Diff of the two buildlogs: -- --- b1/build.log 2024-12-18 14:06:39.499655991 +0000 +++ b2/build.log 2024-12-18 14:26:38.429145239 +0000 @@ -1,6 +1,6 @@ I: pbuilder: network access will be disabled during build -I: Current time: Wed Dec 18 01:58:53 -12 2024 -I: pbuilder-time-stamp: 1734530333 +I: Current time: Thu Dec 19 04:06:55 +14 2024 +I: pbuilder-time-stamp: 1734530815 I: Building the build Environment I: extracting base tarball [/var/cache/pbuilder/unstable-reproducible-base.tgz] I: copying local configuration @@ -25,52 +25,84 @@ dpkg-source: info: unpacking libmath-prime-util-perl_0.73-2.debian.tar.xz I: Not using root during the build. I: Installing the build-deps -I: user script /srv/workspace/pbuilder/25940/tmp/hooks/D02_print_environment starting +I: user script /srv/workspace/pbuilder/12544/tmp/hooks/D01_modify_environment starting +debug: Running on ff64a. +I: Changing host+domainname to test build reproducibility +I: Adding a custom variable just for the fun of it... +I: Changing /bin/sh to bash +'/bin/sh' -> '/bin/bash' +lrwxrwxrwx 1 root root 9 Dec 18 14:08 /bin/sh -> /bin/bash +I: Setting pbuilder2's login shell to /bin/bash +I: Setting pbuilder2's GECOS to second user,second room,second work-phone,second home-phone,second other +I: user script /srv/workspace/pbuilder/12544/tmp/hooks/D01_modify_environment finished +I: user script /srv/workspace/pbuilder/12544/tmp/hooks/D02_print_environment starting I: set - BUILDDIR='/build/reproducible-path' - BUILDUSERGECOS='first user,first room,first work-phone,first home-phone,first other' - BUILDUSERNAME='pbuilder1' - BUILD_ARCH='armhf' - DEBIAN_FRONTEND='noninteractive' - DEB_BUILD_OPTIONS='buildinfo=+all reproducible=+all parallel=3 ' - DISTRIBUTION='unstable' - HOME='/root' - HOST_ARCH='armhf' + BASH=/bin/sh + BASHOPTS=checkwinsize:cmdhist:complete_fullquote:extquote:force_fignore:globasciiranges:globskipdots:hostcomplete:interactive_comments:patsub_replacement:progcomp:promptvars:sourcepath + BASH_ALIASES=() + BASH_ARGC=() + BASH_ARGV=() + BASH_CMDS=() + BASH_LINENO=([0]="12" [1]="0") + BASH_LOADABLES_PATH=/usr/local/lib/bash:/usr/lib/bash:/opt/local/lib/bash:/usr/pkg/lib/bash:/opt/pkg/lib/bash:. + BASH_SOURCE=([0]="/tmp/hooks/D02_print_environment" [1]="/tmp/hooks/D02_print_environment") + BASH_VERSINFO=([0]="5" [1]="2" [2]="37" [3]="1" [4]="release" [5]="arm-unknown-linux-gnueabihf") + BASH_VERSION='5.2.37(1)-release' + BUILDDIR=/build/reproducible-path + BUILDUSERGECOS='second user,second room,second work-phone,second home-phone,second other' + BUILDUSERNAME=pbuilder2 + BUILD_ARCH=armhf + DEBIAN_FRONTEND=noninteractive + DEB_BUILD_OPTIONS='buildinfo=+all reproducible=+all parallel=6 ' + DIRSTACK=() + DISTRIBUTION=unstable + EUID=0 + FUNCNAME=([0]="Echo" [1]="main") + GROUPS=() + HOME=/root + HOSTNAME=i-capture-the-hostname + HOSTTYPE=arm + HOST_ARCH=armhf IFS=' ' - INVOCATION_ID='8c2f319df4b94646b5fb6b0ec52a964d' - LANG='C' - LANGUAGE='en_US:en' - LC_ALL='C' - MAIL='/var/mail/root' - OPTIND='1' - PATH='/usr/sbin:/usr/bin:/sbin:/bin:/usr/games' - PBCURRENTCOMMANDLINEOPERATION='build' - PBUILDER_OPERATION='build' - PBUILDER_PKGDATADIR='/usr/share/pbuilder' - PBUILDER_PKGLIBDIR='/usr/lib/pbuilder' - PBUILDER_SYSCONFDIR='/etc' - PPID='25940' - PS1='# ' - PS2='> ' + INVOCATION_ID=a783bb38de544eee937779672c11235c + LANG=C + LANGUAGE=it_CH:it + LC_ALL=C + MACHTYPE=arm-unknown-linux-gnueabihf + MAIL=/var/mail/root + OPTERR=1 + OPTIND=1 + OSTYPE=linux-gnueabihf + PATH=/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/i/capture/the/path + PBCURRENTCOMMANDLINEOPERATION=build + PBUILDER_OPERATION=build + PBUILDER_PKGDATADIR=/usr/share/pbuilder + PBUILDER_PKGLIBDIR=/usr/lib/pbuilder + PBUILDER_SYSCONFDIR=/etc + PIPESTATUS=([0]="0") + POSIXLY_CORRECT=y + PPID=12544 PS4='+ ' - PWD='/' - SHELL='/bin/bash' - SHLVL='2' - SUDO_COMMAND='/usr/bin/timeout -k 18.1h 18h /usr/bin/ionice -c 3 /usr/bin/nice /usr/sbin/pbuilder --build --configfile /srv/reproducible-results/rbuild-debian/r-b-build.mkr0f2xC/pbuilderrc_RNFr --distribution unstable --hookdir /etc/pbuilder/first-build-hooks --debbuildopts -b --basetgz /var/cache/pbuilder/unstable-reproducible-base.tgz --buildresult /srv/reproducible-results/rbuild-debian/r-b-build.mkr0f2xC/b1 --logfile b1/build.log libmath-prime-util-perl_0.73-2.dsc' - SUDO_GID='113' - SUDO_UID='107' - SUDO_USER='jenkins' - TERM='unknown' - TZ='/usr/share/zoneinfo/Etc/GMT+12' - USER='root' - _='/usr/bin/systemd-run' - http_proxy='http://10.0.0.15:3142/' + PWD=/ + SHELL=/bin/bash + SHELLOPTS=braceexpand:errexit:hashall:interactive-comments:posix + SHLVL=3 + SUDO_COMMAND='/usr/bin/timeout -k 24.1h 24h /usr/bin/ionice -c 3 /usr/bin/nice -n 11 /usr/bin/unshare --uts -- /usr/sbin/pbuilder --build --configfile /srv/reproducible-results/rbuild-debian/r-b-build.mkr0f2xC/pbuilderrc_rTOw --distribution unstable --hookdir /etc/pbuilder/rebuild-hooks --debbuildopts -b --basetgz /var/cache/pbuilder/unstable-reproducible-base.tgz --buildresult /srv/reproducible-results/rbuild-debian/r-b-build.mkr0f2xC/b2 --logfile b2/build.log libmath-prime-util-perl_0.73-2.dsc' + SUDO_GID=114 + SUDO_UID=109 + SUDO_USER=jenkins + TERM=unknown + TZ=/usr/share/zoneinfo/Etc/GMT-14 + UID=0 + USER=root + _='I: set' + http_proxy=http://10.0.0.15:3142/ I: uname -a - Linux cbxi4a 6.1.0-23-armmp #1 SMP Debian 6.1.99-1 (2024-07-15) armv7l GNU/Linux + Linux i-capture-the-hostname 6.1.0-28-arm64 #1 SMP Debian 6.1.119-1 (2024-11-22) aarch64 GNU/Linux I: ls -l /bin lrwxrwxrwx 1 root root 7 Nov 22 14:40 /bin -> usr/bin -I: user script /srv/workspace/pbuilder/25940/tmp/hooks/D02_print_environment finished +I: user script /srv/workspace/pbuilder/12544/tmp/hooks/D02_print_environment finished -> Attempting to satisfy build-dependencies -> Creating pbuilder-satisfydepends-dummy package Package: pbuilder-satisfydepends-dummy @@ -153,7 +185,7 @@ Get: 34 http://deb.debian.org/debian unstable/main armhf libperl-dev armhf 5.40.0-8 [998 kB] Get: 35 http://deb.debian.org/debian unstable/main armhf libsub-uplevel-perl all 0.2800-3 [14.0 kB] Get: 36 http://deb.debian.org/debian unstable/main armhf libtest-warn-perl all 0.37-2 [14.5 kB] -Fetched 20.6 MB in 2s (13.0 MB/s) +Fetched 20.6 MB in 3s (5965 kB/s) debconf: delaying package configuration, since apt-utils is not installed Selecting previously unselected package liblocale-gettext-perl. (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 19680 files and directories currently installed.) @@ -312,7 +344,11 @@ Building tag database... -> Finished parsing the build-deps I: Building the package -I: Running cd /build/reproducible-path/libmath-prime-util-perl-0.73/ && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games" HOME="/nonexistent/first-build" dpkg-buildpackage -us -uc -b && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games" HOME="/nonexistent/first-build" dpkg-genchanges -S > ../libmath-prime-util-perl_0.73-2_source.changes +I: user script /srv/workspace/pbuilder/12544/tmp/hooks/A99_set_merged_usr starting +Not re-configuring usrmerge for unstable +I: user script /srv/workspace/pbuilder/12544/tmp/hooks/A99_set_merged_usr finished +hostname: Name or service not known +I: Running cd /build/reproducible-path/libmath-prime-util-perl-0.73/ && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/i/capture/the/path" HOME="/nonexistent/second-build" dpkg-buildpackage -us -uc -b && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/i/capture/the/path" HOME="/nonexistent/second-build" dpkg-genchanges -S > ../libmath-prime-util-perl_0.73-2_source.changes dpkg-buildpackage: info: source package libmath-prime-util-perl dpkg-buildpackage: info: source version 0.73-2 dpkg-buildpackage: info: source distribution unstable @@ -347,27 +383,30 @@ Writing MYMETA.yml and MYMETA.json make[1]: Leaving directory '/build/reproducible-path/libmath-prime-util-perl-0.73' dh_auto_build - make -j3 + make -j6 make[1]: Entering directory '/build/reproducible-path/libmath-prime-util-perl-0.73' Running Mkbootstrap for Util () arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" cache.c -chmod 644 "Util.bs" arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" factor.c +arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" primality.c +arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" aks.c +chmod 644 "Util.bs" +arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" lehmer.c +cp lib/Math/Prime/Util/MemFree.pm blib/lib/Math/Prime/Util/MemFree.pm +cp lib/Math/Prime/Util/PP.pm blib/lib/Math/Prime/Util/PP.pm cp lib/Math/Prime/Util/ChaCha.pm blib/lib/Math/Prime/Util/ChaCha.pm +cp lib/Math/Prime/Util/ECProjectivePoint.pm blib/lib/Math/Prime/Util/ECProjectivePoint.pm +cp lib/Math/Prime/Util/PrimeIterator.pm blib/lib/Math/Prime/Util/PrimeIterator.pm cp lib/Math/Prime/Util.pm blib/lib/Math/Prime/Util.pm -cp lib/Math/Prime/Util/PrimalityProving.pm blib/lib/Math/Prime/Util/PrimalityProving.pm +cp lib/Math/Prime/Util/PPFE.pm blib/lib/Math/Prime/Util/PPFE.pm cp lib/Math/Prime/Util/RandomPrimes.pm blib/lib/Math/Prime/Util/RandomPrimes.pm -cp lib/Math/Prime/Util/ECAffinePoint.pm blib/lib/Math/Prime/Util/ECAffinePoint.pm cp lib/Math/Prime/Util/PrimeArray.pm blib/lib/Math/Prime/Util/PrimeArray.pm -cp lib/ntheory.pm blib/lib/ntheory.pm -cp lib/Math/Prime/Util/ECProjectivePoint.pm blib/lib/Math/Prime/Util/ECProjectivePoint.pm -cp lib/Math/Prime/Util/PP.pm blib/lib/Math/Prime/Util/PP.pm -cp lib/Math/Prime/Util/MemFree.pm blib/lib/Math/Prime/Util/MemFree.pm -cp lib/Math/Prime/Util/ZetaBigFloat.pm blib/lib/Math/Prime/Util/ZetaBigFloat.pm -cp lib/Math/Prime/Util/PrimeIterator.pm blib/lib/Math/Prime/Util/PrimeIterator.pm cp lib/Math/Prime/Util/Entropy.pm blib/lib/Math/Prime/Util/Entropy.pm -cp lib/Math/Prime/Util/PPFE.pm blib/lib/Math/Prime/Util/PPFE.pm -arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" primality.c +cp lib/Math/Prime/Util/ZetaBigFloat.pm blib/lib/Math/Prime/Util/ZetaBigFloat.pm +cp lib/ntheory.pm blib/lib/ntheory.pm +cp lib/Math/Prime/Util/ECAffinePoint.pm blib/lib/Math/Prime/Util/ECAffinePoint.pm +cp lib/Math/Prime/Util/PrimalityProving.pm blib/lib/Math/Prime/Util/PrimalityProving.pm +arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" lmo.c factor.c: In function 'factor_one': factor.c:210:35: warning: format '%lu' expects argument of type 'long unsigned int', but argument 2 has type 'UV' {aka 'long long unsigned int'} [-Wformat=] 210 | croak("factor_one failed on %lu\n", n); @@ -376,9 +415,6 @@ | | UV {aka long long unsigned int} | long unsigned int | %llu -arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" aks.c -arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" lehmer.c -arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" lmo.c arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" random_prime.c arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" sieve.c arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" sieve_cluster.c @@ -390,8 +426,8 @@ arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" csprng.c arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" chacha.c "/usr/bin/perl" "/usr/share/perl/5.40/ExtUtils/xsubpp" -typemap '/usr/share/perl/5.40/ExtUtils/typemap' XS.xs > XS.xsc -"/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- Util.bs blib/arch/auto/Math/Prime/Util/Util.bs 644 mv XS.xsc XS.c +"/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- Util.bs blib/arch/auto/Math/Prime/Util/Util.bs 644 arm-linux-gnueabihf-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -D_TIME_BITS=64 -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -D_TIME_BITS=64 -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.73\" -DXS_VERSION=\"0.73\" -fPIC "-I/usr/lib/arm-linux-gnueabihf/perl/5.40/CORE" XS.c rm -f blib/arch/auto/Math/Prime/Util/Util.so arm-linux-gnueabihf-gcc -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/libmath-prime-util-perl-0.73=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -Wl,-z,relro -Wl,-z,now -shared -L/usr/local/lib -fstack-protector-strong cache.o factor.o primality.o aks.o lehmer.o lmo.o random_prime.o sieve.o sieve_cluster.o ramanujan_primes.o semi_primes.o prime_nth_count.o util.o entropy.o csprng.o chacha.o XS.o -o blib/arch/auto/Math/Prime/Util/Util.so \ @@ -405,7 +441,7 @@ Manifying 14 pod documents make[1]: Leaving directory '/build/reproducible-path/libmath-prime-util-perl-0.73' dh_auto_test - make -j3 test TEST_VERBOSE=1 + make -j6 test TEST_VERBOSE=1 make[1]: Entering directory '/build/reproducible-path/libmath-prime-util-perl-0.73' "/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- Util.bs blib/arch/auto/Math/Prime/Util/Util.bs 644 PERL_DL_NONLAZY=1 "/usr/bin/perl" "-MExtUtils::Command::MM" "-MTest::Harness" "-e" "undef *Test::Harness::Switches; test_harness(1, 'blib/lib', 'blib/arch')" t/*.t @@ -463,14 +499,14 @@ ok 15 - next_prime(-4) ok 16 - next_prime(15.6) ok 17 - next_prime(NaN) -ok 18 - Correct: next_prime(9) -ok 19 - Correct: next_prime(0004) -ok 20 - Correct: next_prime(+4) -ok 21 - Correct: next_prime(+0004) -ok 22 - Correct: next_prime(4) +ok 18 - Correct: next_prime(0004) +ok 19 - Correct: next_prime(+4) +ok 20 - Correct: next_prime(+0004) +ok 21 - Correct: next_prime(4) +ok 22 - Correct: next_prime(100000000) ok 23 - Correct: next_prime(5) ok 24 - Correct: next_prime(10000000000000000000000012) -ok 25 - Correct: next_prime(100000000) +ok 25 - Correct: next_prime(9) ok 26 - next_prime( infinity ) ok 27 - next_prime( nan ) [nan = 'NaN'] ok 28 - next_prime('111...111x') @@ -621,15 +657,15 @@ ok 12 - Pattern [4 6 10 12 16] 5 in range 0 .. 100000 ok 13 - Pattern [2 8 12 14 18 20] 2 in range 0 .. 100000 ok 14 - Pattern [2 6 8 12 18 20] 1 in range 0 .. 100000 -ok 15 - Pattern [2] 10 in range 1000000000000000000000 .. 1000000000000000013350 -ok 16 - Pattern [2 6] 0 in range 1000000000000000000000 .. 1000000000000000013350 -ok 17 - Pattern [4 6] 0 in range 1000000000000000000000 .. 1000000000000000013350 -ok 18 - Pattern [2 6 8] 0 in range 1000000000000000000000 .. 1000000000000000013350 -ok 19 - Pattern [2 6 8 12] 0 in range 1000000000000000000000 .. 1000000000000000013350 -ok 20 - Pattern [4 6 10 12] 0 in range 1000000000000000000000 .. 1000000000000000013350 -ok 21 - Pattern [4 6 10 12 16] 0 in range 1000000000000000000000 .. 1000000000000000013350 -ok 22 - Pattern [2 8 12 14 18 20] 0 in range 1000000000000000000000 .. 1000000000000000013350 -ok 23 - Pattern [2 6 8 12 18 20] 0 in range 1000000000000000000000 .. 1000000000000000013350 +ok 15 - Pattern [2] 35 in range 1000000000000000000000 .. 1000000000000000063020 +ok 16 - Pattern [2 6] 1 in range 1000000000000000000000 .. 1000000000000000063020 +ok 17 - Pattern [4 6] 1 in range 1000000000000000000000 .. 1000000000000000063020 +ok 18 - Pattern [2 6 8] 0 in range 1000000000000000000000 .. 1000000000000000063020 +ok 19 - Pattern [2 6 8 12] 0 in range 1000000000000000000000 .. 1000000000000000063020 +ok 20 - Pattern [4 6 10 12] 0 in range 1000000000000000000000 .. 1000000000000000063020 +ok 21 - Pattern [4 6 10 12 16] 0 in range 1000000000000000000000 .. 1000000000000000063020 +ok 22 - Pattern [2 8 12 14 18 20] 0 in range 1000000000000000000000 .. 1000000000000000063020 +ok 23 - Pattern [2 6 8 12 18 20] 0 in range 1000000000000000000000 .. 1000000000000000063020 ok 24 - Window around A022006 high cluster finds the cluster ok 25 - Window around A022007 high cluster finds the cluster ok 26 - Window around A022008 high cluster finds the cluster @@ -666,92 +702,92 @@ ok 13 - primes(inf) ok 14 - primes(2,inf) ok 15 - primes(inf,inf) -ok 16 - primes(20) should return [2 3 5 7 11 13 17 19] +ok 16 - primes(2) should return [2] ok 17 - primes(19) should return [2 3 5 7 11 13 17 19] -ok 18 - primes(4) should return [2 3] -ok 19 - primes(18) should return [2 3 5 7 11 13 17] -ok 20 - primes(3) should return [2 3] -ok 21 - primes(6) should return [2 3 5] -ok 22 - primes(2) should return [2] -ok 23 - primes(11) should return [2 3 5 7 11] -ok 24 - primes(0) should return [] -ok 25 - primes(7) should return [2 3 5 7] -ok 26 - primes(5) should return [2 3 5] -ok 27 - primes(1) should return [] +ok 18 - primes(20) should return [2 3 5 7 11 13 17 19] +ok 19 - primes(0) should return [] +ok 20 - primes(11) should return [2 3 5 7 11] +ok 21 - primes(3) should return [2 3] +ok 22 - primes(18) should return [2 3 5 7 11 13 17] +ok 23 - primes(4) should return [2 3] +ok 24 - primes(1) should return [] +ok 25 - primes(5) should return [2 3 5] +ok 26 - primes(7) should return [2 3 5 7] +ok 27 - primes(6) should return [2 3 5] ok 28 - Primes between 0 and 3572 -ok 29 - primes(4,8) should return [5 7] -ok 30 - primes(2010733,2010881) should return [2010733 2010881] -ok 31 - primes(3089,3163) should return [3089 3109 3119 3121 3137 3163] -ok 32 - primes(3,7) should return [3 5 7] -ok 33 - primes(3842610773,3842611109) should return [3842610773 3842611109] -ok 34 - primes(3088,3164) should return [3089 3109 3119 3121 3137 3163] -ok 35 - primes(20,2) should return [] -ok 36 - primes(3,3) should return [3] -ok 37 - primes(30,70) should return [31 37 41 43 47 53 59 61 67] -ok 38 - primes(2,3) should return [2 3] -ok 39 - primes(2010734,2010880) should return [] -ok 40 - primes(70,30) should return [] -ok 41 - primes(2,5) should return [2 3 5] -ok 42 - primes(3,6) should return [3 5] -ok 43 - primes(3090,3162) should return [3109 3119 3121 3137] -ok 44 - primes(2,20) should return [2 3 5 7 11 13 17 19] -ok 45 - primes(3842610774,3842611108) should return [] -ok 46 - primes(2,2) should return [2] -ok 47 - primes(3,9) should return [3 5 7] +ok 29 - primes(2010733,2010881) should return [2010733 2010881] +ok 30 - primes(3842610773,3842611109) should return [3842610773 3842611109] +ok 31 - primes(3090,3162) should return [3109 3119 3121 3137] +ok 32 - primes(20,2) should return [] +ok 33 - primes(3,6) should return [3 5] +ok 34 - primes(3089,3163) should return [3089 3109 3119 3121 3137 3163] +ok 35 - primes(3842610774,3842611108) should return [] +ok 36 - primes(3,9) should return [3 5 7] +ok 37 - primes(3,3) should return [3] +ok 38 - primes(30,70) should return [31 37 41 43 47 53 59 61 67] +ok 39 - primes(70,30) should return [] +ok 40 - primes(2,20) should return [2 3 5 7 11 13 17 19] +ok 41 - primes(2,2) should return [2] +ok 42 - primes(2010734,2010880) should return [] +ok 43 - primes(4,8) should return [5 7] +ok 44 - primes(2,5) should return [2 3 5] +ok 45 - primes(3,7) should return [3 5 7] +ok 46 - primes(2,3) should return [2 3] +ok 47 - primes(3088,3164) should return [3089 3109 3119 3121 3137 3163] ok 48 - Primes between 1_693_182_318_746_371 and 1_693_182_318_747_671 ok 49 - count primes within a range -ok 50 - trial(0, 3572) -ok 51 - trial(2, 20) -ok 52 - trial(30, 70) -ok 53 - trial(30, 70) -ok 54 - trial(20, 2) -ok 55 - trial(1, 1) -ok 56 - trial(2, 2) -ok 57 - trial(3, 3) -ok 58 - trial Primegap 21 inclusive -ok 59 - trial Primegap 21 exclusive -ok 60 - trial(3088, 3164) -ok 61 - trial(3089, 3163) -ok 62 - trial(3090, 3162) -ok 63 - segment(0, 3572) -ok 64 - segment(2, 20) -ok 65 - segment(30, 70) -ok 66 - segment(30, 70) -ok 67 - segment(20, 2) -ok 68 - segment(1, 1) -ok 69 - segment(2, 2) -ok 70 - segment(3, 3) -ok 71 - segment Primegap 21 inclusive -ok 72 - segment Primegap 21 exclusive -ok 73 - segment(3088, 3164) -ok 74 - segment(3089, 3163) -ok 75 - segment(3090, 3162) -ok 76 - erat(0, 3572) -ok 77 - erat(2, 20) -ok 78 - erat(30, 70) -ok 79 - erat(30, 70) -ok 80 - erat(20, 2) -ok 81 - erat(1, 1) -ok 82 - erat(2, 2) -ok 83 - erat(3, 3) -ok 84 - erat Primegap 21 inclusive -ok 85 - erat Primegap 21 exclusive -ok 86 - erat(3088, 3164) -ok 87 - erat(3089, 3163) -ok 88 - erat(3090, 3162) -ok 89 - primes(0, 3572) -ok 90 - primes(2, 20) -ok 91 - primes(30, 70) -ok 92 - primes(30, 70) -ok 93 - primes(20, 2) -ok 94 - primes(1, 1) -ok 95 - primes(2, 2) -ok 96 - primes(3, 3) -ok 97 - primes Primegap 21 inclusive -ok 98 - primes Primegap 21 exclusive -ok 99 - primes(3088, 3164) -ok 100 - primes(3089, 3163) -ok 101 - primes(3090, 3162) +ok 50 - primes(0, 3572) +ok 51 - primes(2, 20) +ok 52 - primes(30, 70) +ok 53 - primes(30, 70) +ok 54 - primes(20, 2) +ok 55 - primes(1, 1) +ok 56 - primes(2, 2) +ok 57 - primes(3, 3) +ok 58 - primes Primegap 21 inclusive +ok 59 - primes Primegap 21 exclusive +ok 60 - primes(3088, 3164) +ok 61 - primes(3089, 3163) +ok 62 - primes(3090, 3162) +ok 63 - trial(0, 3572) +ok 64 - trial(2, 20) +ok 65 - trial(30, 70) +ok 66 - trial(30, 70) +ok 67 - trial(20, 2) +ok 68 - trial(1, 1) +ok 69 - trial(2, 2) +ok 70 - trial(3, 3) +ok 71 - trial Primegap 21 inclusive +ok 72 - trial Primegap 21 exclusive +ok 73 - trial(3088, 3164) +ok 74 - trial(3089, 3163) +ok 75 - trial(3090, 3162) +ok 76 - segment(0, 3572) +ok 77 - segment(2, 20) +ok 78 - segment(30, 70) +ok 79 - segment(30, 70) +ok 80 - segment(20, 2) +ok 81 - segment(1, 1) +ok 82 - segment(2, 2) +ok 83 - segment(3, 3) +ok 84 - segment Primegap 21 inclusive +ok 85 - segment Primegap 21 exclusive +ok 86 - segment(3088, 3164) +ok 87 - segment(3089, 3163) +ok 88 - segment(3090, 3162) +ok 89 - erat(0, 3572) +ok 90 - erat(2, 20) +ok 91 - erat(30, 70) +ok 92 - erat(30, 70) +ok 93 - erat(20, 2) +ok 94 - erat(1, 1) +ok 95 - erat(2, 2) +ok 96 - erat(3, 3) +ok 97 - erat Primegap 21 inclusive +ok 98 - erat Primegap 21 exclusive +ok 99 - erat(3088, 3164) +ok 100 - erat(3089, 3163) +ok 101 - erat(3090, 3162) ok 102 - sieve(0, 3572) ok 103 - sieve(2, 20) ok 104 - sieve(30, 70) @@ -779,20 +815,20 @@ t/11-ramanujanprimes.t ....... 