime to base 3 ok 723 - 15457 is a pseudoprime to base 3 ok 724 - 15841 is a pseudoprime to base 3 ok 725 - 16471 is a pseudoprime to base 3 ok 726 - 16531 is a pseudoprime to base 3 ok 727 - 18721 is a pseudoprime to base 3 ok 728 - 19345 is a pseudoprime to base 3 ok 729 - 23521 is a pseudoprime to base 3 ok 730 - 24046 is a pseudoprime to base 3 ok 731 - 24661 is a pseudoprime to base 3 ok 732 - 24727 is a pseudoprime to base 3 ok 733 - 28009 is a pseudoprime to base 3 ok 734 - 29161 is a pseudoprime to base 3 ok 735 - Pseudoprime (base 37) 9 passes MR ok 736 - Pseudoprime (base 37) 451 passes MR ok 737 - Pseudoprime (base 37) 469 passes MR ok 738 - Pseudoprime (base 37) 589 passes MR ok 739 - Pseudoprime (base 37) 685 passes MR ok 740 - Pseudoprime (base 37) 817 passes MR ok 741 - Pseudoprime (base 37) 1333 passes MR ok 742 - Pseudoprime (base 37) 3781 passes MR ok 743 - Pseudoprime (base 37) 8905 passes MR ok 744 - Pseudoprime (base 37) 9271 passes MR ok 745 - Pseudoprime (base 37) 18631 passes MR ok 746 - Pseudoprime (base 37) 19517 passes MR ok 747 - Pseudoprime (base 37) 20591 passes MR ok 748 - Pseudoprime (base 37) 25327 passes MR ok 749 - Pseudoprime (base 37) 34237 passes MR ok 750 - Pseudoprime (base 37) 45551 passes MR ok 751 - Pseudoprime (base 37) 46981 passes MR ok 752 - Pseudoprime (base 37) 47587 passes MR ok 753 - Pseudoprime (base 37) 48133 passes MR ok 754 - Pseudoprime (base 37) 59563 passes MR ok 755 - Pseudoprime (base 37) 61337 passes MR ok 756 - Pseudoprime (base 37) 68101 passes MR ok 757 - Pseudoprime (base 37) 68251 passes MR ok 758 - Pseudoprime (base 37) 73633 passes MR ok 759 - Pseudoprime (base 37) 79381 passes MR ok 760 - Pseudoprime (base 37) 79501 passes MR ok 761 - Pseudoprime (base 37) 83333 passes MR ok 762 - Pseudoprime (base 37) 84151 passes MR ok 763 - Pseudoprime (base 37) 96727 passes MR ok 764 - Pseudoprime (base 9780504) 9780505 passes MR ok 765 - Pseudoprime (base 9780504) 9784915 passes MR ok 766 - Pseudoprime (base 9780504) 9826489 passes MR ok 767 - Pseudoprime (base 9780504) 9882457 passes MR ok 768 - Pseudoprime (base 9780504) 9974791 passes MR ok 769 - Pseudoprime (base 9780504) 10017517 passes MR ok 770 - Pseudoprime (base 9780504) 10018081 passes MR ok 771 - Pseudoprime (base 9780504) 10084177 passes MR ok 772 - Pseudoprime (base 9780504) 10188481 passes MR ok 773 - Pseudoprime (base 9780504) 10247357 passes MR ok 774 - Pseudoprime (base 9780504) 10267951 passes MR ok 775 - Pseudoprime (base 9780504) 10392241 passes MR ok 776 - Pseudoprime (base 9780504) 10427209 passes MR ok 777 - Pseudoprime (base 9780504) 10511201 passes MR ok 778 - Pseudoprime (base 450775) 465991 passes MR ok 779 - Pseudoprime (base 450775) 468931 passes MR ok 780 - Pseudoprime (base 450775) 485357 passes MR ok 781 - Pseudoprime (base 450775) 505441 passes MR ok 782 - Pseudoprime (base 450775) 536851 passes MR ok 783 - Pseudoprime (base 450775) 556421 passes MR ok 784 - Pseudoprime (base 450775) 578771 passes MR ok 785 - Pseudoprime (base 450775) 585631 passes MR ok 786 - Pseudoprime (base 450775) 586249 passes MR ok 787 - Pseudoprime (base 450775) 606361 passes MR ok 788 - Pseudoprime (base 450775) 631651 passes MR ok 789 - Pseudoprime (base 450775) 638731 passes MR ok 790 - Pseudoprime (base 450775) 641683 passes MR ok 791 - Pseudoprime (base 450775) 645679 passes MR ok 792 - 561 is an Euler pseudoprime to base 2 ok 793 - 1105 is an Euler pseudoprime to base 2 ok 794 - 1729 is an Euler pseudoprime to base 2 ok 795 - 1905 is an Euler pseudoprime to base 2 ok 796 - 2047 is an Euler pseudoprime to base 2 ok 797 - 2465 is an Euler pseudoprime to base 2 ok 798 - 3277 is an Euler pseudoprime to base 2 ok 799 - 4033 is an Euler pseudoprime to base 2 ok 800 - 4681 is an Euler pseudoprime to base 2 ok 801 - 6601 is an Euler pseudoprime to base 2 ok 802 - 8321 is an Euler pseudoprime to base 2 ok 803 - 8481 is an Euler pseudoprime to base 2 ok 804 - 10585 is an Euler pseudoprime to base 2 ok 805 - 12801 is an Euler pseudoprime to base 2 ok 806 - 15841 is an Euler pseudoprime to base 2 ok 807 - 16705 is an Euler pseudoprime to base 2 ok 808 - 18705 is an Euler pseudoprime to base 2 ok 809 - 25761 is an Euler pseudoprime to base 2 ok 810 - 29341 is an Euler pseudoprime to base 2 ok 811 - 30121 is an Euler pseudoprime to base 2 ok 812 - 33153 is an Euler pseudoprime to base 2 ok 813 - 34945 is an Euler pseudoprime to base 2 ok 814 - 41041 is an Euler pseudoprime to base 2 ok 815 - 42799 is an Euler pseudoprime to base 2 ok 816 - 46657 is an Euler pseudoprime to base 2 ok 817 - 49141 is an Euler pseudoprime to base 2 ok 818 - 52633 is an Euler pseudoprime to base 2 ok 819 - 62745 is an Euler pseudoprime to base 2 ok 820 - 65281 is an Euler pseudoprime to base 2 ok 821 - 74665 is an Euler pseudoprime to base 2 ok 822 - 75361 is an Euler pseudoprime to base 2 ok 823 - 80581 is an Euler pseudoprime to base 2 ok 824 - 85489 is an Euler pseudoprime to base 2 ok 825 - 87249 is an Euler pseudoprime to base 2 ok 826 - 88357 is an Euler pseudoprime to base 2 ok 827 - 90751 is an Euler pseudoprime to base 2 ok 828 - 989 is an extra strong Lucas pseudoprime ok 829 - 3239 is an extra strong Lucas pseudoprime ok 830 - 5777 is an extra strong Lucas pseudoprime ok 831 - 10877 is an extra strong Lucas pseudoprime ok 832 - 27971 is an extra strong Lucas pseudoprime ok 833 - 29681 is an extra strong Lucas pseudoprime ok 834 - 30739 is an extra strong Lucas pseudoprime ok 835 - 31631 is an extra strong Lucas pseudoprime ok 836 - 39059 is an extra strong Lucas pseudoprime ok 837 - 72389 is an extra strong Lucas pseudoprime ok 838 - 73919 is an extra strong Lucas pseudoprime ok 839 - 75077 is an extra strong Lucas pseudoprime ok 840 - 100127 is an extra strong Lucas pseudoprime ok 841 - 113573 is an extra strong Lucas pseudoprime ok 842 - 125249 is an extra strong Lucas pseudoprime ok 843 - 137549 is an extra strong Lucas pseudoprime ok 844 - 137801 is an extra strong Lucas pseudoprime ok 845 - 153931 is an extra strong Lucas pseudoprime ok 846 - 155819 is an extra strong Lucas pseudoprime ok 847 - 13333 is a Frobenius (3,-5) pseudoprime ok 848 - 44801 is a Frobenius (3,-5) pseudoprime ok 849 - 486157 is a Frobenius (3,-5) pseudoprime ok 850 - 1615681 is a Frobenius (3,-5) pseudoprime ok 851 - 3125281 is a Frobenius (3,-5) pseudoprime ok 852 - 4219129 is a Frobenius (3,-5) pseudoprime ok 853 - 9006401 is a Frobenius (3,-5) pseudoprime ok 854 - 12589081 is a Frobenius (3,-5) pseudoprime ok 855 - 13404751 is a Frobenius (3,-5) pseudoprime ok 856 - 15576571 is a Frobenius (3,-5) pseudoprime ok 857 - 16719781 is a Frobenius (3,-5) pseudoprime ok 858 - Pseudoprime (base 7) 25 passes MR ok 859 - Pseudoprime (base 7) 325 passes MR ok 860 - Pseudoprime (base 7) 703 passes MR ok 861 - Pseudoprime (base 7) 2101 passes MR ok 862 - Pseudoprime (base 7) 2353 passes MR ok 863 - Pseudoprime (base 7) 4525 passes MR ok 864 - Pseudoprime (base 7) 11041 passes MR ok 865 - Pseudoprime (base 7) 14089 passes MR ok 866 - Pseudoprime (base 7) 20197 passes MR ok 867 - Pseudoprime (base 7) 29857 passes MR ok 868 - Pseudoprime (base 7) 29891 passes MR ok 869 - Pseudoprime (base 7) 39331 passes MR ok 870 - Pseudoprime (base 7) 49241 passes MR ok 871 - Pseudoprime (base 7) 58825 passes MR ok 872 - Pseudoprime (base 7) 64681 passes MR ok 873 - Pseudoprime (base 7) 76627 passes MR ok 874 - Pseudoprime (base 7) 78937 passes MR ok 875 - Pseudoprime (base 7) 79381 passes MR ok 876 - Pseudoprime (base 7) 87673 passes MR ok 877 - Pseudoprime (base 7) 88399 passes MR ok 878 - Pseudoprime (base 7) 88831 passes MR ok 879 - 5459 is a strong Lucas-Selfridge pseudoprime ok 880 - 5777 is a strong Lucas-Selfridge pseudoprime ok 881 - 10877 is a strong Lucas-Selfridge pseudoprime ok 882 - 16109 is a strong Lucas-Selfridge pseudoprime ok 883 - 18971 is a strong Lucas-Selfridge pseudoprime ok 884 - 22499 is a strong Lucas-Selfridge pseudoprime ok 885 - 24569 is a strong Lucas-Selfridge pseudoprime ok 886 - 25199 is a strong Lucas-Selfridge pseudoprime ok 887 - 40309 is a strong Lucas-Selfridge pseudoprime ok 888 - 58519 is a strong Lucas-Selfridge pseudoprime ok 889 - 75077 is a strong Lucas-Selfridge pseudoprime ok 890 - 97439 is a strong Lucas-Selfridge pseudoprime ok 891 - 100127 is a strong Lucas-Selfridge pseudoprime ok 892 - 113573 is a strong Lucas-Selfridge pseudoprime ok 893 - 115639 is a strong Lucas-Selfridge pseudoprime ok 894 - 130139 is a strong Lucas-Selfridge pseudoprime ok 895 - Pseudoprime (base 9375) 11521 passes MR ok 896 - Pseudoprime (base 9375) 14689 passes MR ok 897 - Pseudoprime (base 9375) 17893 passes MR ok 898 - Pseudoprime (base 9375) 18361 passes MR ok 899 - Pseudoprime (base 9375) 20591 passes MR ok 900 - Pseudoprime (base 9375) 28093 passes MR ok 901 - Pseudoprime (base 9375) 32809 passes MR ok 902 - Pseudoprime (base 9375) 37969 passes MR ok 903 - Pseudoprime (base 9375) 44287 passes MR ok 904 - Pseudoprime (base 9375) 60701 passes MR ok 905 - Pseudoprime (base 9375) 70801 passes MR ok 906 - Pseudoprime (base 9375) 79957 passes MR ok 907 - Pseudoprime (base 9375) 88357 passes MR ok 908 - Pseudoprime (base 9375) 88831 passes MR ok 909 - Pseudoprime (base 9375) 94249 passes MR ok 910 - Pseudoprime (base 9375) 96247 passes MR ok 911 - Pseudoprime (base 9375) 99547 passes MR ok 912 - Pseudoprime (base 3) 121 passes MR ok 913 - Pseudoprime (base 3) 703 passes MR ok 914 - Pseudoprime (base 3) 1891 passes MR ok 915 - Pseudoprime (base 3) 3281 passes MR ok 916 - Pseudoprime (base 3) 8401 passes MR ok 917 - Pseudoprime (base 3) 8911 passes MR ok 918 - Pseudoprime (base 3) 10585 passes MR ok 919 - Pseudoprime (base 3) 12403 passes MR ok 920 - Pseudoprime (base 3) 16531 passes MR ok 921 - Pseudoprime (base 3) 18721 passes MR ok 922 - Pseudoprime (base 3) 19345 passes MR ok 923 - Pseudoprime (base 3) 23521 passes MR ok 924 - Pseudoprime (base 3) 31621 passes MR ok 925 - Pseudoprime (base 3) 44287 passes MR ok 926 - Pseudoprime (base 3) 47197 passes MR ok 927 - Pseudoprime (base 3) 55969 passes MR ok 928 - Pseudoprime (base 3) 63139 passes MR ok 929 - Pseudoprime (base 3) 74593 