1..25 ok 1 - ramanujan_primes(983) -ok 2 - ramanujan_primes(11,18) should return [11 17] -ok 3 - ramanujan_primes(10,11) should return [11] -ok 4 - ramanujan_primes(3,11) should return [11] -ok 5 - ramanujan_primes(11,20) should return [11 17] -ok 6 - ramanujan_primes(11,17) should return [11 17] -ok 7 - ramanujan_primes(10000,10100) should return [10061 10067 10079 10091 10093] -ok 8 - ramanujan_primes(11,16) should return [11] -ok 9 - ramanujan_primes(11,19) should return [11 17] -ok 10 - ramanujan_primes(182,226) should return [] -ok 11 - ramanujan_primes(0,11) should return [2 11] -ok 12 - ramanujan_primes(599,599) should return [599] -ok 13 - ramanujan_primes(11,29) should return [11 17 29] -ok 14 - ramanujan_primes(2,11) should return [2 11] -ok 15 - ramanujan_primes(1,11) should return [2 11] +ok 2 - ramanujan_primes(2,11) should return [2 11] +ok 3 - ramanujan_primes(11,19) should return [11 17] +ok 4 - ramanujan_primes(11,29) should return [11 17 29] +ok 5 - ramanujan_primes(182,226) should return [] +ok 6 - ramanujan_primes(599,599) should return [599] +ok 7 - ramanujan_primes(11,16) should return [11] +ok 8 - ramanujan_primes(11,17) should return [11 17] +ok 9 - ramanujan_primes(0,11) should return [2 11] +ok 10 - ramanujan_primes(10000,10100) should return [10061 10067 10079 10091 10093] +ok 11 - ramanujan_primes(10,11) should return [11] +ok 12 - ramanujan_primes(11,18) should return [11 17] +ok 13 - ramanujan_primes(1,11) should return [2 11] +ok 14 - ramanujan_primes(11,20) should return [11 17] +ok 15 - ramanujan_primes(3,11) should return [11] ok 16 - nth_ramanujan_prime(1 .. 72) ok 17 - The 123,456th Ramanujan prime is 3657037 ok 18 - is_ramanujan_prime( 0 .. 72) @@ -808,76 +844,76 @@ 1..33 ok 1 - semi_primes(95) ok 2 - nth_semiprime for small values -ok 3 - semi_primes(184279943,184280038) should return [184279943 184279969 184280038] -ok 4 - semi_primes(10,10) should return [10] -ok 5 - semi_primes(10,13) should return [10] -ok 6 - semi_primes(25,34) should return [25 26 33 34] -ok 7 - semi_primes(4,11) should return [4 6 9 10] -ok 8 - semi_primes(3,11) should return [4 6 9 10] -ok 9 - semi_primes(1,11) should return [4 6 9 10] -ok 10 - semi_primes(10,12) should return [10] -ok 11 - semi_primes(8589990147,8589990167) should return [8589990149 8589990157 8589990166] -ok 12 - semi_primes(10,14) should return [10 14] -ok 13 - semi_primes(5,16) should return [6 9 10 14 15] -ok 14 - semi_primes(26,33) should return [26 33] -ok 15 - semi_primes(11,13) should return [] -ok 16 - semi_primes(10,11) should return [10] -ok 17 - semi_primes(2,11) should return [4 6 9 10] -ok 18 - semi_primes(0,11) should return [4 6 9 10] -ok 19 - semi_primes(184279944,184280037) should return [184279969] -ok 20 - semiprime_count(123456) = 28589 -ok 21 - semiprime_count(1234) = 363 -ok 22 - semiprime_count(12345) = 3217 -ok 23 - nth_semiprime(123456) = 573355 -ok 24 - nth_semiprime(12345) = 51019 -ok 25 - nth_semiprime(1234) = 4497 -ok 26 - semiprime_count_approx(100000000000) ~ 13959990342 -ok 27 - semiprime_count_approx(100000000000000) ~ 11715902308080 -ok 28 - semiprime_count_approx(10000000000000000000) ~ 932300026230174178 -ok 29 - semiprime_count_approx(100000000) ~ 17427258 -ok 30 - nth_semiprime_approx(288230376151711744) ~ 3027432768282284351 +ok 3 - semi_primes(11,13) should return [] +ok 4 - semi_primes(184279944,184280037) should return [184279969] +ok 5 - semi_primes(10,10) should return [10] +ok 6 - semi_primes(0,11) should return [4 6 9 10] +ok 7 - semi_primes(10,12) should return [10] +ok 8 - semi_primes(8589990147,8589990167) should return [8589990149 8589990157 8589990166] +ok 9 - semi_primes(5,16) should return [6 9 10 14 15] +ok 10 - semi_primes(10,14) should return [10 14] +ok 11 - semi_primes(26,33) should return [26 33] +ok 12 - semi_primes(25,34) should return [25 26 33 34] +ok 13 - semi_primes(184279943,184280038) should return [184279943 184279969 184280038] +ok 14 - semi_primes(10,11) should return [10] +ok 15 - semi_primes(2,11) should return [4 6 9 10] +ok 16 - semi_primes(10,13) should return [10] +ok 17 - semi_primes(3,11) should return [4 6 9 10] +ok 18 - semi_primes(4,11) should return [4 6 9 10] +ok 19 - semi_primes(1,11) should return [4 6 9 10] +ok 20 - semiprime_count(12345) = 3217 +ok 21 - semiprime_count(123456) = 28589 +ok 22 - semiprime_count(1234) = 363 +ok 23 - nth_semiprime(1234) = 4497 +ok 24 - nth_semiprime(123456) = 573355 +ok 25 - nth_semiprime(12345) = 51019 +ok 26 - semiprime_count_approx(100000000) ~ 17427258 +ok 27 - semiprime_count_approx(100000000000) ~ 13959990342 +ok 28 - semiprime_count_approx(100000000000000) ~ 11715902308080 +ok 29 - semiprime_count_approx(10000000000000000000) ~ 932300026230174178 +ok 30 - nth_semiprime_approx(4398046511104) ~ 36676111297003 ok 31 - nth_semiprime_approx(2147483648) ~ 14540737711 ok 32 - nth_semiprime_approx(100000000000000000) ~ 1030179406403917981 -ok 33 - nth_semiprime_approx(4398046511104) ~ 36676111297003 +ok 33 - nth_semiprime_approx(288230376151711744) ~ 3027432768282284351 ok t/11-sumprimes.t ............. 1..5 ok 1 - sum_primes for 0 to 1000 -ok 2 - sum primes from 12345 to 54321 -ok 3 - sum primes from 10000000 to 10001000 -ok 4 - sum primes from 189695660 to 189695892 -ok 5 - sum primes from 0 to 300000 +ok 2 - sum primes from 10000000 to 10001000 +ok 3 - sum primes from 0 to 300000 +ok 4 - sum primes from 12345 to 54321 +ok 5 - sum primes from 189695660 to 189695892 ok t/11-twinprimes.t ............ 1..17 ok 1 - twin_primes(1607) ok 2 - nth_twin_prime for small values -ok 3 - twin_primes(4294957296,4294957796) should return [4294957307 4294957397 4294957697] -ok 4 - twin_primes(5,13) should return [5 11] -ok 5 - twin_primes(5,10) should return [5] -ok 6 - twin_primes(2,11) should return [3 5 11] -ok 7 - twin_primes(3,11) should return [3 5 11] -ok 8 - twin_primes(1,11) should return [3 5 11] -ok 9 - twin_primes(134217228,134217728) should return [134217401 134217437] -ok 10 - twin_primes(5,11) should return [5 11] -ok 11 - twin_primes(5,12) should return [5 11] -ok 12 - twin_primes(213897,213997) should return [213947] -ok 13 - twin_primes(6,10) should return [] -ok 14 - twin_primes(4,11) should return [5 11] -ok 15 - twin_primes(0,11) should return [3 5 11] -ok 16 - twin_primes(29,31) should return [29] -ok 17 - twin_primes(5,16) should return [5 11] +ok 3 - twin_primes(5,13) should return [5 11] +ok 4 - twin_primes(5,11) should return [5 11] +ok 5 - twin_primes(29,31) should return [29] +ok 6 - twin_primes(134217228,134217728) should return [134217401 134217437] +ok 7 - twin_primes(4,11) should return [5 11] +ok 8 - twin_primes(213897,213997) should return [213947] +ok 9 - twin_primes(4294957296,4294957796) should return [4294957307 4294957397 4294957697] +ok 10 - twin_primes(2,11) should return [3 5 11] +ok 11 - twin_primes(3,11) should return [3 5 11] +ok 12 - twin_primes(6,10) should return [] +ok 13 - twin_primes(5,10) should return [5] +ok 14 - twin_primes(5,16) should return [5 11] +ok 15 - twin_primes(1,11) should return [3 5 11] +ok 16 - twin_primes(5,12) should return [5 11] +ok 17 - twin_primes(0,11) should return [3 5 11] ok t/12-nextprime.t ............. 1..314 ok 1 - next_prime 0 .. 3572 ok 2 - prev_prime 0 .. 3572 -ok 3 - next prime of 19609 is 19609+52 -ok 4 - prev prime of 19609+52 is 19609 -ok 5 - next prime of 360653 is 360653+96 -ok 6 - prev prime of 360653+96 is 360653 -ok 7 - next prime of 2010733 is 2010733+148 -ok 8 - prev prime of 2010733+148 is 2010733 +ok 3 - next prime of 2010733 is 2010733+148 +ok 4 - prev prime of 2010733+148 is 2010733 +ok 5 - next prime of 19609 is 19609+52 +ok 6 - prev prime of 19609+52 is 19609 +ok 7 - next prime of 360653 is 360653+96 +ok 8 - prev prime of 360653+96 is 360653 ok 9 - next prime of 19608 is 19609 ok 10 - next prime of 19610 is 19661 ok 11 - next prime of 19660 is 19661 @@ -1188,144 +1224,144 @@ t/13-primecount.t ............ 1..186 ok 1 - prime_count in void context -ok 2 - Pi(1000000000) <= upper estimate -ok 3 - Pi(1000000000) >= lower estimate -ok 4 - prime_count_approx(1000000000) within 500 -ok 5 - Pi(30239) <= upper estimate -ok 6 - Pi(30239) >= lower estimate -ok 7 - prime_count_approx(30239) within 100 -ok 8 - Pi(4294967295) <= upper estimate -ok 9 - Pi(4294967295) >= lower estimate -ok 10 - prime_count_approx(4294967295) within 500 -ok 11 - Pi(100) <= upper estimate -ok 12 - Pi(100) >= lower estimate -ok 13 - prime_count_approx(100) within 100 -ok 14 - Pi(1000) <= upper estimate -ok 15 - Pi(1000) >= lower estimate -ok 16 - prime_count_approx(1000) within 100 -ok 17 - Pi(30249) <= upper estimate -ok 18 - Pi(30249) >= lower estimate -ok 19 - prime_count_approx(30249) within 100 -ok 20 - Pi(65535) <= upper estimate -ok 21 - Pi(65535) >= lower estimate -ok 22 - prime_count_approx(65535) within 100 -ok 23 - Pi(16777215) <= upper estimate -ok 24 - Pi(16777215) >= lower estimate -ok 25 - prime_count_approx(16777215) within 100 -ok 26 - Pi(100000000) <= upper estimate -ok 27 - Pi(100000000) >= lower estimate -ok 28 - prime_count_approx(100000000) within 100 -ok 29 - Pi(2147483647) <= upper estimate -ok 30 - Pi(2147483647) >= lower estimate -ok 31 - prime_count_approx(2147483647) within 500 -ok 32 - Pi(10000000) <= upper estimate -ok 33 - Pi(10000000) >= lower estimate -ok 34 - prime_count_approx(10000000) within 100 -ok 35 - Pi(60067) <= upper estimate -ok 36 - Pi(60067) >= lower estimate -ok 37 - prime_count_approx(60067) within 100 +ok 2 - Pi(65535) <= upper estimate +ok 3 - Pi(65535) >= lower estimate +ok 4 - prime_count_approx(65535) within 100 +ok 5 - Pi(100000000) <= upper estimate +ok 6 - Pi(100000000) >= lower estimate +ok 7 - prime_count_approx(100000000) within 100 +ok 8 - Pi(2147483647) <= upper estimate +ok 9 - Pi(2147483647) >= lower estimate +ok 10 - prime_count_approx(2147483647) within 500 +ok 11 - Pi(30249) <= upper estimate +ok 12 - Pi(30249) >= lower estimate +ok 13 - prime_count_approx(30249) within 100 +ok 14 - Pi(4294967295) <= upper estimate +ok 15 - Pi(4294967295) >= lower estimate +ok 16 - prime_count_approx(4294967295) within 500 +ok 17 - Pi(1000) <= upper estimate +ok 18 - Pi(1000) >= lower estimate +ok 19 - prime_count_approx(1000) within 100 +ok 20 - Pi(100) <= upper estimate +ok 21 - Pi(100) >= lower estimate +ok 22 - prime_count_approx(100) within 100 +ok 23 - Pi(10000000) <= upper estimate +ok 24 - Pi(10000000) >= lower estimate +ok 25 - prime_count_approx(10000000) within 100 +ok 26 - Pi(10000) <= upper estimate +ok 27 - Pi(10000) >= lower estimate +ok 28 - prime_count_approx(10000) within 100 +ok 29 - Pi(1) <= upper estimate +ok 30 - Pi(1) >= lower estimate +ok 31 - prime_count_approx(1) within 100 +ok 32 - Pi(100000) <= upper estimate +ok 33 - Pi(100000) >= lower estimate +ok 34 - prime_count_approx(100000) within 100 +ok 35 - Pi(30239) <= upper estimate +ok 36 - Pi(30239) >= lower estimate +ok 37 - prime_count_approx(30239) within 100 ok 38 - Pi(1000000) <= upper estimate ok 39 - Pi(1000000) >= lower estimate ok 40 - prime_count_approx(1000000) within 100 -ok 41 - Pi(10000) <= upper estimate -ok 42 - Pi(10000) >= lower estimate -ok 43 - prime_count_approx(10000) within 100 -ok 44 - Pi(1) <= upper estimate -ok 45 - Pi(1) >= lower estimate -ok 46 - prime_count_approx(1) within 100 -ok 47 - Pi(100000) <= upper estimate -ok 48 - Pi(100000) >= lower estimate -ok 49 - prime_count_approx(100000) within 100 +ok 41 - Pi(60067) <= upper estimate +ok 42 - Pi(60067) >= lower estimate +ok 43 - prime_count_approx(60067) within 100 +ok 44 - Pi(1000000000) <= upper estimate +ok 45 - Pi(1000000000) >= lower estimate +ok 46 - prime_count_approx(1000000000) within 500 +ok 47 - Pi(16777215) <= upper estimate +ok 48 - Pi(16777215) >= lower estimate +ok 49 - prime_count_approx(16777215) within 