passes MR ok 930 - Pseudoprime (base 3) 79003 passes MR ok 931 - Pseudoprime (base 3) 82513 passes MR ok 932 - Pseudoprime (base 3) 87913 passes MR ok 933 - Pseudoprime (base 3) 88573 passes MR ok 934 - Pseudoprime (base 3) 97567 passes MR ok 935 - MR base 2 matches is_prime for 2-4032 (excl 2047,3277) ok 936 - spsp( 3, 3) ok 937 - spsp( 11, 11) ok 938 - spsp( 89, 5785) ok 939 - spsp(257, 6168) ok 940 - spsp(367, 367) ok 941 - spsp(367, 1101) ok 942 - spsp(49001, 921211727) ok 943 - spsp( 331, 921211727) ok 944 - spsp(49117, 921211727) ok 945 - 162401 is a Fermat pseudoprime to bases 2,3,5,7,11,13 ok 946 - 1857241 is an Euler pseudoprime to bases 2,3,5,7,11,13 ok 947 - 3474749660383 is a strong pseudoprime to bases 2,3,5,7,11,13 ok 948 - 2 is a prime and a strong Lucas-Selfridge pseudoprime ok 949 - 9 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 950 - 16 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 951 - 100 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 952 - 102 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 953 - 323 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 954 - 377 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 955 - 2047 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 956 - 2048 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 957 - 5781 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 958 - 9000 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 959 - 14381 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 960 - Lucas sequence 323 1 1 324 ok 961 - Lucas sequence 49001 25 117 24501 ok 962 - Lucas sequence 323 3 1 324 ok 963 - Lucas sequence 18971 10001 -1 4743 ok 964 - Lucas sequence 323 3 1 81 ok 965 - Lucas sequence 323 4 5 324 ok 966 - Lucas sequence 323 5 -1 81 ok 967 - Lucas sequence 323 4 1 324 ok 968 - Fibonacci(1001) ok 969 - Lucas(1001) ok 970 - lucasu(9,-1,3671) ok 971 - lucasu(287,-1,3079) ok 972 - lucasv(80,1,71) ok 973 - lucasv(63,1,13217) ok 974 - lucasv(10,8,88321) ok 975 - Miller-Rabin with 0 random bases ok 976 - Miller-Rabin with 100 uniform random bases for n returns prime ok 977 - prime 216807359884357411648908138950271200947 passes Euler-Plumb primality test ok 978 - prime 216807359884357411648908138950271200947 passes Frobenius primality test ok 979 - prime 216807359884357411648908138950271200947 passes Frobenius Khashin primality test ok 980 - prime 216807359884357411648908138950271200947 passes Frobenius Underwood primality test ok 981 - prime 216807359884357411648908138950271200947 passes BPSW primality test ok 982 - prime 339168371495941440319562622097823889491 passes Euler-Plumb primality test ok 983 - prime 339168371495941440319562622097823889491 passes Frobenius primality test ok 984 - prime 339168371495941440319562622097823889491 passes Frobenius Khashin primality test ok 985 - prime 339168371495941440319562622097823889491 passes Frobenius Underwood primality test ok 986 - prime 339168371495941440319562622097823889491 passes BPSW primality test ok 987 - prime 175647712566579256193079384409148729569 passes Euler-Plumb primality test ok 988 - prime 175647712566579256193079384409148729569 passes Frobenius primality test ok 989 - prime 175647712566579256193079384409148729569 passes Frobenius Khashin primality test ok 990 - prime 175647712566579256193079384409148729569 passes Frobenius Underwood primality test ok 991 - prime 175647712566579256193079384409148729569 passes BPSW primality test ok 992 - prime 213978050035770705635718665804334250861 passes Euler-Plumb primality test ok 993 - prime 213978050035770705635718665804334250861 passes Frobenius primality test ok 994 - prime 213978050035770705635718665804334250861 passes Frobenius Khashin primality test ok 995 - prime 213978050035770705635718665804334250861 passes Frobenius Underwood primality test ok 996 - prime 213978050035770705635718665804334250861 passes BPSW primality test ok 997 - prime 282014465653257435172223280631326130957 passes Euler-Plumb primality test ok 998 - prime 282014465653257435172223280631326130957 passes Frobenius primality test ok 999 - prime 282014465653257435172223280631326130957 passes Frobenius Khashin primality test ok 1000 - prime 282014465653257435172223280631326130957 passes Frobenius Underwood primality test ok 1001 - prime 282014465653257435172223280631326130957 passes BPSW primality test ok 1002 - prime 285690571631805499387265005140705006349 passes Euler-Plumb primality test ok 1003 - prime 285690571631805499387265005140705006349 passes Frobenius primality test ok 1004 - prime 285690571631805499387265005140705006349 passes Frobenius Khashin primality test ok 1005 - prime 285690571631805499387265005140705006349 passes Frobenius Underwood primality test ok 1006 - prime 285690571631805499387265005140705006349 passes BPSW primality test ok 1007 - prime 197905182544375865664507026666258550257 passes Euler-Plumb primality test ok 1008 - prime 197905182544375865664507026666258550257 passes Frobenius primality test ok 1009 - prime 197905182544375865664507026666258550257 passes Frobenius Khashin primality test ok 1010 - prime 197905182544375865664507026666258550257 passes Frobenius Underwood primality test ok 1011 - prime 197905182544375865664507026666258550257 passes BPSW primality test ok 1012 - prime 257978530672690459726721542547822424119 passes Euler-Plumb primality test ok 1013 - prime 257978530672690459726721542547822424119 passes Frobenius primality test ok 1014 - prime 257978530672690459726721542547822424119 passes Frobenius Khashin primality test ok 1015 - prime 257978530672690459726721542547822424119 passes Frobenius Underwood primality test ok 1016 - prime 257978530672690459726721542547822424119 passes BPSW primality test ok 1017 - prime 271150181404520740107101159842415035273 passes Euler-Plumb primality test ok 1018 - prime 271150181404520740107101159842415035273 passes Frobenius primality test ok 1019 - prime 271150181404520740107101159842415035273 passes Frobenius Khashin primality test ok 1020 - prime 271150181404520740107101159842415035273 passes Frobenius Underwood primality test ok 1021 - prime 271150181404520740107101159842415035273 passes BPSW primality test ok 1022 - prime 262187868871349017397376949493643287923 passes Euler-Plumb primality test ok 1023 - prime 262187868871349017397376949493643287923 passes Frobenius primality test ok 1024 - prime 262187868871349017397376949493643287923 passes Frobenius Khashin primality test ok 1025 - prime 262187868871349017397376949493643287923 passes Frobenius Underwood primality test ok 1026 - prime 262187868871349017397376949493643287923 passes BPSW primality test ok 1027 - composite 331692821169251128612023074084933636563 fails Euler-Plumb primality test ok 1028 - composite 331692821169251128612023074084933636563 fails Frobenius primality test ok 1029 - composite 331692821169251128612023074084933636563 fails Frobenius Khashin primality test ok 1030 - composite 331692821169251128612023074084933636563 fails Frobenius Underwood primality test ok 1031 - composite 331692821169251128612023074084933636563 fails BPSW primality test ok 1032 - composite 291142820834608911820232911620629416673 fails Euler-Plumb primality test ok 1033 - composite 291142820834608911820232911620629416673 fails Frobenius primality test ok 1034 - composite 291142820834608911820232911620629416673 fails Frobenius Khashin primality test ok 1035 - composite 291142820834608911820232911620629416673 fails Frobenius Underwood primality test ok 1036 - composite 291142820834608911820232911620629416673 fails BPSW primality test ok 1037 - composite 222553723073325022732878644722536036431 fails Euler-Plumb primality test ok 1038 - composite 222553723073325022732878644722536036431 fails Frobenius primality test ok 1039 - composite 222553723073325022732878644722536036431 fails Frobenius Khashin primality test ok 1040 - composite 222553723073325022732878644722536036431 fails Frobenius Underwood primality test ok 1041 - composite 222553723073325022732878644722536036431 fails BPSW primality test ok 1042 - composite 325464724689480915638128579172743588243 fails Euler-Plumb primality test ok 1043 - composite 325464724689480915638128579172743588243 fails Frobenius primality test ok 1044 - composite 325464724689480915638128579172743588243 fails Frobenius Khashin primality test ok 1045 - composite 325464724689480915638128579172743588243 fails Frobenius Underwood primality test ok 1046 - composite 325464724689480915638128579172743588243 fails BPSW primality test ok 1047 - composite 326662586910428159613180378374675586479 fails Euler-Plumb primality test ok 1048 - composite 326662586910428159613180378374675586479 fails Frobenius primality test ok 1049 - composite 326662586910428159613180378374675586479 fails Frobenius Khashin primality test ok 1050 - composite 326662586910428159613180378374675586479 fails Frobenius Underwood primality test ok 1051 - composite 326662586910428159613180378374675586479 fails BPSW primality test ok 1052 - composite 197395185602458924846767613337087999977 fails Euler-Plumb primality test ok 1053 - composite 197395185602458924846767613337087999977 fails Frobenius primality test ok 1054 - composite 197395185602458924846767613337087999977 fails Frobenius Khashin primality test ok 1055 - composite 197395185602458924846767613337087999977 fails Frobenius Underwood primality test ok 1056 - composite 197395185602458924846767613337087999977 fails BPSW primality test ok 1057 - composite 194157480002729115387621030269291379439 fails Euler-Plumb primality test ok 1058 - composite 194157480002729115387621030269291379439 fails Frobenius primality test ok 1059 - composite 194157480002729115387621030269291379439 fails Frobenius Khashin primality test ok 1060 - composite 194157480002729115387621030269291379439 fails Frobenius Underwood primality test ok 1061 - composite 194157480002729115387621030269291379439 fails BPSW primality test ok 1062 - composite 180664716097986611402007784149669477223 fails Euler-Plumb primality test ok 1063 - composite 180664716097986611402007784149669477223 fails Frobenius primality test ok 1064 - composite 180664716097986611402007784149669477223 fails Frobenius Khashin primality test ok 1065 - composite 180664716097986611402007784149669477223 fails Frobenius Underwood primality test ok 1066 - composite 180664716097986611402007784149669477223 fails BPSW primality test ok 1067 - composite 248957328957166865967197552940796547567 fails Euler-Plumb primality test ok 1068 - composite 248957328957166865967197552940796547567 fails Frobenius primality test ok 1069 - composite 248957328957166865967197552940796547567 fails Frobenius Khashin primality test ok 1070 - composite 248957328957166865967197552940796547567 fails Frobenius Underwood primality test ok 1071 - composite 248957328957166865967197552940796547567 fails BPSW primality test ok 1072 - composite 276174467950103435998583356206846142651 fails Euler-Plumb primality test ok 1073 - composite 276174467950103435998583356206846142651 fails Frobenius primality test ok 1074 - composite 276174467950103435998583356206846142651 fails Frobenius Khashin primality test ok 1075 - composite 276174467950103435998583356206846142651 fails Frobenius Underwood primality test ok 1076 - composite 276174467950103435998583356206846142651 fails BPSW primality test ok 1077 - prime 2 is a Frobenius (37,-13) pseudoprime ok 1078 - prime 3 is a Frobenius (37,-13) pseudoprime ok 1079 - prime 5 is a Frobenius (37,-13) pseudoprime ok 1080 - prime 7 is a Frobenius (37,-13) pseudoprime ok 1081 - prime 11 is a Frobenius (37,-13) pseudoprime ok 1082 - prime 13 is a Frobenius (37,-13) pseudoprime ok 1083 - prime 17 is a Frobenius (37,-13) pseudoprime ok 1084 - prime 19 is a Frobenius (37,-13) pseudoprime ok 1085 - prime 23 is a Frobenius (37,-13) pseudoprime ok 1086 - prime 29 is a Frobenius (37,-13) pseudoprime ok 1087 - prime 31 is a Frobenius (37,-13) pseudoprime ok 1088 - prime 37 is a Frobenius (37,-13) pseudoprime ok 1089 - prime 41 is a Frobenius (37,-13) pseudoprime ok 1090 - prime 43 is a Frobenius (37,-13) pseudoprime ok 1091 - prime 47 is a Frobenius (37,-13) pseudoprime ok 1092 - miller_rabin_random with a seed ok 1093 - MRR(10007,-4) ok t/19-moebius.t ............... 1..191 ok 1 - moebius(0) ok 2 - moebius 1 .. 20 ok 3 - totient 0 .. 69 ok 4 - euler_phi(123457) == 123456 ok 5 - euler_phi(123456) == 41088 ok 6 - euler_phi(123456789) == 82260072 ok 7 - Jordan's Totient J_7 ok 8 - Jordan's Totient J_5 ok 9 - Jordan's Totient J_2 ok 10 - Jordan's Totient J_6 ok 11 - Jordan's Totient J_3 ok 12 - Jordan's Totient J_4 ok 13 - Jordan's Totient J_1 ok 14 - carmichael_lambda with range: 0, 69 ok 15 - liouville(24) = 1 ok 16 - liouville(51) = 1 ok 17 - liouville(94) = 1 ok 18 - liouville(183) = 1 ok 19 - liouville(294) = 1 ok 20 - liouville(629) = 1 ok 21 - liouville(1488) = 1 ok 22 - liouville(3684) = 1 ok 23 - liouville(8006) = 1 ok 24 - liouville(8510) = 1 ok 25 - liouville(32539) = 1 ok 26 - liouville(57240) = 1 ok 27 - liouville(103138) = 1 ok 28 - liouville(238565) = 1 ok 29 - liouville(444456) = 1 ok 30 - liouville(820134) = 1 ok 31 - liouville(1185666) = 1 ok 32 - liouville(3960407) = 1 ok 33 - liouville(4429677) = 1 ok 34 - liouville(13719505) = 1 ok 35 - liouville(29191963) = 1 ok 36 - liouville(57736144) = 1 ok 37 - liouville(134185856) = 1 ok 38 - liouville(262306569) = 1 ok 39 - liouville(324235872) = 1 ok 40 - liouville(563441153) = 1 ok 41 - liouville(1686170713) = 1 ok 42 - liouville(2489885844) = 1 ok 43 - liouville(1260238066729040) = 1 ok 44 - liouville(10095256575169232896) = 1 ok 45 - liouville(23) = -1 ok 46 - liouville(47) = -1 ok 47 - liouville(113) = -1 ok 48 - liouville(163) = -1 ok 49 - liouville(378) = -1 ok 50 - liouville(942) = -1 ok 51 - liouville(1669) = -1 ok 52 - liouville(2808) = -1 ok 53 - liouville(8029) = -1 ok 54 - liouville(9819) = -1 ok 55 - liouville(23863) = -1 ok 56 - liouville(39712) = -1 ok 57 - liouville(87352) = -1 ok 58 - liouville(210421) = -1 ok 59 - liouville(363671) = -1 ok 60 - liouville(562894) = -1 ok 61 - liouville(1839723) = -1 ok 62 - liouville(3504755) = -1 ok 63 - liouville(7456642) = -1 ok 64 - liouville(14807115) = -1 ok 65 - liouville(22469612) = -1 ok 66 - liouville(49080461) = -1 ok 67 - liouville(132842464) = -1 ok 68 - liouville(146060791) = -1 ok 69 - liouville(279256445) = -1 ok 70 - liouville(802149183) = -1 ok 71 - liouville(1243577750) = -1 ok 72 - liouville(3639860654) = -1 ok 73 - liouville(1807253903626380) = -1 ok 74 - liouville(12063177829788352512) = -1 ok 75 - exp_mangoldt(8) == 2 ok 76 - exp_mangoldt(0) == 1 ok 77 - exp_mangoldt(11) == 11 ok 78 - exp_mangoldt(7) == 7 ok 79 - exp_mangoldt(399983) == 399983 ok 80 - exp_mangoldt(25) == 5 ok 81 - exp_mangoldt(-13) == 1 ok 82 - exp_mangoldt(399981) == 1 ok 83 - exp_mangoldt(10) == 1 ok 84 - exp_mangoldt(3) == 3 ok 85 - exp_mangoldt(4) == 2 ok 86 - exp_mangoldt(1) == 1 ok 87 - exp_mangoldt(83521) == 17 ok 88 - exp_mangoldt(399982) == 1 ok 89 - exp_mangoldt(5) == 5 ok 90 - exp_mangoldt(27) == 3 ok 91 - exp_mangoldt(2) == 2 ok 92 - exp_mangoldt(6) == 1 ok 93 - exp_mangoldt(9) == 3 ok 94 - exp_mangoldt(823543) == 7 ok 95 - exp_mangoldt(130321) == 19 ok 96 - znorder(1, 35) = 1 ok 97 - znorder(2, 35) = 12 ok 98 - znorder(4, 35) = 6 ok 99 - znorder(6, 35) = 2 ok 100 - znorder(7, 35) = ok 101 - znorder(2, 1000000000000031) = 81788975100 ok 102 - znorder(1, 1) = 1 ok 103 - znorder(0, 0) = ok 104 - znorder(1, 0) = ok 105 - znorder(25, 0) = ok 106 - znorder(1, 1) = 1 ok 107 - znorder(19, 1) = 1 ok 108 - znorder(1, 19) = 1 ok 109 - znorder(2, 19) = 18 ok 110 - znorder(3, 20) = 4 ok 111 - znorder(57, 1000000003) = 189618 ok 112 - znorder(67, 999999749) = 30612237 ok 113 - znorder(22, 999991815) = 69844 ok 114 - znorder(10, 2147475467) = 31448382 ok 115 - znorder(141, 2147475467) = 1655178 ok 116 - znorder(7410, 2147475467) = 39409 ok 117 - znorder(31407, 2147475467) = 266 ok 118 - znorder(2, 2405286912458753) = 1073741824 ok 119 - znprimroot(7) == 3 ok 120 - znprimroot(4) == 3 ok 121 - znprimroot(1520874431) == 17 ok 122 - znprimroot(1) == 0 ok 123 - znprimroot(10) == 3 ok 124 - znprimroot(2232881419280027) == 6 ok 125 - znprimroot(89637484042681) == 335 ok 126 - znprimroot(2) == 1 ok 127 - znprimroot(5) == 2 ok 128 - znprimroot(-11) == 2 ok 129 - znprimroot(1685283601) == 164 ok 130 - znprimroot(17551561) == 97 ok 131 - znprimroot(5109721) == 94 ok 132 - znprimroot(6) == 5 ok 133 - znprimroot(14123555781055773271) == 6 ok 134 - znprimroot(0) == ok 135 - znprimroot(8) == ok 136 - znprimroot(3) == 2 ok 137 - znprimroot(100000001) == ok 138 - znprimroot(9223372036854775837) == 5 ok 139 - znprimroot(1407827621) == 2 ok 140 - znprimroot(90441961) == 113 ok 141 - znprimroot(9) == 2 ok 142 - znprimroot(1729) == ok 143 - znprimroot("-100000898") == 31 ok 144 - 3 is not a primitive root mod 10^30+57 ok 145 - 5 is a primitive root mod 10^30+57 ok 146 - 3 is a primitive root mod 10^30+66 ok 147 - totient(9082348072348972344232348972345) ok 148 - jordan_totient(4,9082348072348972344232348972345) ok 149 - carmichael_lambda(9082348072348972344232348972345) ok 150 - totient(9082348072348972344232348972353) ok 151 - jordan_totient(7,9082348072348972344232348972353) ok 152 - carmichael_lambda(9082348072348972344232348972353) ok 153 - moebius(9082348072348972344232348972353) ok 154 - liouville(9082348072348972344232348972353) ok 155 - znorder(17,100000000000000000000000065) ok 156 - znprimroot(9218092345892375982375972365235234234238) ok 157 - Ramanujan Tau(83456) = 130596522071273977247956992 ok 158 - Ramanujan Tau(16089) = 12655813883111729342208 ok 159 - Ramanujan Tau(2) = -24 ok 160 - Ramanujan Tau(5) = 4830 ok 161 - Ramanujan Tau(3) = 252 ok 162 - Ramanujan Tau(4) = -1472 ok 163 - Ramanujan Tau(106) = 38305336752 ok 164 - Ramanujan Tau(1) = 1 ok 165 - Ramanujan Tau(53) = -1596055698 ok 166 - Ramanujan Tau(0) = 0 ok 167 - Ramanujan Tau(243) = 13400796651732 ok 168 - crt() = 0 ok 169 - crt([4 5]) = 4 ok 170 - crt([77 11]) = 0 ok 171 - crt([0 5],[0 6]) = 0 ok 172 - crt([14 5],[0 6]) = 24 ok 173 - crt([10 11],[4 22],[9 19]) = ok 174 - crt([77 13],[79 17]) = 181 ok 175 - crt([2 3],[3 5],[2 7]) = 23 ok 176 - crt([10 11],[4 12],[12 13]) = 1000 ok 177 - crt([42 127],[24 128]) = 2328 ok 178 - crt([32 126],[23 129]) = 410 ok 179 - crt([2328 16256],[410 5418]) = 28450328 ok 180 - crt([1 10],[11 100]) = 11 ok 181 - crt([11 100],[22 100]) = ok 182 - crt([1753051086 3243410059],[2609156951 2439462460]) = 6553408220202087311 ok 183 - crt([6325451203932218304 2750166238021308],[5611464489438299732 94116455416164094]) = 1433171050835863115088946517796 ok 184 - crt([1762568892212871168 8554171181844660224],[2462425671659520000 2016911328009584640]) = 188079320578009823963731127992320 ok 185 - crt([856686401696104448 11943471150311931904],[6316031051955372032 13290002569363587072]) = 943247297188055114646647659888640 ok 186 - crt([-3105579549 3743000622],[-1097075646 1219365911]) = 2754322117681955433 ok 187 - crt([-925543788386357567 243569243147991],[-1256802905822510829 28763455974459440]) = 837055903505897549759994093811 ok 188 - crt([-2155972909982577461 8509855219791386062],[-5396280069505638574 6935743629860450393]) = 12941173114744545542549046204020289525 ok 189 - crt([3 5],[2 0]) = ok 190 - crt([3 0],[2 3]) = ok 191 - crt([3 5],[3 0],[2 3]) = ok t/20-primorial.t ............. 1..12 ok 1 - factorial 0 .. 30 ok 2 - factorialmod ok 3 - primorial(nth(...)) 0 - 30 ok 4 - pn_primorial(...) 0 - 30 ok 5 - primorial(100) ok 6 - primorial(541) ok 7 - subfactoral(n) for 0..23 ok 8 - factorial_sum(n) for 0..22 ok 9 - multifactorial(n,0) for 0..22 ok 10 - multifactorial(n,1) for 0..22 ok 11 - multifactorial(n,2) for 0..26 ok 12 - multifactorial(n,3) for 0..29 ok t/21-conseq-lcm.t ............ 