100 ok 50 - Pi(10) <= upper estimate ok 51 - Pi(10) >= lower estimate ok 52 - prime_count_approx(10) within 100 -ok 53 - Pi(30239) = 3269 -ok 54 - Pi(100) = 25 -ok 55 - Pi(30249) = 3270 -ok 56 - Pi(1000) = 168 +ok 53 - Pi(60067) = 6062 +ok 54 - Pi(30239) = 3269 +ok 55 - Pi(1000000) = 78498 +ok 56 - Pi(10) = 4 ok 57 - Pi(65535) = 6542 -ok 58 - Pi(60067) = 6062 -ok 59 - Pi(100000) = 9592 -ok 60 - Pi(1) = 0 -ok 61 - Pi(1000000) = 78498 -ok 62 - Pi(10000) = 1229 -ok 63 - Pi(10) = 4 -ok 64 - Pi(10000000000000) <= upper estimate -ok 65 - Pi(10000000000000) >= lower estimate -ok 66 - prime_count_approx(10000000000000) within 0.0005% of Pi(10000000000000) -ok 67 - Pi(17592186044415) <= upper estimate -ok 68 - Pi(17592186044415) >= lower estimate -ok 69 - prime_count_approx(17592186044415) within 0.0005% of Pi(17592186044415) -ok 70 - Pi(100000000000) <= upper estimate -ok 71 - Pi(100000000000) >= lower estimate -ok 72 - prime_count_approx(100000000000) within 0.0005% of Pi(100000000000) -ok 73 - Pi(72057594037927935) <= upper estimate -ok 74 - Pi(72057594037927935) >= lower estimate -ok 75 - prime_count_approx(72057594037927935) within 0.0005% of Pi(72057594037927935) -ok 76 - Pi(100000000000000000) <= upper estimate -ok 77 - Pi(100000000000000000) >= lower estimate -ok 78 - prime_count_approx(100000000000000000) within 0.0005% of Pi(100000000000000000) -ok 79 - Pi(18446744073709551615) <= upper estimate -ok 80 - Pi(18446744073709551615) >= lower estimate -ok 81 - prime_count_approx(18446744073709551615) within 0.0005% of Pi(18446744073709551615) -ok 82 - Pi(1000000000000000000) <= upper estimate -ok 83 - Pi(1000000000000000000) >= lower estimate -ok 84 - prime_count_approx(1000000000000000000) within 0.0005% of Pi(1000000000000000000) -ok 85 - Pi(1000000000000000) <= upper estimate -ok 86 - Pi(1000000000000000) >= lower estimate -ok 87 - prime_count_approx(1000000000000000) within 0.0005% of Pi(1000000000000000) -ok 88 - Pi(10000000000000000000) <= upper estimate -ok 89 - Pi(10000000000000000000) >= lower estimate -ok 90 - prime_count_approx(10000000000000000000) within 0.0005% of Pi(10000000000000000000) -ok 91 - Pi(1099511627775) <= upper estimate -ok 92 - Pi(1099511627775) >= lower estimate -ok 93 - prime_count_approx(1099511627775) within 0.0005% of Pi(1099511627775) -ok 94 - Pi(281474976710655) <= upper estimate -ok 95 - Pi(281474976710655) >= lower estimate -ok 96 - prime_count_approx(281474976710655) within 0.0005% of Pi(281474976710655) -ok 97 - Pi(1000000000000) <= upper estimate -ok 98 - Pi(1000000000000) >= lower estimate -ok 99 - prime_count_approx(1000000000000) within 0.0005% of Pi(1000000000000) -ok 100 - Pi(4503599627370495) <= upper estimate -ok 101 - Pi(4503599627370495) >= lower estimate -ok 102 - prime_count_approx(4503599627370495) within 0.0005% of Pi(4503599627370495) -ok 103 - Pi(68719476735) <= upper estimate -ok 104 - Pi(68719476735) >= lower estimate -ok 105 - prime_count_approx(68719476735) within 0.0005% of Pi(68719476735) -ok 106 - Pi(10000000000) <= upper estimate -ok 107 - Pi(10000000000) >= lower estimate -ok 108 - prime_count_approx(10000000000) within 0.0005% of Pi(10000000000) -ok 109 - Pi(1152921504606846975) <= upper estimate -ok 110 - Pi(1152921504606846975) >= lower estimate -ok 111 - prime_count_approx(1152921504606846975) within 0.0005% of Pi(1152921504606846975) -ok 112 - Pi(100000000000000) <= upper estimate -ok 113 - Pi(100000000000000) >= lower estimate -ok 114 - prime_count_approx(100000000000000) within 0.0005% of Pi(100000000000000) -ok 115 - Pi(10000000000000000) <= upper estimate -ok 116 - Pi(10000000000000000) >= lower estimate -ok 117 - prime_count_approx(10000000000000000) within 0.0005% of Pi(10000000000000000) -ok 118 - prime_count(3 to 17) = 6 -ok 119 - prime_count(191912783 +247) = 1 -ok 120 - prime_count(1118105 to 9961674) = 575195 -ok 121 - prime_count(1 to 3) = 2 -ok 122 - prime_count(191912783 +248) = 2 -ok 123 - prime_count(1e14 +2**16) = 1973 -ok 124 - prime_count(127976334671 +468) = 2 -ok 125 - prime_count(0 to 2) = 1 -ok 126 - prime_count(0 to 1) = 0 -ok 127 - prime_count(4 to 17) = 5 -ok 128 - prime_count(7 to 54321) = 5522 -ok 129 - prime_count(127976334672 +467) = 1 -ok 130 - prime_count(17 to 13) = 0 -ok 131 - prime_count(127976334671 +467) = 1 -ok 132 - prime_count(127976334672 +466) = 0 -ok 133 - prime_count(868396 to 9478505) = 563275 -ok 134 - prime_count(191912784 +247) = 1 -ok 135 - prime_count(3 to 15000) = 1753 -ok 136 - prime_count(1e10 +2**16) = 2821 -ok 137 - prime_count(4 to 16) = 4 -ok 138 - prime_count(24689 to 7973249) = 535368 -ok 139 - prime_count(191912784 +246) = 0 +ok 58 - Pi(30249) = 3270 +ok 59 - Pi(1000) = 168 +ok 60 - Pi(100) = 25 +ok 61 - Pi(100000) = 9592 +ok 62 - Pi(1) = 0 +ok 63 - Pi(10000) = 1229 +ok 64 - Pi(1000000000000000000) <= upper estimate +ok 65 - Pi(1000000000000000000) >= lower estimate +ok 66 - prime_count_approx(1000000000000000000) within 0.0005% of Pi(1000000000000000000) +ok 67 - Pi(10000000000000) <= upper estimate +ok 68 - Pi(10000000000000) >= lower estimate +ok 69 - prime_count_approx(10000000000000) within 0.0005% of Pi(10000000000000) +ok 70 - Pi(72057594037927935) <= upper estimate +ok 71 - Pi(72057594037927935) >= lower estimate +ok 72 - prime_count_approx(72057594037927935) within 0.0005% of Pi(72057594037927935) +ok 73 - Pi(100000000000000) <= upper estimate +ok 74 - Pi(100000000000000) >= lower estimate +ok 75 - prime_count_approx(100000000000000) within 0.0005% of Pi(100000000000000) +ok 76 - Pi(1152921504606846975) <= upper estimate +ok 77 - Pi(1152921504606846975) >= lower estimate +ok 78 - prime_count_approx(1152921504606846975) within 0.0005% of Pi(1152921504606846975) +ok 79 - Pi(100000000000) <= upper estimate +ok 80 - Pi(100000000000) >= lower estimate +ok 81 - prime_count_approx(100000000000) within 0.0005% of Pi(100000000000) +ok 82 - Pi(100000000000000000) <= upper estimate +ok 83 - Pi(100000000000000000) >= lower estimate +ok 84 - prime_count_approx(100000000000000000) within 0.0005% of Pi(100000000000000000) +ok 85 - Pi(4503599627370495) <= upper estimate +ok 86 - Pi(4503599627370495) >= lower estimate +ok 87 - prime_count_approx(4503599627370495) within 0.0005% of Pi(4503599627370495) +ok 88 - Pi(281474976710655) <= upper estimate +ok 89 - Pi(281474976710655) >= lower estimate +ok 90 - prime_count_approx(281474976710655) within 0.0005% of Pi(281474976710655) +ok 91 - Pi(1000000000000000) <= upper estimate +ok 92 - Pi(1000000000000000) >= lower estimate +ok 93 - prime_count_approx(1000000000000000) within 0.0005% of Pi(1000000000000000) +ok 94 - Pi(10000000000000000) <= upper estimate +ok 95 - Pi(10000000000000000) >= lower estimate +ok 96 - prime_count_approx(10000000000000000) within 0.0005% of Pi(10000000000000000) +ok 97 - Pi(17592186044415) <= upper estimate +ok 98 - Pi(17592186044415) >= lower estimate +ok 99 - prime_count_approx(17592186044415) within 0.0005% of Pi(17592186044415) +ok 100 - Pi(1099511627775) <= upper estimate +ok 101 - Pi(1099511627775) >= lower estimate +ok 102 - prime_count_approx(1099511627775) within 0.0005% of Pi(1099511627775) +ok 103 - Pi(1000000000000) <= upper estimate +ok 104 - Pi(1000000000000) >= lower estimate +ok 105 - prime_count_approx(1000000000000) within 0.0005% of Pi(1000000000000) +ok 106 - Pi(10000000000000000000) <= upper estimate +ok 107 - Pi(10000000000000000000) >= lower estimate +ok 108 - prime_count_approx(10000000000000000000) within 0.0005% of Pi(10000000000000000000) +ok 109 - Pi(18446744073709551615) <= upper estimate +ok 110 - Pi(18446744073709551615) >= lower estimate +ok 111 - prime_count_approx(18446744073709551615) within 0.0005% of Pi(18446744073709551615) +ok 112 - Pi(10000000000) <= upper estimate +ok 113 - Pi(10000000000) >= lower estimate +ok 114 - prime_count_approx(10000000000) within 0.0005% of Pi(10000000000) +ok 115 - Pi(68719476735) <= upper estimate +ok 116 - Pi(68719476735) >= lower estimate +ok 117 - prime_count_approx(68719476735) within 0.0005% of Pi(68719476735) +ok 118 - prime_count(1 to 3) = 2 +ok 119 - prime_count(17 to 13) = 0 +ok 120 - prime_count(127976334672 +467) = 1 +ok 121 - prime_count(7 to 54321) = 5522 +ok 122 - prime_count(1e10 +2**16) = 2821 +ok 123 - prime_count(1118105 to 9961674) = 575195 +ok 124 - prime_count(127976334671 +467) = 1 +ok 125 - prime_count(191912783 +247) = 1 +ok 126 - prime_count(4 to 17) = 5 +ok 127 - prime_count(24689 to 7973249) = 535368 +ok 128 - prime_count(3 to 15000) = 1753 +ok 129 - prime_count(0 to 2) = 1 +ok 130 - prime_count(1e14 +2**16) = 1973 +ok 131 - prime_count(4 to 16) = 4 +ok 132 - prime_count(191912784 +247) = 1 +ok 133 - prime_count(191912784 +246) = 0 +ok 134 - prime_count(127976334671 +468) = 2 +ok 135 - prime_count(127976334672 +466) = 0 +ok 136 - prime_count(191912783 +248) = 2 +ok 137 - prime_count(3 to 17) = 6 +ok 138 - prime_count(0 to 1) = 0 +ok 139 - prime_count(868396 to 9478505) = 563275 ok 140 - prime_count(130066574) = 7381740 ok 141 - XS LMO count ok 142 - XS segment count @@ -1336,173 +1372,173 @@ ok 147 - twin prime count 10^8 to +34587 ok 148 - twin prime count 654321 ok 149 - twin prime count 1000000000123456 -ok 150 - twin prime count 500000000000 -ok 151 - twin_prime_count_approx(500000000000) is 0.001407% -ok 152 - twin prime count 5000000000000000 -ok 153 - twin_prime_count_approx(5000000000000000) is 0.000025% +ok 150 - twin prime count 5000000000000000 +ok 151 - twin_prime_count_approx(5000000000000000) is 0.000025% +ok 152 - twin prime count 50000000 +ok 153 - twin_prime_count_approx(50000000) is 0.002091% ok 154 - twin prime count 500000 ok 155 - twin_prime_count_approx(500000) is 0.240964% -ok 156 - twin prime count 5000 -ok 157 - twin_prime_count_approx(5000) is 0.000000% -ok 158 - twin prime count 50000000000000 -ok 159 - twin_prime_count_approx(50000000000000) is 0.000103% -ok 160 - twin prime count 5000000000 -ok 161 - twin_prime_count_approx(5000000000) is 0.002004% -ok 162 - twin prime count 50000000 -ok 163 - twin_prime_count_approx(50000000) is 0.002091% +ok 156 - twin prime count 500000000000 +ok 157 - twin_prime_count_approx(500000000000) is 0.001407% +ok 158 - twin prime count 5000000000 +ok 159 - twin_prime_count_approx(5000000000) is 0.002004% +ok 160 - twin prime count 5000 +ok 161 - twin_prime_count_approx(5000) is 0.000000% +ok 162 - twin prime count 50000000000000 +ok 163 - twin_prime_count_approx(50000000000000) is 0.000103% ok 164 - semiprime count 13 to 31 ok 165 - semiprime count 654321 ok 166 - semiprime count 10^8 to +34587 ok 167 - semiprime count 10000123456 -ok 168 - semiprime count 8192 +ok 168 - semiprime count 50000 ok 169 - semiprime count 50000000 -ok 170 - semiprime count 500000000 +ok 170 - semiprime count 500000 ok 171 - semiprime count 5000000000 -ok 172 - semiprime count 5000 -ok 173 - semiprime count 50000 -ok 174 - semiprime count 5000000 -ok 175 - semiprime count 500000 -ok 176 - semiprime count 2048 +ok 172 - semiprime count 2048 +ok 173 - semiprime count 8192 +ok 174 - semiprime count 5000 +ok 175 - semiprime count 500000000 +ok 176 - semiprime count 5000000 ok 177 - Ramanujan prime count 13 to 31 ok 178 - Ramanujan prime count 1357 ok 179 - Ramanujan prime count 10^8 to +34587 ok 180 - Ramanujan prime count 654321 -ok 181 - Ramanujan prime count 500000 -ok 182 - Ramanujan prime count 50000 -ok 183 - Ramanujan prime count 5000000 -ok 184 - Ramanujan prime count 65536 -ok 185 - Ramanujan prime count 135791 -ok 186 - Ramanujan prime count 5000 +ok 181 - Ramanujan prime count 5000000 +ok 182 - Ramanujan prime count 65536 +ok 183 - Ramanujan prime count 5000 +ok 184 - Ramanujan prime count 50000 +ok 185 - Ramanujan prime count 500000 +ok 186 - Ramanujan prime count 135791 ok t/14-nthprime.t .............. 1..130 -ok 1 - nth_prime(0) <= 1 -ok 2 - nth_prime(1) >= 1 -ok 3 - nth_prime(4) <= 10 -ok 4 - nth_prime(5) >= 10 -ok 5 - nth_prime(78498) <= 1000000 -ok 6 - nth_prime(78499) >= 1000000 -ok 7 - nth_prime(25) <= 100 -ok 8 - nth_prime(26) >= 100 -ok 9 - nth_prime(168) <= 1000 -ok 10 - nth_prime(169) >= 1000 +ok 1 - nth_prime(9592) <= 100000 +ok 2 - nth_prime(9593) >= 100000 +ok 3 - nth_prime(78498) <= 1000000 +ok 4 - nth_prime(78499) >= 1000000 +ok 5 - nth_prime(25) <= 100 +ok 6 - nth_prime(26) >= 100 +ok 7 - nth_prime(168) <= 1000 +ok 8 - nth_prime(169) >= 1000 +ok 9 - nth_prime(0) <= 1 +ok 10 - nth_prime(1) >= 1 ok 11 - nth_prime(1229) <= 10000 ok 12 - nth_prime(1230) >= 10000 -ok 13 - nth_prime(9592) <= 100000 -ok 14 - nth_prime(9593) >= 100000 +ok 13 - nth_prime(4) <= 10 +ok 14 - nth_prime(5) >= 10 ok 15 - nth_prime for primes 0 .. 1000 -ok 16 - nth_prime(6305540) <= upper estimate -ok 17 - nth_prime(6305540) >= lower estimate -ok 18 - nth_prime_approx(6305540) = 110047573 within 1% of 110040407 -ok 19 - nth_prime(1000) <= upper estimate -ok 20 - nth_prime(1000) >= lower estimate -ok 21 - nth_prime_approx(1000) = 7923 within 1% of 7919 -ok 22 - nth_prime(100) <= upper estimate -ok 23 - nth_prime(100) >= lower estimate -ok 24 - nth_prime_approx(100) = 537 within 2% of 541 -ok 25 - nth_prime(100000) <= upper estimate -ok 26 - nth_prime(100000) >= lower estimate -ok 27 - nth_prime_approx(100000) = 1299734 within 1% of 1299709 -ok 28 - nth_prime(1) <= upper estimate -ok 29 - nth_prime(1) >= lower estimate -ok 30 - nth_prime_approx(1) = 2 within 2% of 2 -ok 31 - nth_prime(6305539) <= upper estimate -ok 32 - nth_prime(6305539) >= lower estimate -ok 33 - nth_prime_approx(6305539) = 110047554 within 1% of 110040391 -ok 34 - nth_prime(6305537) <= upper estimate -ok 35 - nth_prime(6305537) >= lower estimate -ok 36 - nth_prime_approx(6305537) = 110047517 within 1% of 110040379 -ok 37 - nth_prime(10000000) <= upper estimate -ok 38 - nth_prime(10000000) >= lower estimate -ok 39 - nth_prime_approx(10000000) = 179431239 within 1% of 179424673 -ok 40 - nth_prime(6305541) <= upper estimate -ok 41 - nth_prime(6305541) >= lower estimate -ok 42 - nth_prime_approx(6305541) = 110047591 within 1% of 110040467 -ok 43 - nth_prime(10) <= upper estimate -ok 44 - nth_prime(10) >= lower estimate -ok 45 - nth_prime_approx(10) = 29 within 2% of 29 -ok 46 - nth_prime(6305538) <= upper estimate -ok 47 - nth_prime(6305538) >= lower estimate -ok 48 - nth_prime_approx(6305538) = 110047536 within 1% of 110040383 -ok 49 - nth_prime(10000) <= upper estimate -ok 50 - nth_prime(10000) >= lower estimate -ok 51 - nth_prime_approx(10000) = 104768 within 1% of 104729 -ok 52 - nth_prime(100000000) <= upper estimate -ok 53 - nth_prime(100000000) >= lower estimate -ok 54 - nth_prime_approx(100000000) = 2038076588 within 1% of 2038074743 -ok 55 - nth_prime(6305542) <= upper estimate -ok 56 - nth_prime(6305542) >= lower estimate -ok 57 - nth_prime_approx(6305542) = 110047610 within 1% of 110040499 -ok 58 - nth_prime(6305543) <= upper estimate -ok 59 - nth_prime(6305543) >= lower estimate -ok 60 - nth_prime_approx(6305543) = 110047628 within 1% of 110040503 -ok 61 - nth_prime(1000000) <= upper estimate -ok 62 - nth_prime(1000000) >= lower estimate -ok 63 - nth_prime_approx(1000000) = 15484040 within 1% of 15485863 -ok 64 - nth_prime(6305540) = 110040407 -ok 65 - nth_prime(1000) = 7919 -ok 66 - nth_prime(100) = 541 -ok 67 - nth_prime(100000) = 1299709 -ok 68 - nth_prime(1) = 2 -ok 69 - nth_prime(10000000) = 179424673 -ok 70 - nth_prime(6305537) = 110040379 -ok 71 - nth_prime(6305539) = 110040391 -ok 72 - nth_prime(6305541) = 110040467 -ok 73 - nth_prime(10) = 29 -ok 74 - nth_prime(6305538) = 110040383 -ok 75 - nth_prime(10000) = 104729 -ok 76 - nth_prime(6305542) = 110040499 -ok 77 - nth_prime(6305543) = 110040503 -ok 78 - nth_prime(1000000) = 15485863 -ok 79 - nth_prime(100000000000) <= upper estimate -ok 80 - nth_prime(100000000000) >= lower estimate -ok 81 - nth_prime_approx(100000000000) = 2760727752353 within 0.001% of 2760727302517 -ok 82 - nth_prime(1000000000) <= upper estimate -ok 83 - nth_prime(1000000000) >= lower estimate -ok 84 - nth_prime_approx(1000000000) = 22801797576 within 0.001% of 22801763489 -ok 85 - nth_prime(10000000000) <= upper estimate -ok 86 - nth_prime(10000000000) >= lower estimate -ok 87 - nth_prime_approx(10000000000) = 252097715777 within 0.001% of 252097800623 +ok 16 - nth_prime(1) <= upper estimate +ok 17 - nth_prime(1) >= lower estimate +ok 18 - nth_prime_approx(1) = 2 within 2% of 2 +ok 19 - nth_prime(6305538) <= upper estimate +ok 20 - nth_prime(6305538) >= lower estimate +ok 21 - nth_prime_approx(6305538) = 110047536 within 1% of 110040383 +ok 22 - nth_prime(100000000) <= upper estimate +ok 23 - nth_prime(100000000) >= lower estimate +ok 24 - nth_prime_approx(100000000) = 2038076588 within 1% of 2038074743 +ok 25 - nth_prime(6305539) <= upper estimate +ok 26 - nth_prime(6305539) >= lower estimate +ok 27 - nth_prime_approx(6305539) = 110047554 within 1% of 110040391 +ok 28 - nth_prime(1000) <= upper estimate +ok 29 - nth_prime(1000) >= lower estimate +ok 30 - nth_prime_approx(1000) = 7923 within 1% of 7919 +ok 31 - nth_prime(6305537) <= upper estimate +ok 32 - nth_prime(6305537) >= lower estimate +ok 33 - nth_prime_approx(6305537) = 110047517 within 1% of 110040379 +ok 34 - nth_prime(6305542) <= upper estimate +ok 35 - nth_prime(6305542) >= lower estimate +ok 36 - nth_prime_approx(6305542) = 110047610 within 1% of 110040499 +ok 37 - nth_prime(10) <= upper estimate +ok 38 - nth_prime(10) >= lower estimate +ok 39 - nth_prime_approx(10) = 29 within 2% of 29 +ok 40 - nth_prime(10000) <= upper estimate +ok 41 - nth_prime(10000) >= lower estimate +ok 42 - nth_prime_approx(10000) = 104768 within 1% of 104729 +ok 43 - nth_prime(6305543) <= upper estimate +ok 44 - nth_prime(6305543) >= lower estimate +ok 45 - nth_prime_approx(6305543) = 110047628 within 1% of 110040503 +ok 46 - nth_prime(100000) <= upper estimate +ok 47 - nth_prime(100000) >= lower estimate +ok 48 - nth_prime_approx(100000) = 1299734 within 1% of 1299709 +ok 49 - nth_prime(10000000) <= upper estimate +ok 50 - nth_prime(10000000) >= lower estimate +ok 51 - nth_prime_approx(10000000) = 179431239 within 1% of 179424673 +ok 52 - nth_prime(1000000) <= upper estimate +ok 53 - nth_prime(1000000) >= lower estimate +ok 54 - nth_prime_approx(1000000) = 15484040 within 1% of 15485863 +ok 55 - nth_prime(6305541) <= upper estimate +ok 56 - nth_prime(6305541) >= lower estimate +ok 57 - nth_prime_approx(6305541) = 110047591 within 1% of 110040467 +ok 58 - nth_prime(6305540) <= upper estimate +ok 59 - nth_prime(6305540) >= lower estimate +ok 60 - nth_prime_approx(6305540) = 110047573 within 1% of 110040407 +ok 61 - nth_prime(100) <= upper estimate +ok 62 - nth_prime(100) >= lower estimate +ok 63 - nth_prime_approx(100) = 537 within 2% of 541 +ok 64 - nth_prime(6305542) = 110040499 +ok 65 - nth_prime(6305537) = 110040379 +ok 66 - nth_prime(10000) = 104729 +ok 67 - nth_prime(10) = 29 +ok 68 - nth_prime(6305543) = 110040503 +ok 69 - nth_prime(6305541) = 110040467 +ok 70 - nth_prime(100) = 541 +ok 71 - nth_prime(6305540) = 110040407 +ok 72 - nth_prime(10000000) = 179424673 +ok 73 - nth_prime(100000) = 1299709 +ok 74 - nth_prime(1000000) = 15485863 +ok 75 - nth_prime(1) = 2 +ok 76 - nth_prime(6305539) = 110040391 +ok 77 - nth_prime(6305538) = 110040383 +ok 78 - nth_prime(1000) = 7919 +ok 79 - nth_prime(100000000000000000) <= upper estimate +ok 80 - nth_prime(100000000000000000) >= lower estimate +ok 81 - nth_prime_approx(100000000000000000) = 4185296581676475392 within 0.001% of 4185296581467695669 +ok 82 - nth_prime(100000000000000) <= upper estimate +ok 83 - nth_prime(100000000000000) >= lower estimate +ok 84 - nth_prime_approx(100000000000000) = 3475385760290730 within 0.001% of 3475385758524527 +ok 85 - nth_prime(1000000000) <= upper estimate +ok 86 - nth_prime(1000000000) >= lower estimate +ok 87 - nth_prime_approx(1000000000) = 22801797576 within 0.001% of 22801763489 ok 88 - nth_prime(1000000000000) <= upper estimate ok 89 - nth_prime(1000000000000) >= lower estimate ok 90 - nth_prime_approx(1000000000000) = 29996225393466 within 0.001% of 29996224275833 ok 91 - nth_prime(1000000000000000) <= upper estimate ok 92 - nth_prime(1000000000000000) >= lower estimate ok 93 - nth_prime_approx(1000000000000000) = 37124508056355544 within 0.001% of 37124508045065437 -ok 94 - nth_prime(10000000000000) <= upper estimate -ok 95 - nth_prime(10000000000000) >= lower estimate -ok 96 - nth_prime_approx(10000000000000) = 323780512411510 within 0.001% of 323780508946331 -ok 97 - nth_prime(100000000000000000) <= upper estimate -ok 98 - nth_prime(100000000000000000) >= lower estimate -ok 99 - nth_prime_approx(100000000000000000) = 4185296581676475392 within 0.001% of 4185296581467695669 +ok 94 - nth_prime(10000000000) <= upper estimate +ok 95 - nth_prime(10000000000) >= lower estimate +ok 96 - nth_prime_approx(10000000000) = 252097715777 within 0.001% of 252097800623 +ok 97 - nth_prime(100000000000) <= upper estimate +ok 98 - nth_prime(100000000000) >= lower estimate +ok 99 - nth_prime_approx(100000000000) = 2760727752353 within 0.001% of 2760727302517 ok 100 - nth_prime(10000000000000000) <= upper estimate ok 101 - nth_prime(10000000000000000) >= lower estimate ok 102 - nth_prime_approx(10000000000000000) = 394906913798225728 within 0.001% of 394906913903735329 -ok 103 - nth_prime(100000000000000) <= upper estimate -ok 104 - nth_prime(100000000000000) >= lower estimate -ok 105 - nth_prime_approx(100000000000000) = 3475385760290730 within 0.001% of 3475385758524527 +ok 103 - nth_prime(10000000000000) <= upper estimate +ok 104 - nth_prime(10000000000000) >= lower estimate +ok 105 - nth_prime_approx(10000000000000) = 323780512411510 within 0.001% of 323780508946331 ok 106 - nth_prime_lower(maxindex) <= maxprime ok 107 - nth_prime_upper(maxindex) >= maxprime ok 108 - nth_prime_lower(maxindex+1) >= nth_prime_lower(maxindex) ok 109 - nth_twin_prime(0) = undef ok 110 - 239 = 17th twin prime ok 111 - 101207 = 1234'th twin prime -ok 112 - nth_twin_prime_approx(5) is 0.000000% (got 29, expected ~29) +ok 112 - nth_twin_prime_approx(50000) is 0.075983% (got 8258677, expected ~8264957) ok 113 - nth_twin_prime_approx(500000000) is 0.000863% (got 239213224566, expected ~239211160649) -ok 114 - nth_twin_prime_approx(50000000) is 0.008989% (got 19359834010, expected ~19358093939) -ok 115 - nth_twin_prime_approx(5000000) is 0.042488% (got 1523328396, expected ~1523975909) -ok 116 - nth_twin_prime_approx(50) is 0.000000% (got 1487, expected ~1487) +ok 114 - nth_twin_prime_approx(50) is 0.000000% (got 1487, expected ~1487) +ok 115 - nth_twin_prime_approx(5) is 0.000000% (got 29, expected ~29) +ok 116 - nth_twin_prime_approx(5000) is 0.144031% (got 556716, expected ~557519) ok 117 - nth_twin_prime_approx(500) is 0.129586% (got 32453, expected ~32411) -ok 118 - nth_twin_prime_approx(5000) is 0.144031% (got 556716, expected ~557519) -ok 119 - nth_twin_prime_approx(50000) is 0.075983% (got 8258677, expected ~8264957) -ok 120 - nth_twin_prime_approx(500000) is 0.007471% (got 115447292, expected ~115438667) +ok 118 - nth_twin_prime_approx(5000000) is 0.042488% (got 1523328396, expected ~1523975909) +ok 119 - nth_twin_prime_approx(500000) is 0.007471% (got 115447292, expected ~115438667) +ok 120 - nth_twin_prime_approx(50000000) is 0.008989% (got 19359834010, expected ~19358093939) ok 121 - nth_semiprime(0) = undef ok 122 - nth_semiprime(1 .. 