1..102 ok 1 - consecutive_integer_lcm(0) ok 2 - consecutive_integer_lcm(1) ok 3 - consecutive_integer_lcm(2) ok 4 - consecutive_integer_lcm(3) ok 5 - consecutive_integer_lcm(4) ok 6 - consecutive_integer_lcm(5) ok 7 - consecutive_integer_lcm(6) ok 8 - consecutive_integer_lcm(7) ok 9 - consecutive_integer_lcm(8) ok 10 - consecutive_integer_lcm(9) ok 11 - consecutive_integer_lcm(10) ok 12 - consecutive_integer_lcm(11) ok 13 - consecutive_integer_lcm(12) ok 14 - consecutive_integer_lcm(13) ok 15 - consecutive_integer_lcm(14) ok 16 - consecutive_integer_lcm(15) ok 17 - consecutive_integer_lcm(16) ok 18 - consecutive_integer_lcm(17) ok 19 - consecutive_integer_lcm(18) ok 20 - consecutive_integer_lcm(19) ok 21 - consecutive_integer_lcm(20) ok 22 - consecutive_integer_lcm(21) ok 23 - consecutive_integer_lcm(22) ok 24 - consecutive_integer_lcm(23) ok 25 - consecutive_integer_lcm(24) ok 26 - consecutive_integer_lcm(25) ok 27 - consecutive_integer_lcm(26) ok 28 - consecutive_integer_lcm(27) ok 29 - consecutive_integer_lcm(28) ok 30 - consecutive_integer_lcm(29) ok 31 - consecutive_integer_lcm(30) ok 32 - consecutive_integer_lcm(31) ok 33 - consecutive_integer_lcm(32) ok 34 - consecutive_integer_lcm(33) ok 35 - consecutive_integer_lcm(34) ok 36 - consecutive_integer_lcm(35) ok 37 - consecutive_integer_lcm(36) ok 38 - consecutive_integer_lcm(37) ok 39 - consecutive_integer_lcm(38) ok 40 - consecutive_integer_lcm(39) ok 41 - consecutive_integer_lcm(40) ok 42 - consecutive_integer_lcm(41) ok 43 - consecutive_integer_lcm(42) ok 44 - consecutive_integer_lcm(43) ok 45 - consecutive_integer_lcm(44) ok 46 - consecutive_integer_lcm(45) ok 47 - consecutive_integer_lcm(46) ok 48 - consecutive_integer_lcm(47) ok 49 - consecutive_integer_lcm(48) ok 50 - consecutive_integer_lcm(49) ok 51 - consecutive_integer_lcm(50) ok 52 - consecutive_integer_lcm(51) ok 53 - consecutive_integer_lcm(52) ok 54 - consecutive_integer_lcm(53) ok 55 - consecutive_integer_lcm(54) ok 56 - consecutive_integer_lcm(55) ok 57 - consecutive_integer_lcm(56) ok 58 - consecutive_integer_lcm(57) ok 59 - consecutive_integer_lcm(58) ok 60 - consecutive_integer_lcm(59) ok 61 - consecutive_integer_lcm(60) ok 62 - consecutive_integer_lcm(61) ok 63 - consecutive_integer_lcm(62) ok 64 - consecutive_integer_lcm(63) ok 65 - consecutive_integer_lcm(64) ok 66 - consecutive_integer_lcm(65) ok 67 - consecutive_integer_lcm(66) ok 68 - consecutive_integer_lcm(67) ok 69 - consecutive_integer_lcm(68) ok 70 - consecutive_integer_lcm(69) ok 71 - consecutive_integer_lcm(70) ok 72 - consecutive_integer_lcm(71) ok 73 - consecutive_integer_lcm(72) ok 74 - consecutive_integer_lcm(73) ok 75 - consecutive_integer_lcm(74) ok 76 - consecutive_integer_lcm(75) ok 77 - consecutive_integer_lcm(76) ok 78 - consecutive_integer_lcm(77) ok 79 - consecutive_integer_lcm(78) ok 80 - consecutive_integer_lcm(79) ok 81 - consecutive_integer_lcm(80) ok 82 - consecutive_integer_lcm(81) ok 83 - consecutive_integer_lcm(82) ok 84 - consecutive_integer_lcm(83) ok 85 - consecutive_integer_lcm(84) ok 86 - consecutive_integer_lcm(85) ok 87 - consecutive_integer_lcm(86) ok 88 - consecutive_integer_lcm(87) ok 89 - consecutive_integer_lcm(88) ok 90 - consecutive_integer_lcm(89) ok 91 - consecutive_integer_lcm(90) ok 92 - consecutive_integer_lcm(91) ok 93 - consecutive_integer_lcm(92) ok 94 - consecutive_integer_lcm(93) ok 95 - consecutive_integer_lcm(94) ok 96 - consecutive_integer_lcm(95) ok 97 - consecutive_integer_lcm(96) ok 98 - consecutive_integer_lcm(97) ok 99 - consecutive_integer_lcm(98) ok 100 - consecutive_integer_lcm(99) ok 101 - consecutive_integer_lcm(100) ok 102 - consecutive_integer_lcm(2000) ok t/22-partitions.t ............ 1..55 ok 1 - partitions(0) ok 2 - partitions(1) ok 3 - partitions(2) ok 4 - partitions(3) ok 5 - partitions(4) ok 6 - partitions(5) ok 7 - partitions(6) ok 8 - partitions(7) ok 9 - partitions(8) ok 10 - partitions(9) ok 11 - partitions(10) ok 12 - partitions(11) ok 13 - partitions(12) ok 14 - partitions(13) ok 15 - partitions(14) ok 16 - partitions(15) ok 17 - partitions(16) ok 18 - partitions(17) ok 19 - partitions(18) ok 20 - partitions(19) ok 21 - partitions(20) ok 22 - partitions(21) ok 23 - partitions(22) ok 24 - partitions(23) ok 25 - partitions(24) ok 26 - partitions(25) ok 27 - partitions(26) ok 28 - partitions(27) ok 29 - partitions(28) ok 30 - partitions(29) ok 31 - partitions(30) ok 32 - partitions(31) ok 33 - partitions(32) ok 34 - partitions(33) ok 35 - partitions(34) ok 36 - partitions(35) ok 37 - partitions(36) ok 38 - partitions(37) ok 39 - partitions(38) ok 40 - partitions(39) ok 41 - partitions(40) ok 42 - partitions(41) ok 43 - partitions(42) ok 44 - partitions(43) ok 45 - partitions(44) ok 46 - partitions(45) ok 47 - partitions(46) ok 48 - partitions(47) ok 49 - partitions(48) ok 50 - partitions(49) ok 51 - partitions(50) ok 52 - partitions(1000) ok 53 - partitions(4497) ok 54 - partitions(100) ok 55 - partitions(500) ok t/23-gcd.t ................... 1..159 ok 1 - gcd() = 0 ok 2 - gcd(8) = 8 ok 3 - gcd(9,9) = 9 ok 4 - gcd(0,0) = 0 ok 5 - gcd(1,0,0) = 1 ok 6 - gcd(0,0,1) = 1 ok 7 - gcd(17,19) = 1 ok 8 - gcd(54,24) = 6 ok 9 - gcd(42,56) = 14 ok 10 - gcd(9,28) = 1 ok 11 - gcd(48,180) = 12 ok 12 - gcd(2705353758,2540073744,3512215098,2214052398) = 18 ok 13 - gcd(2301535282,3609610580,3261189640) = 106 ok 14 - gcd(694966514,510402262,195075284,609944479) = 181 ok 15 - gcd(294950648,651855678,263274296,493043500,581345426) = 58 ok 16 - gcd(-30,-90,90) = 30 ok 17 - gcd(-3,-9,-18) = 3 ok 18 - lcm() = 0 ok 19 - lcm(8) = 8 ok 20 - lcm(9,9) = 9 ok 21 - lcm(0,0) = 0 ok 22 - lcm(1,0,0) = 0 ok 23 - lcm(0,0,1) = 0 ok 24 - lcm(17,19) = 323 ok 25 - lcm(54,24) = 216 ok 26 - lcm(42,56) = 168 ok 27 - lcm(9,28) = 252 ok 28 - lcm(48,180) = 720 ok 29 - lcm(36,45) = 180 ok 30 - lcm(-36,45) = 180 ok 31 - lcm(-36,-45) = 180 ok 32 - lcm(30,15,5) = 30 ok 33 - lcm(2,3,4,5) = 60 ok 34 - lcm(30245,114552) = 3464625240 ok 35 - lcm(11926,78001,2211) = 2790719778 ok 36 - lcm(1426,26195,3289,8346) = 4254749070 ok 37 - kronecker(109981, 737777) = 1 ok 38 - kronecker(737779, 121080) = -1 ok 39 - kronecker(-737779, 121080) = 1 ok 40 - kronecker(737779, -121080) = -1 ok 41 - kronecker(-737779, -121080) = -1 ok 42 - kronecker(12345, 331) = -1 ok 43 - kronecker(1001, 9907) = -1 ok 44 - kronecker(19, 45) = 1 ok 45 - kronecker(8, 21) = -1 ok 46 - kronecker(5, 21) = 1 ok 47 - kronecker(5, 1237) = -1 ok 48 - kronecker(10, 49) = 1 ok 49 - kronecker(123, 4567) = -1 ok 50 - kronecker(3, 18) = 0 ok 51 - kronecker(3, -18) = 0 ok 52 - kronecker(-2, 0) = 0 ok 53 - kronecker(-1, 0) = 1 ok 54 - kronecker(0, 0) = 0 ok 55 - kronecker(1, 0) = 1 ok 56 - kronecker(2, 0) = 0 ok 57 - kronecker(-2, 1) = 1 ok 58 - kronecker(-1, 1) = 1 ok 59 - kronecker(0, 1) = 1 ok 60 - kronecker(1, 1) = 1 ok 61 - kronecker(2, 1) = 1 ok 62 - kronecker(-2, -1) = -1 ok 63 - kronecker(-1, -1) = -1 ok 64 - kronecker(0, -1) = 1 ok 65 - kronecker(1, -1) = 1 ok 66 - kronecker(2, -1) = 1 ok 67 - kronecker(3686556869, 428192857) = 1 ok 68 - kronecker(-1453096827, 364435739) = -1 ok 69 - kronecker(3527710253, -306243569) = 1 ok 70 - kronecker(-1843526669, -332265377) = 1 ok 71 - kronecker(321781679, 4095783323) = -1 ok 72 - kronecker(454249403, -79475159) = -1 ok 73 - valuation(-4,2) = 2 ok 74 - valuation(0,0) = 0 ok 75 - valuation(1,0) = 0 ok 76 - valuation(96552,6) = 3 ok 77 - valuation(1879048192,2) = 28 ok 78 - hammingweight(0) = 0 ok 79 - hammingweight(1) = 1 ok 80 - hammingweight(2304786) = 9 ok 81 - hammingweight(-2304786) = 9 ok 82 - hammingweight(<256-bit prime>) = 128 ok 83 - binomial(0,0)) = 1 ok 84 - binomial(0,1)) = 0 ok 85 - binomial(1,0)) = 1 ok 86 - binomial(1,1)) = 1 ok 87 - binomial(1,2)) = 0 ok 88 - binomial(13,13)) = 1 ok 89 - binomial(13,14)) = 0 ok 90 - binomial(35,16)) = 4059928950 ok 91 - binomial(40,19)) = 131282408400 ok 92 - binomial(67,31)) = 11923179284862717872 ok 93 - binomial(228,12)) = 30689926618143230620 ok 94 - binomial(177,78)) = 3314450882216440395106465322941753788648564665022000 ok 95 - binomial(-10,5)) = -2002 ok 96 - binomial(-11,22)) = 64512240 ok 97 - binomial(-12,23)) = -286097760 ok 98 - binomial(-23,-26)) = -2300 ok 99 - binomial(-12,-23)) = -705432 ok 100 - binomial(12,-23)) = 0 ok 101 - binomial(12,-12)) = 0 ok 102 - binomial(-12,0)) = 1 ok 103 - binomial(0,-1)) = 0 ok 104 - binomial(10,n) for n in -15 .. 15 ok 105 - binomial(-10,n) for n in -15 .. 15 ok 106 - gcdext(0,0) = [0 0 0] ok 107 - gcdext(0,28) = [0 1 28] ok 108 - gcdext(28,0) = [1 0 28] ok 109 - gcdext(0,-28) = [0 -1 28] ok 110 - gcdext(-28,0) = [-1 0 28] ok 111 - gcdext(3706259912,1223661804) = [123862139 -375156991 4] ok 112 - gcdext(3706259912,-1223661804) = [123862139 375156991 4] ok 113 - gcdext(-3706259912,1223661804) = [-123862139 -375156991 4] ok 114 - gcdext(-3706259912,-1223661804) = [-123862139 375156991 4] ok 115 - gcdext(22,242) = [1 0 22] ok 116 - gcdext(2731583792,3028241442) = [-187089956 168761937 2] ok 117 - gcdext(42272720,12439910) = [-21984 74705 70] ok 118 - gcdext(10139483024654235947,8030280778952246347) = [-2715309548282941287 3428502169395958570 1] ok 119 - vecsum() = 0 ok 120 - vecsum(-1) = -1 ok 121 - vecsum(1 -1) = 0 ok 122 - vecsum(-1 1) = 0 ok 123 - vecsum(-1 1) = 0 ok 124 - vecsum(-2147483648 2147483648) = 0 ok 125 - vecsum(-4294967296 4294967296) = 0 ok 126 - vecsum(-9223372036854775808 9223372036854775808) = 0 ok 127 - vecsum(18446744073709551615 -18446744073709551615 18446744073709551615) = 18446744073709551615 ok 128 - vecsum(18446744073709551616 18446744073709551616 18446744073709551616) = 55340232221128654848 ok 129 - vecsum(18446744073709540400 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000) = 18446744073709620400 ok 130 - vecsum(8940560560432415123818915720822415267807123681474252424566821897853531 7778547618243732438765515250718016989143156212607337512983395245244477 2189527014402679437989261998352299668199802723705390949617417617818071 -3503124593441728232550096334002786135023 3320980231353895482190953072226607400824266105545861535055220237211523) = 22229615424432722482764646042115836201380906995100292325888852211992579 ok 131 - vecprod() = 1 ok 132 - vecprod(1) = 1 ok 133 - vecprod(-1) = -1 ok 134 - vecprod(-1 -2) = 2 ok 135 - vecprod(-1 -2) = 2 ok 136 - vecprod(32767 -65535) = -2147385345 ok 137 - vecprod(32767 -65535) = -2147385345 ok 138 - vecprod(32768 -65535) = -2147450880 ok 139 - vecprod(32768 -65536) = -2147483648 ok 140 - vecprod(18446744073709551616 18446744073709551616 18446744073709551616) = 6277101735386680763835789423207666416102355444464034512896 ok 141 - vecprod(22229615424432722482764646042115836201380906995100292325888852211992579 8940560560432415123818915720822415267807123681474252424566821897853531 7778547618243732438765515250718016989143156212607337512983395245244477 2189527014402679437989261998352299668199802723705390949617417617818071 -3503124593441728232550096334002786135023 3320980231353895482190953072226607400824266105545861535055220237211523) = -39379245925303999064282306510014189368381156100297892522429483126331668772925108615466135642644100480444268237833039496827424630610878534616461996117558125896627456342217566092980432383889727428817722190472716948287416569075064047381625246037918268748866755509776641498138274065792670793438081730710568979196957310574284265747455825604868707218992022874441687475660523342376167971071980207 ok 142 - gcd(a,b,c) ok 143 - gcd(a,b) ok 144 - gcd of two primes = 1 ok 145 - lcm(p1,p2) ok 146 - lcm(p1,p1) ok 147 - lcm(a,b,c,d,e) ok 148 - kronecker(..., ...) ok 149 - is_power(18475335773296164196) == 0 ok 150 - is_power(322396049^18) == 18 ok 151 - is_power(903111^16) == 16 ok 152 - is_power(903111^16,4) is true ok 153 - is_power(29905047121918201644964877983907^2) == 2 ok 154 - is_prime_power(18475335773296164196) == 0 ok 155 - is_prime_power(29905047121918201644964877983907^2) == 0 ok 156 - is_prime_power(322396049^18) == 18 ok 157 - is_square for -4 .. 