153) -ok 123 - nth_semiprime(12345) = 51019 -ok 124 - nth_semiprime(1234) = 4497 -ok 125 - nth_semiprime(12345678) = 69914722 -ok 126 - nth_semiprime(1234567) = 6365389 -ok 127 - nth_semiprime(123456) = 573355 +ok 123 - nth_semiprime(1234567) = 6365389 +ok 124 - nth_semiprime(123456) = 573355 +ok 125 - nth_semiprime(1234) = 4497 +ok 126 - nth_semiprime(12345) = 51019 +ok 127 - nth_semiprime(12345678) = 69914722 ok 128 - inverse_li: Li^-1(0..50) ok 129 - inverse_li(1e9) ok 130 - inverse_li(11e11) @@ -1656,65 +1692,65 @@ ok 15 - random_nbit_prime(0) ok 16 - random_maurer_prime(0) ok 17 - random_shawe_taylor_prime(0) -ok 18 - primes(3842610774,3842611108) should return undef -ok 19 - primes(0,0) should return undef +ok 18 - primes(0,0) should return undef +ok 19 - primes(3842610774,3842611108) should return undef ok 20 - primes(2,1) should return undef -ok 21 - primes(1294268492,1294268778) should return undef -ok 22 - primes(0,1) should return undef -ok 23 - primes(3,2) should return undef -ok 24 - Prime in range 0-2 is indeed prime -ok 25 - random_prime(0,2) >= 2 -ok 26 - random_prime(0,2) <= 2 -ok 27 - Prime in range 3-5 is indeed prime -ok 28 - random_prime(3,5) >= 3 -ok 29 - random_prime(3,5) <= 5 -ok 30 - Prime in range 10-20 is indeed prime -ok 31 - random_prime(10,20) >= 11 -ok 32 - random_prime(10,20) <= 19 -ok 33 - Prime in range 2-2 is indeed prime -ok 34 - random_prime(2,2) >= 2 -ok 35 - random_prime(2,2) <= 2 -ok 36 - Prime in range 16706143-16706143 is indeed prime -ok 37 - random_prime(16706143,16706143) >= 16706143 -ok 38 - random_prime(16706143,16706143) <= 16706143 -ok 39 - Prime in range 8-12 is indeed prime -ok 40 - random_prime(8,12) >= 11 -ok 41 - random_prime(8,12) <= 11 -ok 42 - Prime in range 3842610773-3842611109 is indeed prime -ok 43 - random_prime(3842610773,3842611109) >= 3842610773 -ok 44 - random_prime(3842610773,3842611109) <= 3842611109 -ok 45 - Prime in range 2-3 is indeed prime -ok 46 - random_prime(2,3) >= 2 -ok 47 - random_prime(2,3) <= 3 -ok 48 - Prime in range 10-12 is indeed prime -ok 49 - random_prime(10,12) >= 11 -ok 50 - random_prime(10,12) <= 11 -ok 51 - Prime in range 3842610772-3842611110 is indeed prime -ok 52 - random_prime(3842610772,3842611110) >= 3842610773 -ok 53 - random_prime(3842610772,3842611110) <= 3842611109 -ok 54 - Prime in range 16706142-16706144 is indeed prime -ok 55 - random_prime(16706142,16706144) >= 16706143 -ok 56 - random_prime(16706142,16706144) <= 16706143 -ok 57 - All returned values for 27764-88493 were prime -ok 58 - All returned values for 27764-88493 were in the range -ok 59 - All returned values for 27764-88498 were prime -ok 60 - All returned values for 27764-88498 were in the range -ok 61 - All returned values for 3-7 were prime -ok 62 - All returned values for 3-7 were in the range -ok 63 - All returned values for 17051688-17051898 were prime -ok 64 - All returned values for 17051688-17051898 were in the range -ok 65 - All returned values for 27767-88493 were prime -ok 66 - All returned values for 27767-88493 were in the range -ok 67 - All returned values for 27767-88498 were prime -ok 68 - All returned values for 27767-88498 were in the range -ok 69 - All returned values for 2-20 were prime -ok 70 - All returned values for 2-20 were in the range -ok 71 - All returned values for 17051687-17051899 were prime -ok 72 - All returned values for 17051687-17051899 were in the range -ok 73 - All returned values for 5678-9876 were prime -ok 74 - All returned values for 5678-9876 were in the range -ok 75 - All returned values for 20-100 were prime -ok 76 - All returned values for 20-100 were in the range +ok 21 - primes(3,2) should return undef +ok 22 - primes(1294268492,1294268778) should return undef +ok 23 - primes(0,1) should return undef +ok 24 - Prime in range 2-3 is indeed prime +ok 25 - random_prime(2,3) >= 2 +ok 26 - random_prime(2,3) <= 3 +ok 27 - Prime in range 10-20 is indeed prime +ok 28 - random_prime(10,20) >= 11 +ok 29 - random_prime(10,20) <= 19 +ok 30 - Prime in range 3-5 is indeed prime +ok 31 - random_prime(3,5) >= 3 +ok 32 - random_prime(3,5) <= 5 +ok 33 - Prime in range 3842610773-3842611109 is indeed prime +ok 34 - random_prime(3842610773,3842611109) >= 3842610773 +ok 35 - random_prime(3842610773,3842611109) <= 3842611109 +ok 36 - Prime in range 10-12 is indeed prime +ok 37 - random_prime(10,12) >= 11 +ok 38 - random_prime(10,12) <= 11 +ok 39 - Prime in range 0-2 is indeed prime +ok 40 - random_prime(0,2) >= 2 +ok 41 - random_prime(0,2) <= 2 +ok 42 - Prime in range 8-12 is indeed prime +ok 43 - random_prime(8,12) >= 11 +ok 44 - random_prime(8,12) <= 11 +ok 45 - Prime in range 16706143-16706143 is indeed prime +ok 46 - random_prime(16706143,16706143) >= 16706143 +ok 47 - random_prime(16706143,16706143) <= 16706143 +ok 48 - Prime in range 2-2 is indeed prime +ok 49 - random_prime(2,2) >= 2 +ok 50 - random_prime(2,2) <= 2 +ok 51 - Prime in range 16706142-16706144 is indeed prime +ok 52 - random_prime(16706142,16706144) >= 16706143 +ok 53 - random_prime(16706142,16706144) <= 16706143 +ok 54 - Prime in range 3842610772-3842611110 is indeed prime +ok 55 - random_prime(3842610772,3842611110) >= 3842610773 +ok 56 - random_prime(3842610772,3842611110) <= 3842611109 +ok 57 - All returned values for 27767-88498 were prime +ok 58 - All returned values for 27767-88498 were in the range +ok 59 - All returned values for 5678-9876 were prime +ok 60 - All returned values for 5678-9876 were in the range +ok 61 - All returned values for 27764-88493 were prime +ok 62 - All returned values for 27764-88493 were in the range +ok 63 - All returned values for 20-100 were prime +ok 64 - All returned values for 20-100 were in the range +ok 65 - All returned values for 27764-88498 were prime +ok 66 - All returned values for 27764-88498 were in the range +ok 67 - All returned values for 27767-88493 were prime +ok 68 - All returned values for 27767-88493 were in the range +ok 69 - All returned values for 17051688-17051898 were prime +ok 70 - All returned values for 17051688-17051898 were in the range +ok 71 - All returned values for 2-20 were prime +ok 72 - All returned values for 2-20 were in the range +ok 73 - All returned values for 17051687-17051899 were prime +ok 74 - All returned values for 17051687-17051899 were in the range +ok 75 - All returned values for 3-7 were prime +ok 76 - All returned values for 3-7 were in the range ok 77 - All returned values for 2 were prime ok 78 - All returned values for 2 were in the range ok 79 - All returned values for 3 were prime @@ -1740,81 +1776,81 @@ ok 99 - All returned values for 4294967295 were prime ok 100 - All returned values for 4294967295 were in the range ok 101 - 1-digit random prime '2' is in range and prime -ok 102 - 2-digit random prime '97' is in range and prime -ok 103 - 3-digit random prime '983' is in range and prime -ok 104 - 4-digit random prime '9907' is in range and prime -ok 105 - 5-digit random prime '47869' is in range and prime -ok 106 - 6-digit random prime '123653' is in range and prime -ok 107 - 7-digit random prime '6061271' is in range and prime -ok 108 - 8-digit random prime '66595913' is in range and prime -ok 109 - 9-digit random prime '810216907' is in range and prime -ok 110 - 10-digit random prime '5315141197' is in range and prime -ok 111 - 11-digit random prime '50987565973' is in range and prime -ok 112 - 12-digit random prime '570570152833' is in range and prime -ok 113 - 13-digit random prime '9845743683331' is in range and prime -ok 114 - 14-digit random prime '55248910618849' is in range and prime -ok 115 - 15-digit random prime '110581165203829' is in range and prime -ok 116 - 16-digit random prime '3441365389017877' is in range and prime -ok 117 - 17-digit random prime '62274747388637677' is in range and prime -ok 118 - 18-digit random prime '234400301046578599' is in range and prime -ok 119 - 19-digit random prime '2523004591066898119' is in range and prime -ok 120 - 20-digit random prime '33820239348466108381' is in range and prime +ok 102 - 2-digit random prime '23' is in range and prime +ok 103 - 3-digit random prime '541' is in range and prime +ok 104 - 4-digit random prime '6389' is in range and prime +ok 105 - 5-digit random prime '12451' is in range and prime +ok 106 - 6-digit random prime '702529' is in range and prime +ok 107 - 7-digit random prime '7487591' is in range and prime +ok 108 - 8-digit random prime '42280691' is in range and prime +ok 109 - 9-digit random prime '970094401' is in range and prime +ok 110 - 10-digit random prime '5639039369' is in range and prime +ok 111 - 11-digit random prime '59929853969' is in range and prime +ok 112 - 12-digit random prime '156380736989' is in range and prime +ok 113 - 13-digit random prime '2185150675457' is in range and prime +ok 114 - 14-digit random prime '53377770786181' is in range and prime +ok 115 - 15-digit random prime '843793409112079' is in range and prime +ok 116 - 16-digit random prime '5246030857678829' is in range and prime +ok 117 - 17-digit random prime '47681128955337853' is in range and prime +ok 118 - 18-digit random prime '631771290057058301' is in range and prime +ok 119 - 19-digit random prime '2908556445773945873' is in range and prime +ok 120 - 20-digit random prime '48824836333666921061' is in range and prime ok 121 - 2-bit random nbit prime '3' is in range and prime ok 122 - 2-bit random Maurer prime '2' is in range and prime -ok 123 - 2-bit random Shawe-Taylor prime '2' is in range and prime -ok 124 - 2-bit random proven prime '3' is in range and prime -ok 125 - 3-bit random nbit prime '5' is in range and prime -ok 126 - 3-bit random Maurer prime '7' is in range and prime +ok 123 - 2-bit random Shawe-Taylor prime '3' is in range and prime +ok 124 - 2-bit random proven prime '2' is in range and prime +ok 125 - 3-bit random nbit prime '7' is in range and prime +ok 126 - 3-bit random Maurer prime '5' is in range and prime ok 127 - 3-bit