16 ok 158 - 60481729 is a square ok 159 - is_square() = 1 ok t/24-bernfrac.t .............. 1..78 ok 1 - B_2n numerators 0 .. 30 ok 2 - B_2n denominators 0 .. 57 ok 3 - Stirling 3: L(0,0..1) ok 4 - Stirling 3: L(1,0..2) ok 5 - Stirling 3: L(2,0..3) ok 6 - Stirling 3: L(3,0..4) ok 7 - Stirling 3: L(4,0..5) ok 8 - Stirling 3: L(5,0..6) ok 9 - Stirling 3: L(6,0..7) ok 10 - Stirling 3: L(7,0..8) ok 11 - Stirling 3: L(8,0..9) ok 12 - Stirling 3: L(9,0..10) ok 13 - Stirling 3: L(10,0..11) ok 14 - Stirling 3: L(11,0..12) ok 15 - Stirling 3: L(12,0..13) ok 16 - Stirling 3: L(13,0..14) ok 17 - Stirling 3: L(14,0..15) ok 18 - Stirling 3: L(15,0..16) ok 19 - Stirling 3: L(16,0..17) ok 20 - Stirling 3: L(17,0..18) ok 21 - Stirling 3: L(18,0..19) ok 22 - Stirling 2: S(0,0..1) ok 23 - Stirling 2: S(1,0..2) ok 24 - Stirling 2: S(2,0..3) ok 25 - Stirling 2: S(3,0..4) ok 26 - Stirling 2: S(4,0..5) ok 27 - Stirling 2: S(5,0..6) ok 28 - Stirling 2: S(6,0..7) ok 29 - Stirling 2: S(7,0..8) ok 30 - Stirling 2: S(8,0..9) ok 31 - Stirling 2: S(9,0..10) ok 32 - Stirling 2: S(10,0..11) ok 33 - Stirling 2: S(11,0..12) ok 34 - Stirling 2: S(12,0..13) ok 35 - Stirling 2: S(13,0..14) ok 36 - Stirling 2: S(14,0..15) ok 37 - Stirling 2: S(15,0..16) ok 38 - Stirling 2: S(16,0..17) ok 39 - Stirling 2: S(17,0..18) ok 40 - Stirling 2: S(18,0..19) ok 41 - Stirling 2: S(19,0..20) ok 42 - Stirling 2: S(20,0..21) ok 43 - Stirling 1: s(0,0..1) ok 44 - Stirling 1: s(1,0..2) ok 45 - Stirling 1: s(2,0..3) ok 46 - Stirling 1: s(3,0..4) ok 47 - Stirling 1: s(4,0..5) ok 48 - Stirling 1: s(5,0..6) ok 49 - Stirling 1: s(6,0..7) ok 50 - Stirling 1: s(7,0..8) ok 51 - Stirling 1: s(8,0..9) ok 52 - Stirling 1: s(9,0..10) ok 53 - Stirling 1: s(10,0..11) ok 54 - Stirling 1: s(11,0..12) ok 55 - Stirling 1: s(12,0..13) ok 56 - Stirling 1: s(13,0..14) ok 57 - Stirling 1: s(14,0..15) ok 58 - Stirling 1: s(15,0..16) ok 59 - Stirling 1: s(16,0..17) ok 60 - Stirling 1: s(17,0..18) ok 61 - Stirling 1: s(18,0..19) ok 62 - Stirling 1: s(19,0..20) ok 63 - Stirling 1: s(20,0..21) ok 64 - L(246,61) ok 65 - S(137,14) ok 66 - s(99,14) ok 67 - harmfrac(27) ok 68 - harmfrac(172) ok 69 - harmreal(5,6) ok 70 - harmreal(15,3) ok 71 - harmreal(15,25) ok 72 - harmreal(1500,85) ok 73 - harmreal(2502,764) ok 74 - harmreal(2502,765) ok 75 - bern(24) ok 76 - bern(16,5) ok 77 - bern(200,7) ok 78 - bern(222,260) ok t/25-const-euler.t ........... 1..2 ok 1 - Euler(0 .. 99) ok 2 - Euler(100,200,300,...,1000) ok t/25-const-pi.t .............. 1..1 ok 1 - Pi(2 .. 999) ok t/26-combinatorial.t ......... 1..14 ok 1 - permtonum([]) ok 2 - permtonum([0]) ok 3 - permtonum([1,0]) ok 4 - permtonum([6,3,4,2,5,0,1]) ok 5 - permtonum( 20 ) ok 6 - permtonum( 26 ) ok 7 - permtonum( 40 ) ok 8 - numtoperm(0,0) ok 9 - numtoperm(1,0) ok 10 - numtoperm(1,1) ok 11 - numtoperm(5,15) ok 12 - numtoperm(5,-2) ok 13 - numtoperm(24,987654321) ok 14 - numtoperm(40,...) ok t/26-digits.t ................ 1..13 ok 1 - todigits 0 ok 2 - todigits 1 ok 3 - todigits 77 ok 4 - todigits 77 base 2 ok 5 - todigits 77 base 3 ok 6 - todigits 77 base 21 ok 7 - todigits 900 base 2 ok 8 - todigits 900 base 2 len 0 ok 9 - todigits 900 base 2 len 3 ok 10 - todigits 900 base 2 len 32 ok 11 - todigits 58127 base 16 ok 12 - todigits 6345354 base 10 len 4 ok 13 - todigits ignores sign ok t/26-int.t ................... 1..74 ok 1 - powint(-3,0) = 1 ok 2 - powint(-3,1) = -3 ok 3 - powint(-3,2) = 9 ok 4 - powint(-3,3) = -27 ok 5 - powint(-2,0) = 1 ok 6 - powint(-2,1) = -2 ok 7 - powint(-2,2) = 4 ok 8 - powint(-2,3) = -8 ok 9 - powint(-1,0) = 1 ok 10 - powint(-1,1) = -1 ok 11 - powint(-1,2) = 1 ok 12 - powint(-1,3) = -1 ok 13 - powint(0,0) = 1 ok 14 - powint(0,1) = 0 ok 15 - powint(0,2) = 0 ok 16 - powint(0,3) = 0 ok 17 - powint(1,0) = 1 ok 18 - powint(1,1) = 1 ok 19 - powint(1,2) = 1 ok 20 - powint(1,3) = 1 ok 21 - powint(2,0) = 1 ok 22 - powint(2,1) = 2 ok 23 - powint(2,2) = 4 ok 24 - powint(2,3) = 8 ok 25 - powint(3,0) = 1 ok 26 - powint(3,1) = 3 ok 27 - powint(3,2) = 9 ok 28 - powint(3,3) = 27 ok 29 - powint(5,6) = 15625 ok 30 - powint(2,16) = 65536 ok 31 - (2^32)^3 ok 32 - 3^(2^7) ok 33 - mulint( -3 .. 3, -3 .. 3) ok 34 - mulint(13282407956253574712,14991082624209354397) = 199117675120653046511338473800925208664 ok 35 - addint( -3 .. 3, -3 .. 3) ok 36 - addint(1178630961471601951655862,827639478068904540012) = 1179458600949670856195874 ok 37 - addint(-2555488174170453670799,1726145541361106236340) = -829342632809347434459 ok 38 - subint( -3 .. 3, -3 .. 3) ok 39 - subint(68719214592,281474976448512) = -281406257233920 ok 40 - subint(38631281077,12191281349924010278) = -12191281311292729201 ok 41 - subint(-38631281077,12191281349924010278) = -12191281388555291355 ok 42 - subint(-38631281077,-12191281349924010278) = 12191281311292729201 ok 43 - subint(9686117847286759,419039659798583) = 9267078187488176 ok 44 - subint(14888606332669627740937300680965976203,14888605897080617527808122501731945103) = 435589010213129178179234031100 ok 45 - divint(1,0) ok 46 - divint(1,0) ok 47 - divint(1024,x) for 1 .. 1025 ok 48 - divint(-1024,x) for 1 .. 1025 ok 49 - modint(1,0) ok 50 - modint(1,0) ok 51 - modint(1024,x) for 1 .. 1025 ok 52 - modint(-1024,x) for 1 .. 1025 ok 53 - divrem(1,0) ok 54 - divrem(1,0) ok 55 - tdivrem(1,0) ok 56 - tdivrem(1,0) ok 57 - large divint + + ok 58 - large modint + + ok 59 - large divrem + + ok 60 - large tdivrem + + ok 61 - large divint + - ok 62 - large modint + - ok 63 - large divrem + - ok 64 - large tdivrem + - ok 65 - large divint - + ok 66 - large modint - + ok 67 - large divrem - + ok 68 - large tdivrem - + ok 69 - large divint - - ok 70 - large modint - - ok 71 - large divrem - - ok 72 - large tdivrem - - ok 73 - absint(-9..9) ok 74 - negint(-9..9) ok t/26-ismisc.t ................ 1..28 ok 1 - Carmichael numbers to 20000 ok 2 - Large Carmichael ok 3 - Larger Carmichael ok 4 - is_fundamental(-50 .. 0) ok 5 - is_fundamental(0 .. 50) ok 6 - is_fundamental(2^67+9) ok 7 - is_fundamental(-2^67+44) ok 8 - is_totient 0 .. 40 ok 9 - is_fundamental(2^29_1 .. 2^29+80) ok 10 - is_totient(2^63+28) ok 11 - is_totient(2^63+20) ok 12 - is_totient(2^63+24) ok 13 - is_totient(2^83+88) ok 14 - is_totient(2^83+50) ok 15 - is_totient(2^83+64) ok 16 - is_totient(2^90) ok 17 - 29 is not a Gaussian Prime ok 18 - 31 is a Gaussian Prime ok 19 - 0-29i is not a Gaussian Prime ok 20 - 0-31i is a Gaussian Prime ok 21 - large +,+ Gaussian prime ok 22 - large -,+ Gaussian prime ok 23 - large +,+ Gaussian composite ok 24 - large +,- Gaussian composite ok 25 - first 10 triangular numbers ok 26 - first 10 23-gonal numbers ok 27 - 140737496743936 is the 16777216-th triangular number ok 28 - identified the 12345678901234567890-th pentagonal number ok t/26-lambertw.t .............. 1..19 ok 1 - LambertW(0) = 0 ok 2 - LambertW(0.1, 0.2, ..., 2.0) with 47 digits ok 3 - LambertW(567.88,200) ok 4 - LambertW(1e6,200) ok 5 - LambertW(-0.01, -0.02, ..., -0.36) with 60 digits ok 6 - LambertW(-1/e 3 dig) ok 7 - LambertW(-1/e 4 dig) ok 8 - LambertW(-1/e 5 dig) ok 9 - LambertW(-1/e 6 dig) ok 10 - LambertW(-1/e 7 dig) ok 11 - LambertW(-1/e 8 dig) ok 12 - LambertW(-1/e 9 dig) ok 13 - LambertW(-1/e 10 dig) ok 14 - LambertW(-1/e 11 dig) ok 15 - LambertW(-1/e 73 dig) ok 16 - LambertW(-1/e - 1e-15 dig) returns -1 without breaking ok 17 - LambertW(1e-20,40) ok 18 - LambertW(1e-20,420) ok 19 - LambertW(-1e-20,420) ok t/26-logs.t .................. 1..6 ok 1 - logint base 2: 0 .. 200 ok 2 - logint base 3: 0 .. 200 ok 3 - logint base 5: 0 .. 200 ok 4 - logint(60-bit,7) ok 5 - logint(126-bit,6) ok 6 - logint(2048-bit,3) ok t/26-mersenne.t .............. 1..1 ok 1 - Find Mersenne primes from 0 to 1279 ok t/26-mod.t ................... 1..35 ok 1 - invmod(0,0) = ok 2 - invmod(1,0) = ok 3 - invmod(0,1) = ok 4 - invmod(1,1) = 0 ok 5 - invmod(45,59) = 21 ok 6 - invmod(42,2017) = 1969 ok 7 - invmod(42,-2017) = 1969 ok 8 - invmod(-42,2017) = 48 ok 9 - invmod(-42,-2017) = 48 ok 10 - invmod(14,28474) = ok 11 - invmod(13,9223372036854775808) = 5675921253449092805 ok 12 - invmod(14,18446744073709551615) = 17129119497016012214 ok 13 - sqrtmod(0,0) = ok 14 - sqrtmod(1,0) = ok 15 - sqrtmod(0,1) = 0 ok 16 - sqrtmod(1,1) = 0 ok 17 - sqrtmod(58,101) = 19 ok 18 - sqrtmod(111,113) = 26 ok 19 - sqrtmod(9223372036854775808,5675921253449092823) = 22172359690642254 ok 20 - sqrtmod(18446744073709551625,340282366920938463463374607431768211507) = 57825146747270203522128844001742059051 ok 21 - addmod(..,0) ok 22 - mulmod(..,0) ok 23 - divmod(..,0) ok 24 - powmod(..,0) ok 25 - addmod(..,1) ok 26 - mulmod(..,1) ok 27 - powmod(..,1) ok 28 - addmod on 40 random inputs ok 29 - addmod with negative second input on 40 random inputs ok 30 - mulmod on 40 random inputs ok 31 - mulmod with negative second input on 40 random inputs ok 32 - divmod on 40 random inputs ok 33 - divmod with negative second input on 40 random inputs ok 34 - powmod on 20 random inputs ok 35 - powmod with negative exponent on 20 random inputs ok t/26-real.t .................. 