random Shawe-Taylor prime '7' is in range and prime ok 128 - 3-bit random proven prime '7' is in range and prime ok 129 - 4-bit random nbit prime '13' is in range and prime -ok 130 - 4-bit random Maurer prime '13' is in range and prime +ok 130 - 4-bit random Maurer prime '11' is in range and prime ok 131 - 4-bit random Shawe-Taylor prime '13' is in range and prime ok 132 - 4-bit random proven prime '13' is in range and prime -ok 133 - 5-bit random nbit prime '29' is in range and prime -ok 134 - 5-bit random Maurer prime '31' is in range and prime +ok 133 - 5-bit random nbit prime '19' is in range and prime +ok 134 - 5-bit random Maurer prime '19' is in range and prime ok 135 - 5-bit random Shawe-Taylor prime '31' is in range and prime -ok 136 - 5-bit random proven prime '29' is in range and prime +ok 136 - 5-bit random proven prime '31' is in range and prime ok 137 - 6-bit random nbit prime '61' is in range and prime -ok 138 - 6-bit random Maurer prime '53' is in range and prime -ok 139 - 6-bit random Shawe-Taylor prime '41' is in range and prime +ok 138 - 6-bit random Maurer prime '41' is in range and prime +ok 139 - 6-bit random Shawe-Taylor prime '61' is in range and prime ok 140 - 6-bit random proven prime '59' is in range and prime -ok 141 - 10-bit random nbit prime '569' is in range and prime -ok 142 - 10-bit random Maurer prime '733' is in range and prime -ok 143 - 10-bit random Shawe-Taylor prime '557' is in range and prime -ok 144 - 10-bit random proven prime '1009' is in range and prime -ok 145 - 15-bit random nbit prime '20107' is in range and prime -ok 146 - 15-bit random Maurer prime '26759' is in range and prime -ok 147 - 15-bit random Shawe-Taylor prime '23293' is in range and prime -ok 148 - 15-bit random proven prime '28591' is in range and prime -ok 149 - 16-bit random nbit prime '63853' is in range and prime -ok 150 - 16-bit random Maurer prime '44027' is in range and prime -ok 151 - 16-bit random Shawe-Taylor prime '43597' is in range and prime -ok 152 - 16-bit random proven prime '46997' is in range and prime -ok 153 - 17-bit random nbit prime '78277' is in range and prime -ok 154 - 17-bit random Maurer prime '119533' is in range and prime -ok 155 - 17-bit random Shawe-Taylor prime '126031' is in range and prime -ok 156 - 17-bit random proven prime '79357' is in range and prime -ok 157 - 28-bit random nbit prime '267139337' is in range and prime -ok 158 - 28-bit random Maurer prime '166412639' is in range and prime -ok 159 - 28-bit random Shawe-Taylor prime '254280227' is in range and prime -ok 160 - 28-bit random proven prime '222914077' is in range and prime -ok 161 - 32-bit random nbit prime '2888811253' is in range and prime -ok 162 - 32-bit random Maurer prime '4016634137' is in range and prime -ok 163 - 32-bit random Shawe-Taylor prime '2194420567' is in range and prime -ok 164 - 32-bit random proven prime '3925982609' is in range and prime -ok 165 - 34-bit random nbit prime '16698229309' is in range and prime -ok 166 - 34-bit random Maurer prime '14315155451' is in range and prime -ok 167 - 34-bit random Shawe-Taylor prime '16204877497' is in range and prime -ok 168 - 34-bit random proven prime '15199354127' is in range and prime -ok 169 - 75-bit random nbit prime '33144229750124636685673' is in range and prime -ok 170 - 75-bit random Maurer prime '30108995400020208969593' is in range and prime -ok 171 - 75-bit random Shawe-Taylor prime '20292703524876387578837' is in range and prime -ok 172 - 75-bit random proven prime '31129740621113324061601' is in range and prime +ok 141 - 10-bit random nbit prime '941' is in range and prime +ok 142 - 10-bit random Maurer prime '1019' is in range and prime +ok 143 - 10-bit random Shawe-Taylor prime '1009' is in range and prime +ok 144 - 10-bit random proven prime '1021' is in range and prime +ok 145 - 15-bit random nbit prime '25087' is in range and prime +ok 146 - 15-bit random Maurer prime '32143' is in range and prime +ok 147 - 15-bit random Shawe-Taylor prime '30893' is in range and prime +ok 148 - 15-bit random proven prime '19699' is in range and prime +ok 149 - 16-bit random nbit prime '57571' is in range and prime +ok 150 - 16-bit random Maurer prime '54617' is in range and prime +ok 151 - 16-bit random Shawe-Taylor prime '62633' is in range and prime +ok 152 - 16-bit random proven prime '56267' is in range and prime +ok 153 - 17-bit random nbit prime '67021' is in range and prime +ok 154 - 17-bit random Maurer prime '111779' is in range and prime +ok 155 - 17-bit random Shawe-Taylor prime '101107' is in range and prime +ok 156 - 17-bit random proven prime '78241' is in range and prime +ok 157 - 28-bit random nbit prime '153144793' is in range and prime +ok 158 - 28-bit random Maurer prime '221207269' is in range and prime +ok 159 - 28-bit random Shawe-Taylor prime '265863287' is in range and prime +ok 160 - 28-bit random proven prime '174843101' is in range and prime +ok 161 - 32-bit random nbit prime '3950909219' is in range and prime +ok 162 - 32-bit random Maurer prime '3860013389' is in range and prime +ok 163 - 32-bit random Shawe-Taylor prime '3299042867' is in range and prime +ok 164 - 32-bit random proven prime '2666541379' is in range and prime +ok 165 - 34-bit random nbit prime '15465514733' is in range and prime +ok 166 - 34-bit random Maurer prime '14445485251' is in range and prime +ok 167 - 34-bit random Shawe-Taylor prime '9501029467' is in range and prime +ok 168 - 34-bit random proven prime '14143576847' is in range and prime +ok 169 - 75-bit random nbit prime '36029200126373194101299' is in range and prime +ok 170 - 75-bit random Maurer prime '36029758162402963549963' is in range and prime +ok 171 - 75-bit random Shawe-Taylor prime '28357840815927174446491' is in range and prime +ok 172 - 75-bit random proven prime '23491331333003181855437' is in range and prime ok 173 - random 80-bit prime returns a BigInt -ok 174 - random 80-bit prime '1207411262021608732763107' is in range +ok 174 - random 80-bit prime '1040558986767847355144087' is in range ok 175 - random 30-digit prime returns a BigInt -ok 176 - random 30-digit prime '191042199384827239948031746489' is in range +ok 176 - random 30-digit prime '232836011766871351760829467783' is in range ok 177 - random_semiprime(3) ok 178 - random_unrestricted_semiprime(2) ok 179 - random_semiprime(4) = 9 @@ -1908,19 +1944,19 @@ ok 81 - 5781 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 82 - 9000 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 83 - 14381 is not a prime and not a strong Lucas-Selfridge pseudoprime -ok 84 - Lucas sequence 3613982121 1 -1 1806991061 -ok 85 - Lucas sequence 3613982123 1 -1 3613982124 -ok 86 - Lucas sequence 323 3 1 324 -ok 87 - Lucas sequence 323 1 1 324 -ok 88 - Lucas sequence 547968611 1 -1 547968612 -ok 89 - Lucas sequence 3613982121 1 -1 3613982122 -ok 90 - Lucas sequence 547968611 1 -1 136992153 -ok 91 - Lucas sequence 323 5 -1 81 -ok 92 - Lucas sequence 323 3 1 81 -ok 93 - Lucas sequence 323 4 1 324 -ok 94 - Lucas sequence 323 4 5 324 -ok 95 - Lucas sequence 18971 10001 -1 4743 -ok 96 - Lucas sequence 49001 25 117 24501 +ok 84 - Lucas sequence 547968611 1 -1 547968612 +ok 85 - Lucas sequence 323 4 5 324 +ok 86 - Lucas sequence 18971 10001 -1 4743 +ok 87 - Lucas sequence 49001 25 117 24501 +ok 88 - Lucas sequence 3613982121 1 -1 3613982122 +ok 89 - Lucas sequence 323 1 1 324 +ok 90 - Lucas sequence 323 5 -1 81 +ok 91 - Lucas sequence 323 3 1 81 +ok 92 - Lucas sequence 3613982121 1 -1 1806991061 +ok 93 - Lucas sequence 3613982123 1 -1 3613982124 +ok 94 - Lucas sequence 323 3 1 324 +ok 95 - Lucas sequence 547968611 1 -1 136992153 +ok 96 - Lucas sequence 323 4 1 324 ok 97 - is_frobenius_underwood_pseudoprime matches is_prime ok 98 - Frobenius Underwood with 52-bit prime ok 99 - Frobenius Underwood with 44-bit Lucas pseudoprime @@ -1946,77 +1982,77 @@ ok 8 - li(1) is -infinity ok 9 - li(inf) is infinity ok 10 - Ei(2.2) -ok 11 - Ei(5) ~= 40.1852753558032 -ok 12 - Ei(-0.001) ~= -6.33153936413615 -ok 13 - Ei(20) ~= 25615652.6640566 -ok 14 - Ei(40) ~= 6039718263611242 -ok 15 - Ei(12) ~= 14959.5326663975 -ok 16 - Ei(1) ~= 1.89511781635594 -ok 17 - Ei(1.5) ~= 3.3012854491298 -ok 18 - Ei(-0.5) ~= -0.55977359477616 -ok 19 - Ei(-1e-05) ~= -10.9357198000437 -ok 20 - Ei(79) ~= 2.61362206325046e+32 -ok 21 - Ei(0.693147180559945) ~= 1.04516378011749 -ok 22 - Ei(10) ~= 2492.22897624188 -ok 23 - Ei(-0.1) ~= -1.82292395841939 -ok 24 - Ei(41) ~= 1.6006649143245e+16 -ok 25 - Ei(-10) ~= -4.15696892968532e-06 -ok 26 - Ei(2) ~= 4.95423435600189 -ok 27 - Ei(-1e-08) ~= -17.8434650890508 -ok 28 - li(4294967295) ~= 203284081.954542 -ok 29 - li(100000) ~= 9629.8090010508 -ok 30 - li(10) ~= 6.1655995047873 -ok 31 - li(100000000) ~= 5762209.37544803 -ok 32 - li(1.01) ~= -4.02295867392994 -ok 33 - li(10000000000) ~= 455055614.586623 -ok 34 - li(100000000000) ~= 4118066400.62161 -ok 35 - li(24) ~= 11.2003157952327 -ok 36 - li(1000) ~= 177.609657990152 -ok 37 - li(2) ~= 1.04516378011749 -ok 38 - li(0) ~= 0 -ok 39 - R(2) ~= 1.54100901618713 -ok 40 - R(1000) ~= 168.359446281167 -ok 41 - R(1000000) ~= 78527.3994291277 -ok 42 - R(1.01) ~= 1.00606971806229 -ok 43 - R(10000000000) ~= 455050683.306847 -ok 44 - R(10) ~= 4.56458314100509 -ok 45 - R(18446744073709551615) ~= 4.25656284014012e+17 -ok 46 - R(10000000) ~= 664667.447564748 -ok 47 - R(4294967295) ~= 203280697.513261 -ok 48 - Zeta(2.5) ~= 0.341487257250917 +ok 11 - Ei(-0.001) ~= -6.33153936413615 +ok 12 - Ei(20) ~= 25615652.6640566 +ok 13 - Ei(-10) ~= -4.15696892968532e-06 +ok 14 - Ei(-0.5) ~= -0.55977359477616 +ok 15 - Ei(1) ~= 1.89511781635594 +ok 16 - Ei(0.693147180559945) ~= 1.04516378011749 +ok 17 - Ei(-1e-08) ~= -17.8434650890508 +ok 18 - Ei(-1e-05) ~= -10.9357198000437 +ok 19 - Ei(79) ~= 2.61362206325046e+32 +ok 20 - Ei(41) ~= 1.6006649143245e+16 +ok 21 - Ei(5) ~= 40.1852753558032 +ok 22 - Ei(40) ~= 6039718263611242 +ok 23 - Ei(12) ~= 14959.5326663975 +ok 24 - Ei(-0.1) ~= -1.82292395841939 +ok 25 - Ei(2) ~= 4.95423435600189 +ok 26 - Ei(1.5) ~= 3.3012854491298 +ok 27 - Ei(10) ~= 2492.22897624188 +ok 28 - li(10) ~= 6.1655995047873 +ok 29 - li(24) ~= 11.2003157952327 +ok 30 - li(1.01) ~= -4.02295867392994 +ok 31 - li(2) ~= 1.04516378011749 +ok 32 - li(4294967295) ~= 203284081.954542 +ok 33 - li(100000000000) ~= 4118066400.62161 +ok 34 - li(100000) ~= 9629.8090010508 +ok 35 - li(0) ~= 0 +ok 36 - li(100000000) ~= 5762209.37544803 +ok 37 - li(1000) ~= 177.609657990152 +ok 38 - li(10000000000) ~= 455055614.586623 +ok 39 - R(1000000) ~= 78527.3994291277 +ok 40 - R(4294967295) ~= 203280697.513261 +ok 41 - R(2) ~= 1.54100901618713 +ok 42 - R(10) ~= 4.56458314100509 +ok 43 - R(1.01) ~= 1.00606971806229 +ok 44 - R(18446744073709551615) ~= 4.25656284014012e+17 +ok 45 - R(1000) ~= 168.359446281167 +ok 46 - R(10000000000) ~= 455050683.306847 +ok 47 - R(10000000) ~= 664667.447564748 +ok 48 - Zeta(20.6) ~= 6.29339157357821e-07 ok 49 - Zeta(2) ~= 0.644934066848226 -ok 50 - Zeta(4.5) ~= 0.0547075107614543 +ok 50 - Zeta(7) ~= 0.00834927738192283 ok 51 - Zeta(8.5) ~= 0.00285925088241563 -ok 52 - Zeta(20.6) ~= 6.29339157357821e-07 -ok 53 - Zeta(7) ~= 0.00834927738192283 -ok 54 - LambertW(100000000000) ~= 22.2271227349611 -ok 55 - LambertW(10000) ~= 7.23184603809337 -ok 56 - LambertW(-0.367879441171442) ~= -0.99999995824889 -ok 57 - LambertW(1) ~= 0.567143290409784 -ok 58 - LambertW(0) ~= 0 -ok 59 - LambertW(-0.1) ~= -0.111832559158963 -ok 60 - LambertW(10) ~= 1.7455280027407 -ok 61 - LambertW(0.367879441171442) ~= 0.278464542761074 -ok 62 - LambertW(18446744073709551615) ~= 40.6562665724989 +ok 52 - Zeta(2.5) ~= 0.341487257250917 +ok 53 - Zeta(4.5) ~= 0.0547075107614543 +ok 54 - LambertW(0.367879441171442) ~= 0.278464542761074 +ok 55 - LambertW(1) ~= 0.567143290409784 +ok 56 - LambertW(18446744073709551615) ~= 40.6562665724989 +ok 57 - LambertW(0) ~= 0 +ok 58 - LambertW(10) ~= 1.7455280027407 +ok 59 - LambertW(-0.367879441171442) ~= -0.99999995824889 +ok 60 - LambertW(-0.1) ~= -0.111832559158963 +ok 61 - LambertW(10000) ~= 7.23184603809337 +ok 62 - LambertW(100000000000) ~= 22.2271227349611 ok t/19-chebyshev.t ............. 