1..36 ok 1 - log(0) ok 2 - log(0.1, 0.2, ..., 2.0) with 71 digits ok 3 - log(-0.1, -0.2, ..., -2.0) with 71 digits ok 4 - logreal(2,200) ok 5 - logreal(10^1000,200) ok 6 - logreal(5,71) ok 7 - logreal(10,71) ok 8 - logreal(21,71) ok 9 - expreal(1,71) ok 10 - expreal(12.5,71) ok 11 - expreal(100,71) ok 12 - expreal(100,12) ok 13 - expreal(-118.5,71) ok 14 - expreal(-394.84010945715266885,200) ok 15 - powreal(0,2.2,20) ok 16 - powreal(1,2.2,20) ok 17 - powreal(-1,2.2,20) ok 18 - powreal(2,-5.01,60) ok 19 - powreal(2,5,2) ok 20 - powreal(2,-5,5) ok 21 - powreal(1234.5678, 9.87654321, 60) ok 22 - rootreal(0,2,20) ok 23 - rootreal(1,2,20) ok 24 - rootreal(2,2,20) ok 25 - rootreal(2,3,20) ok 26 - rootreal(2,2,80) ok 27 - rootreal(100.19,17,80) ok 28 - AGM(1, sqrt(2)) = reciprocal of Gauss's constant ok 29 - AGM(1, 1/sqrt(2)) ok 30 - AGM(0.5, 1) ok 31 - AGM(6, 24) ok 32 - AGM with negative argument returns undef ok 33 - addreal ok 34 - subreal ok 35 - mulreal ok 36 - divreal ok t/26-riemann.t ............... 1..31 ok 1 - Zeta(2 .. 20) with 46 digits ok 2 - R(123456789) = 7027403.22117008872413898789377520747800808475988 ok 3 - R(123456) = 11602.3885324491433573165310800667605102847042681 ok 4 - R(123) = 30.2234556285623332613428945094834980032607831334 ok 5 - R(12345678) = 809199.447325079489265130526492437800991704424795 ok 6 - R(12345) = 1477.18529486278566013620706299851975937829102453 ok 7 - R(1234567) = 95364.7282332640388293270946571187905178500286859 ok 8 - R(1234) = 201.089189397887171164417491080355409507577355431 ok 9 - R(20) = 7.52719634941220484077584239013039997938974169722 ok 10 - R(10^50) ok 11 - R(10^150) ok 12 - Zeta(1) is undef ok 13 - Zeta(0) is -0.5 ok 14 - Zeta(-1) is -1/12 ok 15 - Zeta(-2) is 0 ok 16 - Zeta(-2) is 1/120 ok 17 - Zeta(-13) is -1/12 ok 18 - Zeta(-21) is -77683/276 ok 19 - zeta(14.8765) ok 20 - zeta(0.5) ok 21 - zeta(-0.5) ok 22 - zeta(-1.5) ok 23 - zeta(-5.5) ok 24 - riemannr(123456.78901) ok 25 - li(1.0000...2088..,15) rounds to -100 ok 26 - li(1.0000...2088..,25) ok 27 - li(123456789,71) ok 28 - li(13333....333,71) ok 29 - ei(-.999999) ok 30 - ei(-.0000001) ok 31 - ei(123) ok t/26-roots.t ................. 1..10 ok 1 - sqrtint 0-10 ok 2 - sqrtint 2-20 -1 ok 3 - sqrtint(13^51) ok 4 - rootint( (2^31-3)^23, 23) = 2^31-3 ok 5 - rootint( (2^31-3)^23-1, 23) = 2^31-3-1 ok 6 - rootint(10^1000,1001) = 9 ok 7 - rootint(2^240,9) = 106528681 ok 8 - roots of powers of 2 ok 9 - roots of powers of 2^32+1 ok 10 - roots of powers of 2^64+1 ok t/27-clusters.t .............. 1..41 ok 1 - A001359 0 200 ok 2 - A022004 317321 319727 ok 3 - A022005 557857 560293 ok 4 - Inadmissible pattern (0,2,4) finds (3,5,7) ok 5 - Inadmissible pattern (0,2,8,14,26) finds (3,5,11,17,29) and (5,7,13,19,31) ok 6 - Pattern [2] 1224 in range 0 .. 100000 ok 7 - Pattern [2 6] 259 in range 0 .. 100000 ok 8 - Pattern [4 6] 248 in range 0 .. 100000 ok 9 - Pattern [2 6 8] 38 in range 0 .. 100000 ok 10 - Pattern [2 6 8 12] 10 in range 0 .. 100000 ok 11 - Pattern [4 6 10 12] 11 in range 0 .. 100000 ok 12 - Pattern [4 6 10 12 16] 5 in range 0 .. 100000 ok 13 - Pattern [2 8 12 14 18 20] 2 in range 0 .. 100000 ok 14 - Pattern [2 6 8 12 18 20] 1 in range 0 .. 100000 ok 15 - Pattern [2] 38 in range 1000000000000000000000 .. 1000000000000000070171 ok 16 - Pattern [2 6] 1 in range 1000000000000000000000 .. 1000000000000000070171 ok 17 - Pattern [4 6] 1 in range 1000000000000000000000 .. 1000000000000000070171 ok 18 - Pattern [2 6 8] 0 in range 1000000000000000000000 .. 1000000000000000070171 ok 19 - Pattern [2 6 8 12] 0 in range 1000000000000000000000 .. 1000000000000000070171 ok 20 - Pattern [4 6 10 12] 0 in range 1000000000000000000000 .. 1000000000000000070171 ok 21 - Pattern [4 6 10 12 16] 0 in range 1000000000000000000000 .. 1000000000000000070171 ok 22 - Pattern [2 8 12 14 18 20] 0 in range 1000000000000000000000 .. 1000000000000000070171 ok 23 - Pattern [2 6 8 12 18 20] 0 in range 1000000000000000000000 .. 1000000000000000070171 ok 24 - Window around A022006 high cluster finds the cluster ok 25 - Window around A022007 high cluster finds the cluster ok 26 - Window around A022008 high cluster finds the cluster ok 27 - Window around A022009 high cluster finds the cluster ok 28 - Window around A022010 high cluster finds the cluster ok 29 - Window around A022010 high cluster finds the cluster ok 30 - Window around A022012 high cluster finds the cluster ok 31 - Window around A022013 high cluster finds the cluster ok 32 - Window around A022545 high cluster finds the cluster ok 33 - Window around A022546 high cluster finds the cluster ok 34 - Window around A022547 high cluster finds the cluster ok 35 - Window around A022548 high cluster finds the cluster ok 36 - Window around A027569 high cluster finds the cluster ok 37 - Window around A027570 high cluster finds the cluster ok 38 - Window around A213601 high cluster finds the cluster ok 39 - Window around A213645 high cluster finds the cluster ok 40 - Window around A213646 high cluster finds the cluster ok 41 - Window around A213647 high cluster finds the cluster ok t/28-rand.t .................. 1..6 ok 1 - irand values are 32-bit ok 2 - irand values are integers ok 3 - irand64 all bits on in 9 iterations ok 4 - irand64 all bits off in 9 iterations ok 5 - drand values between 0 and 1-eps ok 6 - drand supplies at least 21 bits (got 53) ok t/28-randomprime.t ........... 1..199 ok 1 - primes(2,1) should return undef ok 2 - primes(3842610774,3842611108) should return undef ok 3 - primes(0,1) should return undef ok 4 - primes(0,0) should return undef ok 5 - primes(3,2) should return undef ok 6 - primes(1294268492,1294268778) should return undef ok 7 - Prime in range 0-2 is indeed prime ok 8 - random_prime(0,2) >= 2 ok 9 - random_prime(0,2) <= 2 ok 10 - Prime in range 2-3 is indeed prime ok 11 - random_prime(2,3) >= 2 ok 12 - random_prime(2,3) <= 3 ok 13 - Prime in range 16706143-16706143 is indeed prime ok 14 - random_prime(16706143,16706143) >= 16706143 ok 15 - random_prime(16706143,16706143) <= 16706143 ok 16 - Prime in range 3-5 is indeed prime ok 17 - random_prime(3,5) >= 3 ok 18 - random_prime(3,5) <= 5 ok 19 - Prime in range 3842610773-3842611109 is indeed prime ok 20 - random_prime(3842610773,3842611109) >= 3842610773 ok 21 - random_prime(3842610773,3842611109) <= 3842611109 ok 22 - Prime in range 8-12 is indeed prime ok 23 - random_prime(8,12) >= 11 ok 24 - random_prime(8,12) <= 11 ok 25 - Prime in range 10-12 is indeed prime ok 26 - random_prime(10,12) >= 11 ok 27 - random_prime(10,12) <= 11 ok 28 - Prime in range 3842610772-3842611110 is indeed prime ok 29 - random_prime(3842610772,3842611110) >= 3842610773 ok 30 - random_prime(3842610772,3842611110) <= 3842611109 ok 31 - Prime in range 10-20 is indeed prime ok 32 - random_prime(10,20) >= 11 ok 33 - random_prime(10,20) <= 19 ok 34 - Prime in range 2-2 is indeed prime ok 35 - random_prime(2,2) >= 2 ok 36 - random_prime(2,2) <= 2 ok 37 - Prime in range 16706142-16706144 is indeed prime ok 38 - random_prime(16706142,16706144) >= 16706143 ok 39 - random_prime(16706142,16706144) <= 16706143 ok 40 - All returned values for 27767-88498 were prime ok 41 - All returned values for 27767-88498 were in the range ok 42 - All returned values for 20-100 were prime ok 43 - All returned values for 20-100 were in the range ok 44 - All returned values for 27767-88493 were prime ok 45 - All returned values for 27767-88493 were in the range ok 46 - All returned values for 27764-88493 were prime ok 47 - All returned values for 27764-88493 were in the range ok 48 - All returned values for 27764-88498 were prime ok 49 - All returned values for 27764-88498 were in the range ok 50 - All returned values for 5678-9876 were prime ok 51 - All returned values for 5678-9876 were in the range ok 52 - All returned values for 2-20 were prime ok 53 - All returned values for 2-20 were in the range ok 54 - All returned values for 3-7 were prime ok 55 - All returned values for 3-7 were in the range ok 56 - All returned values for 17051687-17051899 were prime ok 57 - All returned values for 17051687-17051899 were in the range ok 58 - All returned values for 17051688-17051898 were prime ok 59 - All returned values for 17051688-17051898 were in the range ok 60 - All returned values for 2 were prime ok 61 - All returned values for 2 were in the range ok 62 - All returned values for 3 were prime ok 63 - All returned values for 3 were in the range ok 64 - All returned values for 4 were prime ok 65 - All returned values for 4 were in the range ok 66 - All returned values for 5 were prime ok 67 - All returned values for 5 were in the range ok 68 - All returned values for 6 were prime ok 69 - All returned values for 6 were in the range ok 70 - All returned values for 7 were prime ok 71 - All returned values for 7 were in the range ok 72 - All returned values for 8 were prime ok 73 - All returned values for 8 were in the range ok 74 - All returned values for 9 were prime ok 75 - All returned values for 9 were in the range ok 76 - All returned values for 100 were prime ok 77 - All returned values for 100 were in the range ok 78 - All returned values for 1000 were prime ok 79 - All returned values for 1000 were in the range ok 80 - All returned values for 1000000 were prime ok 81 - All returned values for 1000000 were in the range ok 82 - All returned values for 4294967295 were prime ok 83 - All returned values for 4294967295 were in the range ok 84 - 1-digit random prime '2' is in range and prime ok 85 - 2-digit random prime '89' is in range and prime ok 86 - 3-digit random prime '881' is in range and prime ok 87 - 4-digit random prime '1129' is in range and prime ok 88 - 5-digit random prime '58427' is in range and prime ok 89 - 6-digit random prime '234869' is in range and prime ok 90 - 7-digit random prime '4078807' is in range and prime ok 91 - 8-digit random prime '48033103' is in range and prime ok 92 - 9-digit random prime '570961243' is in range and prime ok 93 - 10-digit random prime '3983927947' is in range and prime ok 94 - 11-digit random prime '69414050063' is in range and prime ok 95 - 12-digit random prime '641742752113' is in range and prime ok 96 - 13-digit random prime '8923430686501' is in range and prime ok 97 - 14-digit random prime '63695381638571' is in range and prime ok 98 - 15-digit random prime '777962636695703' is in range and prime ok 99 - 16-digit random prime '3138752474133797' is in range and prime ok 100 - 17-digit random prime '95970817351818659' is in range and prime ok 101 - 18-digit random prime '913648279096011299' is in range and prime ok 102 - 19-digit random prime '7166962766213918999' is in range and prime ok 103 - 20-digit random prime '50682901142109318781' is in range and prime ok 104 - 21-digit random prime '573694112778968349737' is in range and prime ok 105 - 22-digit random prime '1690104756283296222071' is in range and prime ok 106 - 23-digit random prime '69554642068076501635373' is in range and prime ok 107 - 24-digit random prime '702109512859128871746709' is in range and prime ok 108 - 25-digit random prime '1055651906747538429187723' is in range and prime ok 109 - 2-bit random random 2-bit prime '2' is in range and prime ok 110 - 3-bit random random 3-bit prime '7' is in range and prime ok 111 - 4-bit random random 4-bit prime '11' is in range and prime ok 112 - 5-bit random random 5-bit prime '31' is in range and prime ok 113 - 6-bit random random 6-bit prime '59' is in range and prime ok 114 - 10-bit random random 10-bit prime '691' is in range and prime ok 115 - 30-bit random random 30-bit prime '688836691' is in range and prime ok 116 - 31-bit random random 31-bit prime '1713769649' is in range and prime ok 117 - 32-bit random random 32-bit prime '3783629027' is in range and prime ok 118 - 33-bit random random 33-bit prime '6197073413' is in range and prime ok 119 - 34-bit random random 34-bit prime '12020568551' is in range and prime ok 120 - 62-bit random random 62-bit prime '2776548981227262151' is in range and prime ok 121 - 63-bit random random 63-bit prime '6060876621940936619' is in range and prime ok 122 - 64-bit random random 64-bit prime '13926825922337092837' is in range and prime ok 123 - 65-bit random random 65-bit prime '31116917735620297213' is in range and prime ok 124 - 66-bit random random 66-bit prime '67495421025537732739' is in range and prime ok 125 - 126-bit random random 126-bit prime '76690196703482547555813174215250478321' is in range and prime ok 126 - 127-bit random random 127-bit prime '158188753166681886194404595570151234143' is in range and prime ok 127 - 128-bit random random 128-bit prime '172511876889271413633183593654557677041' is in range and prime ok 128 - 129-bit random random 129-bit prime '663279011894001903619255368789518805769' is in range and prime ok 129 - 130-bit random random 130-bit prime '984023493967835998605485362862522894717' is in range and prime ok 130 - 16-bit random random 16-bit safe (p) prime '57899' is in range and prime ok 131 - 15-bit random random 16-bit safe (q) prime '28949' is in range and prime ok 132 - 32-bit random random 32-bit safe (p) prime '3159773963' is in range and prime ok 133 - 31-bit random random 32-bit safe (q) prime '1579886981' is in range and prime ok 134 - 33-bit random random 33-bit safe (p) prime '7363052603' is in range and prime ok 135 - 32-bit random random 33-bit safe (q) prime '3681526301' is in range and prime ok 136 - 34-bit random random 34-bit safe (p) prime '11890954463' is in range and prime ok 137 - 33-bit random random 34-bit safe (q) prime '5945477231' is in range and prime ok 138 - 64-bit random random 64-bit safe (p) prime '16236620518016855987' is in range and prime ok 139 - 63-bit random random 64-bit safe (q) prime '8118310259008427993' is in range and prime ok 140 - 128-bit random random 128-bit safe (p) prime '259348920445308652730754120705567527663' is in range and prime ok 141 - 127-bit random random 128-bit safe (q) prime '129674460222654326365377060352783763831' is in range and prime ok 142 - 255-bit random random 255-bit safe (p) prime '56134371824369073266010809016173861832090735786143085912336772955173390802807' is in range and prime ok 143 - 254-bit random random 255-bit safe (q) prime '28067185912184536633005404508086930916045367893071542956168386477586695401403' is in range and prime ok 144 - 256-bit random random 256-bit safe (p) prime '106375865525234361195632438734159811580473566871766140085044209285105801537643' is in range and prime ok 145 - 255-bit random random 256-bit safe (q) prime '53187932762617180597816219367079905790236783435883070042522104642552900768821' is in range and prime ok 146 - 512-bit random random 512-bit safe (p) prime '8264972549111700707698897806577683432607933977663825920596399477482211207676132926552323888799577855799162553783698492768278386150231174677532818027915167' is in range and prime ok 147 - 511-bit random random 512-bit safe (q) prime '4132486274555850353849448903288841716303966988831912960298199738741105603838066463276161944399788927899581276891849246384139193075115587338766409013957583' is in range and prime ok 148 - 128-bit random random 128-bit strong prime '291037188034633390107500019473401035827' is in range and prime ok 149 - 255-bit random random 255-bit strong prime '51749296155447137745818060703355858895819545471062046949872992689838992057507' is in range and prime ok 150 - 256-bit random random 256-bit strong prime '85133481624105092668416274202737386792347808457762794624392279254541223938641' is in range and prime ok 151 - 512-bit random random 512-bit strong prime '12423376817590030811970525439279588585103278142098296026747152021758206536495462269711904897690418733751934415658399087884738095525899151328734850070401827' is in range and prime ok 152 - 2-bit random random 2-bit proven (Maurer) prime '3' is in range and prime ok 153 - 2-bit random random 2-bit proven (Shawe-Taylor) prime '3' is in range and prime ok 154 - 3-bit random random 3-bit proven (Maurer) prime '5' is in range and prime ok 155 - 3-bit random random 3-bit proven (Shawe-Taylor) prime '7' is in range and prime ok 156 - 4-bit random random 4-bit proven (Maurer) prime '11' is in range and prime ok 157 - 4-bit random random 4-bit proven (Shawe-Taylor) prime '13' is in range and prime ok 158 - 5-bit random random 5-bit proven (Maurer) prime '29' is in range and prime ok 159 - 5-bit random random 5-bit proven (Shawe-Taylor) prime '19' is in range and prime ok 160 - 6-bit random random 6-bit proven (Maurer) prime '59' is in range and prime ok 161 - 6-bit random random 6-bit proven (Shawe-Taylor) prime '43' is in range and prime ok 162 - 10-bit random random 10-bit proven (Maurer) prime '947' is in range and prime ok 163 - 10-bit random random 10-bit proven (Shawe-Taylor) prime '853' is in range and prime ok 164 - 30-bit random random 30-bit proven (Maurer) prime '890701709' is in range and prime ok 165 - 30-bit random random 30-bit proven (Shawe-Taylor) prime '731908189' is in range and prime ok 166 - 31-bit random random 31-bit proven (Maurer) prime '1527031291' is in range and prime ok 167 - 31-bit random random 31-bit proven (Shawe-Taylor) prime '1650706861' is in range and prime ok 168 - 32-bit random random 32-bit proven (Maurer) prime '3704409343' is in range and prime ok 169 - 32-bit random random 32-bit proven (Shawe-Taylor) prime '2317359761' is in range and prime ok 170 - 33-bit random random 33-bit proven (Maurer) prime '5237132731' is in range and prime ok 171 - 33-bit random random 33-bit proven (Shawe-Taylor) prime '7011656719' is in range and prime ok 172 - 34-bit random random 34-bit proven (Maurer) prime '11517946087' is in range and prime ok 173 - 34-bit random random 34-bit proven (Shawe-Taylor) prime '9549623059' is in range and prime ok 174 - 62-bit random random 62-bit proven (Maurer) prime '4584001806167606687' is in range and prime ok 175 - 62-bit random random 62-bit proven (Shawe-Taylor) prime '2893581032780198779' is in range and prime ok 176 - 63-bit random random 63-bit proven (Maurer) prime '8168010272193151439' is in range and prime ok 177 - 63-bit random random 63-bit proven (Shawe-Taylor) prime '8469209688581263177' is in range and prime ok 178 - 64-bit random random 64-bit proven (Maurer) prime '11656471231713743497' is in range and prime ok 179 - 64-bit random random 64-bit proven (Shawe-Taylor) prime '17534349518851692383' is in range and prime ok 180 - 65-bit random random 65-bit proven (Maurer) prime '26542134547876979069' is in range and prime ok 181 - 65-bit random random 65-bit proven (Shawe-Taylor) prime '21568218574440632461' is in range and prime ok 182 - 66-bit random random 66-bit proven (Maurer) prime '47284140373313534597' is in range and prime ok 183 - 66-bit random random 66-bit proven (Shawe-Taylor) prime '47210681228918859007' is in range and prime ok 184 - 126-bit random random 126-bit proven (Maurer) prime '73979832296348904762715106860625643649' is in range and prime ok 185 - 126-bit random random 126-bit proven (Shawe-Taylor) prime '84020572236690147682391892284964789871' is in range and prime ok 186 - 127-bit random random 127-bit proven (Maurer) prime '164961673656741953571166991842846397641' is in range and prime ok 187 - 127-bit random random 127-bit proven (Shawe-Taylor) prime '96787076391084136778551874474683940887' is in range and prime ok 188 - 128-bit random random 128-bit proven (Maurer) prime '193057954941693050347299800091144927013' is in range and prime ok 189 - 128-bit random random 128-bit proven (Shawe-Taylor) prime '207153221753420555256533238446895239317' is in range and prime ok 190 - 129-bit random random 129-bit proven (Maurer) prime '625855330739411749263555686734754941117' is in range and prime ok 191 - 129-bit random random 129-bit proven (Shawe-Taylor) prime '651218479172328534114826609649996094433' is in range and prime ok 192 - 130-bit random random 130-bit proven (Maurer) prime '769524571092225684123165301092186112063' is in range and prime ok 193 - 130-bit random random 130-bit proven (Shawe-Taylor) prime '820910537689751651484496242396473663171' is in range and prime ok 194 - random 20-bit prime with seeded rng ok 195 - random 9-digit with seeded rng ok 196 - random Maurer prime ok 197 - random Maurer prime certificate ok 198 - random Shawe-Taylor prime ok 199 - random Shawe-Taylor prime certificate ok t/28-urandom.t ............... 1..46 ok 1 - urandomb(0) values are in range ok 2 - urandomb(0) produces all values in range ok 3 - urandomb(1) values are in range ok 4 - urandomb(1) produces all values in range ok 5 - urandomb(2) values are in range ok 6 - urandomb(2) produces all values in range ok 7 - urandomb(3) values are in range ok 8 - urandomb(3) produces all values in range ok 9 - urandomb(4) values are in range ok 10 - urandomb(4) produces all values in range ok 11 - urandomb(5) values are in range ok 12 - urandomb(5) produces all values in range ok 13 - urandomb(8) values are in range ok 14 - urandomb(8) produces all values in range ok 15 - urandomb(20) values are in range ok 16 - urandomb(31) values are in range ok 17 - urandomb(32) values are in range ok 18 - urandomb(33) values are in range ok 19 - urandomb(40) values are in range ok 20 - Random 64-bit in range ok 21 - Random 128-bit in range ok 22 - Random 255-bit in range ok 23 - Random 256-bit in range ok 24 - Random 257-bit in range ok 25 - Random 512-bit in range ok 26 - Random 1024-bit in range ok 27 - Random 2048-bit in range ok 28 - Random 4096-bit in range ok 29 - Random 8192-bit in range ok 30 - Random 73100-bit in range ok 31 - urandomr(100,110) values are in range ok 32 - urandomr(128,255) values are in range ok 33 - urandomr(16777216,33554431) values are in range ok 34 - urandomr(1000000000000000000000000,9999999999999999999999999) values are in range ok 35 - urandomr(-10,x) ok 36 - urandomr(x,-10) ok 37 - urandomr(-1,-1) ok 38 - urandomr(x,x)=x ok 39 - urandomr(x,y)=undef if x > y ok 40 - urandomm(-1) ok 41 - urandomm(0)=0 ok 42 - urandomm(1)=0 ok 43 - urandomm(1234567) values are in range ok 44 - random_bytes(4) ok 45 - random_bytes(11) ok 46 - random_bytes(0) ok t/50-factoring.t ............. 1..164 ok 1 - factor(0) ok 2 - factor(1) ok 3 - factor(2) ok 4 - factor(3) ok 5 - factor(4) ok 6 - factor(5) ok 7 - factor(6) ok 8 - factor(7) ok 9 - factor(8) ok 10 - factor(16) ok 11 - factor(30) ok 12 - factor(57) ok 13 - factor(64) ok 14 - factor(210) ok 15 - factor(377) ok 16 - factor(403) ok 17 - factor(629) ok 18 - factor(779) ok 19 - factor(808) ok 20 - factor(989) ok 21 - factor(1363) ok 22 - factor(2310) ok 23 - factor(2727) ok 24 - factor(9592) ok 25 - factor(12625) ok 26 - factor(30030) ok 27 - factor(30107) ok 28 - factor(34643) ok 29 - factor(78498) ok 30 - factor(134431) ok 31 - factor(221897) ok 32 - factor(496213) ok 33 - factor(510510) ok 34 - factor(664579) ok 35 - factor(692759) ok 36 - factor(1228867) ok 37 - factor(2214143) ok 38 - factor(2463289) ok 39 - factor(3008891) ok 40 - factor(5115953) ok 41 - factor(5761455) ok 42 - factor(6961021) ok 43 - factor(8030207) ok 44 - factor(9699690) ok 45 - factor(10486123) ok 46 - factor(10893343) ok 47 - factor(12327779) ok 48 - factor(50847534) ok 49 - factor(114256942) ok 50 - factor(223092870) ok 51 - factor(455052511) ok 52 - factor(547308031) ok 53 - factor(701737021) ok 54 - factor(999999929) ok 55 - factor(2147483647) ok 56 - factor(4118054813) ok 57 - factor(4294967293) ok 58 - factor(6469693230) ok 59 - factor(17179869172) ok 60 - factor(37607912018) ok 61 - factor(200560490130) ok 62 - factor(346065536839) ok 63 - factor(600851475143) ok 64 - factor(3204941750802) ok 65 - factor(7420738134810) ok 66 - factor(29844570422669) ok 67 - factor(279238341033925) ok 68 - factor(304250263527210) ok 69 - factor(2623557157654233) ok 70 - factor(9007199254740991) ok 71 - factor(9007199254740992) ok 72 - factor(9007199254740993) ok 73 - factor(9999986200004761) ok 74 - factor(13082761331670030) ok 75 - factor(24739954287740860) ok 76 - factor(99999989237606677) ok 77 - factor(614889782588491410) ok 78 - factor(999999866000004473) ok 79 - factor(3369738766071892021) ok 80 - factor(10023859281455311421) ok 81 - factor(18446744073709551611) ok 82 - factor(1234567890123493^2) ok 83 - factor 7^7 ok 84 - p-1 factors 22095311209999409685885162322219 ok 85 - p+1 factors 22095311209999409685885162322219 ok 86 - ECM factors p8*p60 ok 87 - QS factors 22095311209999409685885162322219 ok 88 - HOLF factors poorly formed 222-digit semiprime ok 89 - p-1 factors 23113042053749572861737011 in stage 2 ok 90 - prho_factor(0) ok 91 - prho_factor(1) ok 92 - prho_factor(2) ok 93 - prho_factor(13) ok 94 - prho_factor(403) ok 95 - prho_factor(53936983) ok 96 - prho_factor(1754012594703269855671) ok 97 - pbrent_factor(0) ok 98 - pbrent_factor(1) ok 99 - pbrent_factor(2) ok 100 - pbrent_factor(13) ok 101 - pbrent_factor(403) ok 102 - pbrent_factor(53936983) ok 103 - pbrent_factor(1754012594703269855671) ok 104 - pminus1_factor(0) ok 105 - pminus1_factor(1) ok 106 - pminus1_factor(2) ok 107 - pminus1_factor(13) ok 108 - pminus1_factor(403) ok 109 - pminus1_factor(53936983) ok 110 - pminus1_factor(1754012594703269855671) ok 111 - pplus1_factor(0) ok 112 - pplus1_factor(1) ok 113 - pplus1_factor(2) ok 114 - pplus1_factor(13) ok 115 - pplus1_factor(403) ok 116 - pplus1_factor(53936983) ok 117 - pplus1_factor(1754012594703269855671) ok 118 - holf_factor(0) ok 119 - holf_factor(1) ok 120 - holf_factor(2) ok 121 - holf_factor(13) ok 122 - holf_factor(403) ok 123 - holf_factor(53936983) ok 124 - holf_factor(1754012594703269855671) ok 125 - squfof_factor(0) ok 126 - squfof_factor(1) ok 127 - squfof_factor(2) ok 128 - squfof_factor(13) ok 129 - squfof_factor(403) ok 130 - squfof_factor(53936983) ok 131 - squfof_factor(1754012594703269855671) ok 132 - ecm_factor(0) ok 133 - ecm_factor(1) ok 134 - ecm_factor(2) ok 135 - ecm_factor(13) ok 136 - ecm_factor(403) ok 137 - ecm_factor(53936983) ok 138 - ecm_factor(1754012594703269855671) ok 139 - scalar factor(0) should be 1 ok 140 - scalar factor(1) should be 1 ok 141 - scalar factor(3) should be 1 ok 142 - scalar factor(4) should be 2 ok 143 - scalar factor(5) should be 1 ok 144 - scalar factor(6) should be 2 ok 145 - scalar factor(30107) should be 4 ok 146 - scalar factor(174636000) should be 15 ok 147 - sigma_{0..3}(4) ok 148 - sigma_{0..3}(7) ok 149 - sigma_{0..3}(23948) ok 150 - sigma_{0..3}(1) ok 151 - sigma_{0..3}(2) ok 152 - sigma_{0..3}(3) ok 153 - sigma_{0..3}(2394823486) ok 154 - sigma_{0..3}(8) ok 155 - sigma_{0..3}(6) ok 156 - sigma_{0..3}(5) ok 157 - sigma_{0..3}(46) ok 158 - sigma_{0..3}(189) ok 159 - sigma_{0..3}(0) ok 160 - divisors(1) in list context ok 161 - divisors(9283540924) ok 162 - scalar divisors(9283540924) = 12 # p-1 trying 22095311209999409685885162322219 (B1=5000000 B2=50000000) # p-1: 3916587618943361 ok 163 - is_semiprime for non-semiprimes ok 164 - is_semiprime for semiprimes ok t/90-release-perlcritic.t .... skipped: these tests are for release candidate testing t/91-release-pod-syntax.t .... skipped: these tests are for release candidate testing t/92-release-pod-coverage.t .. skipped: these tests are for release candidate testing t/93-release-spelling.t ...... skipped: these tests are for release candidate testing All tests successful. Files=37, Tests=3263, 10 wallclock secs ( 0.38 usr 0.12 sys + 8.84 cusr 0.76 csys = 10.10 CPU) Result: PASS make[1]: Leaving directory '/build/libmath-prime-util-gmp-perl-0.52' create-stamp debian/debhelper-build-stamp dh_prep dh_auto_install --destdir=debian/libmath-prime-util-gmp-perl/ make -j15 install DESTDIR=/build/libmath-prime-util-gmp-perl-0.52/debian/libmath-prime-util-gmp-perl AM_UPDATE_INFO_DIR=no PREFIX=/usr make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.52' "/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- GMP.bs blib/arch/auto/Math/Prime/Util/GMP/GMP.bs 644 Manifying 1 pod document Files found in blib/arch: installing files in blib/lib into architecture dependent library tree Installing /build/libmath-prime-util-gmp-perl-0.52/debian/libmath-prime-util-gmp-perl/usr/lib/x86_64-linux-gnu/perl5/5.36/auto/Math/Prime/Util/GMP/GMP.so Installing /build/libmath-prime-util-gmp-perl-0.52/debian/libmath-prime-util-gmp-perl/usr/lib/x86_64-linux-gnu/perl5/5.36/Math/Prime/Util/GMP.pm Installing /build/libmath-prime-util-gmp-perl-0.52/debian/libmath-prime-util-gmp-perl/usr/share/man/man3/Math::Prime::Util::GMP.3pm make[1]: Leaving directory '/build/libmath-prime-util-gmp-perl-0.52' dh_installdocs dh_installchangelogs debian/rules override_dh_installexamples make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.52' dh_installexamples find /build/libmath-prime-util-gmp-perl-0.52/debian/libmath-prime-util-gmp-perl/usr/share/doc/libmath-prime-util-gmp-perl/examples -type f -name "*.pl" -print0 | \ xargs -r0 sed -i -e '1s|^#!/usr/bin/env perl|#!/usr/bin/perl|' make[1]: Leaving directory '/build/libmath-prime-util-gmp-perl-0.52' dh_installman dh_perl dh_link dh_strip_nondeterminism dh_compress dh_fixperms dh_missing dh_dwz -a dh_strip -a dh_makeshlibs -a dh_shlibdeps -a dh_installdeb dh_gencontrol dh_md5sums dh_builddeb dpkg-deb: building package 'libmath-prime-util-gmp-perl' in '../libmath-prime-util-gmp-perl_0.52-2_amd64.deb'. dpkg-deb: building package 'libmath-prime-util-gmp-perl-dbgsym' in '../libmath-prime-util-gmp-perl-dbgsym_0.52-2_amd64.deb'. dpkg-genbuildinfo --build=binary -O../libmath-prime-util-gmp-perl_0.52-2_amd64.buildinfo dpkg-genchanges --build=binary -O../libmath-prime-util-gmp-perl_0.52-2_amd64.changes dpkg-genchanges: info: binary-only upload (no source code included) dpkg-source --after-build . dpkg-buildpackage: info: binary-only upload (no source included) dpkg-genchanges: info: not including original source code in upload I: copying local configuration I: unmounting dev/ptmx filesystem I: unmounting dev/pts filesystem I: unmounting dev/shm filesystem I: unmounting proc filesystem I: unmounting sys filesystem I: cleaning the build env I: removing directory /srv/workspace/pbuilder/4193625 and its subdirectories I: Current time: Mon Apr 24 19:08:14 -12 2023 I: pbuilder-time-stamp: 1682406494