1..16 -ok 1 - chebyshev_theta(3) -ok 2 - chebyshev_theta(1) -ok 3 - chebyshev_theta(5) -ok 4 - chebyshev_theta(4) -ok 5 - chebyshev_theta(0) -ok 6 - chebyshev_theta(2) -ok 7 - chebyshev_theta(123456) -ok 8 - chebyshev_theta(243) -ok 9 - chebyshev_psi(1) -ok 10 - chebyshev_psi(3) -ok 11 - chebyshev_psi(2) -ok 12 - chebyshev_psi(123456) -ok 13 - chebyshev_psi(243) -ok 14 - chebyshev_psi(4) -ok 15 - chebyshev_psi(5) -ok 16 - chebyshev_psi(0) +ok 1 - chebyshev_theta(1) +ok 2 - chebyshev_theta(123456) +ok 3 - chebyshev_theta(0) +ok 4 - chebyshev_theta(5) +ok 5 - chebyshev_theta(2) +ok 6 - chebyshev_theta(3) +ok 7 - chebyshev_theta(243) +ok 8 - chebyshev_theta(4) +ok 9 - chebyshev_psi(4) +ok 10 - chebyshev_psi(243) +ok 11 - chebyshev_psi(3) +ok 12 - chebyshev_psi(0) +ok 13 - chebyshev_psi(5) +ok 14 - chebyshev_psi(2) +ok 15 - chebyshev_psi(123456) +ok 16 - chebyshev_psi(1) ok t/19-chinese.t ............... 1..24 @@ -2047,14 +2083,14 @@ ok t/19-divisorsum.t ............ 1..12 -ok 1 - Sum of divisors to the 1th power: Sigma_1 -ok 2 - Sigma_1 using integer instead of sub +ok 1 - Sum of divisors to the 3th power: Sigma_3 +ok 2 - Sigma_3 using integer instead of sub ok 3 - Sum of divisors to the 2th power: Sigma_2 ok 4 - Sigma_2 using integer instead of sub -ok 5 - Sum of divisors to the 3th power: Sigma_3 -ok 6 - Sigma_3 using integer instead of sub -ok 7 - Sum of divisors to the 0th power: Sigma_0 -ok 8 - Sigma_0 using integer instead of sub +ok 5 - Sum of divisors to the 0th power: Sigma_0 +ok 6 - Sigma_0 using integer instead of sub +ok 7 - Sum of divisors to the 1th power: Sigma_1 +ok 8 - Sigma_1 using integer instead of sub ok 9 - divisor_sum(n) ok 10 - tau as divisor_sum(n, sub {1}) ok 11 - tau as divisor_sum(n, 0) @@ -2246,27 +2282,27 @@ ok t/19-mangoldt.t .............. 1..21 -ok 1 - exp_mangoldt(83521) == 17 -ok 2 - exp_mangoldt(2) == 2 -ok 3 - exp_mangoldt(10) == 1 -ok 4 - exp_mangoldt(-13) == 1 -ok 5 - exp_mangoldt(0) == 1 -ok 6 - exp_mangoldt(399983) == 399983 -ok 7 - exp_mangoldt(399982) == 1 -ok 8 - exp_mangoldt(27) == 3 -ok 9 - exp_mangoldt(6) == 1 -ok 10 - exp_mangoldt(8) == 2 -ok 11 - exp_mangoldt(7) == 7 -ok 12 - exp_mangoldt(3) == 3 -ok 13 - exp_mangoldt(130321) == 19 +ok 1 - exp_mangoldt(9) == 3 +ok 2 - exp_mangoldt(27) == 3 +ok 3 - exp_mangoldt(6) == 1 +ok 4 - exp_mangoldt(4) == 2 +ok 5 - exp_mangoldt(399983) == 399983 +ok 6 - exp_mangoldt(2) == 2 +ok 7 - exp_mangoldt(823543) == 7 +ok 8 - exp_mangoldt(-13) == 1 +ok 9 - exp_mangoldt(83521) == 17 +ok 10 - exp_mangoldt(399981) == 1 +ok 11 - exp_mangoldt(5) == 5 +ok 12 - exp_mangoldt(25) == 5 +ok 13 - exp_mangoldt(7) == 7 ok 14 - exp_mangoldt(1) == 1 -ok 15 - exp_mangoldt(25) == 5 -ok 16 - exp_mangoldt(823543) == 7 -ok 17 - exp_mangoldt(399981) == 1 -ok 18 - exp_mangoldt(11) == 11 -ok 19 - exp_mangoldt(9) == 3 -ok 20 - exp_mangoldt(4) == 2 -ok 21 - exp_mangoldt(5) == 5 +ok 15 - exp_mangoldt(3) == 3 +ok 16 - exp_mangoldt(399982) == 1 +ok 17 - exp_mangoldt(11) == 11 +ok 18 - exp_mangoldt(10) == 1 +ok 19 - exp_mangoldt(8) == 2 +ok 20 - exp_mangoldt(130321) == 19 +ok 21 - exp_mangoldt(0) == 1 ok t/19-moebius.t ............... 1..14 @@ -2281,9 +2317,9 @@ ok 9 - sum(moebius(k) for k=1..n) small n ok 10 - sum(moebius(1,n)) small n ok 11 - mertens(n) small n -ok 12 - mertens(100000) +ok 12 - mertens(10000000) ok 13 - mertens(1000000) -ok 14 - mertens(10000000) +ok 14 - mertens(100000) ok t/19-popcount.t .............. 1..9 @@ -2299,55 +2335,55 @@ ok t/19-primroots.t ............. 1..52 -ok 1 - znprimroot(1) == 0 -ok 2 - znprimroot(17551561) == 97 +ok 1 - znprimroot(8) == +ok 2 - znprimroot(100000001) == ok 3 - znprimroot(14123555781055773271) == 6 -ok 4 - znprimroot(5) == 2 -ok 5 - znprimroot(3) == 2 -ok 6 - znprimroot(1520874431) == 17 -ok 7 - znprimroot(6) == 5 -ok 8 - znprimroot(100000001) == -ok 9 - znprimroot(2232881419280027) == 6 -ok 10 - znprimroot(1407827621) == 2 -ok 11 - znprimroot(10) == 3 -ok 12 - znprimroot(1685283601) == 164 -ok 13 - znprimroot(90441961) == 113 -ok 14 - znprimroot(4) == 3 -ok 15 - znprimroot(89637484042681) == 335 -ok 16 - znprimroot(5109721) == 94 -ok 17 - znprimroot(1729) == -ok 18 - znprimroot(7) == 3 -ok 19 - znprimroot(8) == -ok 20 - znprimroot(9223372036854775837) == 5 -ok 21 - znprimroot(2) == 1 -ok 22 - znprimroot(-11) == 2 -ok 23 - znprimroot(9) == 2 -ok 24 - znprimroot(0) == +ok 4 - znprimroot(2) == 1 +ok 5 - znprimroot(5) == 2 +ok 6 - znprimroot(90441961) == 113 +ok 7 - znprimroot(3) == 2 +ok 8 - znprimroot(9223372036854775837) == 5 +ok 9 - znprimroot(1685283601) == 164 +ok 10 - znprimroot(4) == 3 +ok 11 - znprimroot(-11) == 2 +ok 12 - znprimroot(9) == 2 +ok 13 - znprimroot(17551561) == 97 +ok 14 - znprimroot(7) == 3 +ok 15 - znprimroot(6) == 5 +ok 16 - znprimroot(1729) == +ok 17 - znprimroot(1) == 0 +ok 18 - znprimroot(1520874431) == 17 +ok 19 - znprimroot(2232881419280027) == 6 +ok 20 - znprimroot(10) == 3 +ok 21 - znprimroot(5109721) == 94 +ok 22 - znprimroot(0) == +ok 23 - znprimroot(1407827621) == 2 +ok 24 - znprimroot(89637484042681) == 335 ok 25 - znprimroot("-100000898") == 31 -ok 26 - 0 is a primitive root mod 1 -ok 27 - 97 is a primitive root mod 17551561 +ok 26 - 2 is not a primitive root mod 8 +ok 27 - 2 is not a primitive root mod 100000001 ok 28 - 6 is a primitive root mod 14123555781055773271 -ok 29 - 2 is a primitive root mod 5 -ok 30 - 2 is a primitive root mod 3 -ok 31 - 17 is a primitive root mod 1520874431 -ok 32 - 5 is a primitive root mod 6 -ok 33 - 2 is not a primitive root mod 100000001 -ok 34 - 6 is a primitive root mod 2232881419280027 -ok 35 - 2 is a primitive root mod 1407827621 -ok 36 - 3 is a primitive root mod 10 -ok 37 - 164 is a primitive root mod 1685283601 -ok 38 - 113 is a primitive root mod 90441961 -ok 39 - 3 is a primitive root mod 4 -ok 40 - 335 is a primitive root mod 89637484042681 -ok 41 - 94 is a primitive root mod 5109721 -ok 42 - 2 is not a primitive root mod 1729 -ok 43 - 3 is a primitive root mod 7 -ok 44 - 2 is not a primitive root mod 8 -ok 45 - 5 is a primitive root mod 9223372036854775837 -ok 46 - 1 is a primitive root mod 2 -ok 47 - 2 is a primitive root mod -11 -ok 48 - 2 is a primitive root mod 9 -ok 49 - 2 is not a primitive root mod 0 +ok 29 - 1 is a primitive root mod 2 +ok 30 - 2 is a primitive root mod 5 +ok 31 - 113 is a primitive root mod 90441961 +ok 32 - 2 is a primitive root mod 3 +ok 33 - 5 is a primitive root mod 9223372036854775837 +ok 34 - 164 is a primitive root mod 1685283601 +ok 35 - 3 is a primitive root mod 4 +ok 36 - 2 is a primitive root mod -11 +ok 37 - 2 is a primitive root mod 9 +ok 38 - 97 is a primitive root mod 17551561 +ok 39 - 3 is a primitive root mod 7 +ok 40 - 5 is a primitive root mod 6 +ok 41 - 2 is not a primitive root mod 1729 +ok 42 - 0 is a primitive root mod 1 +ok 43 - 17 is a primitive root mod 1520874431 +ok 44 - 6 is a primitive root mod 2232881419280027 +ok 45 - 3 is a primitive root mod 10 +ok 46 - 94 is a primitive root mod 5109721 +ok 47 - 2 is not a primitive root mod 0 +ok 48 - 2 is a primitive root mod 1407827621 +ok 49 - 335 is a primitive root mod 89637484042681 ok 50 - 19 is a primitive root mod 191 ok 51 - 13 is not a primitive root mod 191 ok 52 - 35 is not a primitive root mod 982 @@ -2357,41 +2393,41 @@ ok 1 - Ramanujan Sum c_0(34) = 0 ok 2 - Ramanujan Sum c_34(0) ok 3 - Ramanujan sum c_{1..30}(1..30) -ok 4 - H(0) = -1 -ok 5 - H(23) = 36 -ok 6 - H(4) = 6 -ok 7 - H(8) = 12 -ok 8 - H(1555) = 48 -ok 9 - H(427) = 24 -ok 10 - H(47) = 60 -ok 11 - H(71) = 84 -ok 12 - H(11) = 12 -ok 13 - H(34483) = 180 -ok 14 - H(6307) = 96 -ok 15 - H(907) = 36 -ok 16 - H(12) = 16 -ok 17 - H(31243) = 192 -ok 18 - H(7) = 12 -ok 19 - H(163) = 12 -ok 20 - H(3) = 4 -ok 21 - H(1) = 0 -ok 22 - H(30067) = 168 -ok 23 - H(20563) = 156 -ok 24 - H(39) = 48 -ok 25 - H(20) = 24 -ok 26 - H(4031) = 1008 -ok 27 - H(2) = 0 -ok 28 - H(-3) = 0 -ok 29 - Ramanujan Tau(4) = -1472 -ok 30 - Ramanujan Tau(1) = 1 -ok 31 - Ramanujan Tau(3) = 252 -ok 32 - Ramanujan Tau(53) = -1596055698 -ok 33 - Ramanujan Tau(243) = 13400796651732 -ok 34 - Ramanujan Tau(2) = -24 -ok 35 - Ramanujan Tau(16089) = 12655813883111729342208 -ok 36 - Ramanujan Tau(5) = 4830 -ok 37 - Ramanujan Tau(0) = 0 -ok 38 - Ramanujan Tau(106) = 38305336752 +ok 4 - H(11) = 12 +ok 5 - H(8) = 12 +ok 6 - H(4031) = 1008 +ok 7 - H(907) = 36 +ok 8 - H(39) = 48 +ok 9 - H(31243) = 192 +ok 10 - H(20563) = 156 +ok 11 - H(1555) = 48 +ok 12 - H(0) = -1 +ok 13 - H(23) = 36 +ok 14 - H(1) = 0 +ok 15 - H(71) = 84 +ok 16 - H(2) = 0 +ok 17 - H(-3) = 0 +ok 18 - H(20) = 24 +ok 19 - H(3) = 4 +ok 20 - H(6307) = 96 +ok 21 - H(47) = 60 +ok 22 - H(12) = 16 +ok 23 - H(163) = 12 +ok 24 - H(427) = 24 +ok 25 - H(4) = 6 +ok 26 - H(34483) = 180 +ok 27 - H(7) = 12 +ok 28 - H(30067) = 168 +ok 29 - Ramanujan Tau(3) = 252 +ok 30 - Ramanujan Tau(4) = -1472 +ok 31 - Ramanujan Tau(1) = 1 +ok 32 - Ramanujan Tau(0) = 0 +ok 33 - Ramanujan Tau(106) = 38305336752 +ok 34 - Ramanujan Tau(16089) = 12655813883111729342208 +ok 35 - Ramanujan Tau(5) = 4830 +ok 36 - Ramanujan Tau(243) = 13400796651732 +ok 37 - Ramanujan Tau(53) = -1596055698 +ok 38 - Ramanujan Tau(2) = -24 ok t/19-rootint.t ............... 1..15 @@ -2417,9 +2453,9 @@ ok 2 - euler_phi with range: 0, 69 ok 3 - sum of totients to 240 ok 4 - euler_phi(123457) == 123456 -ok 5 - euler_phi(123456789) == 82260072 -ok 6 - euler_phi(-123456) == 0 -ok 7 - euler_phi(123456) == 41088 +ok 5 - euler_phi(123456) == 41088 +ok 6 - euler_phi(123456789) == 82260072 +ok 7 - euler_phi(-123456) == 0 ok 8 - euler_phi(0,0) ok 9 - euler_phi with end < start ok 10 - euler_phi 0-1 @@ -2472,13 +2508,13 @@ ok t/20-jordantotient.t ......... 1..13 -ok 1 - Jordan's Totient J_5 -ok 2 - Jordan's Totient J_2 -ok 3 - Jordan's Totient J_6 -ok 4 - Jordan's Totient J_1 -ok 5 - Jordan's Totient J_4 -ok 6 - Jordan's Totient J_7 -ok 7 - Jordan's Totient J_3 +ok 1 - Jordan's Totient J_6 +ok 2 - Jordan's Totient J_3 +ok 3 - Jordan's Totient J_7 +ok 4 - Jordan's Totient J_4 +ok 5 - Jordan's Totient J_1 +ok 6 - Jordan's Totient J_2 +ok 7 - Jordan's Totient J_5 ok 8 - Dedekind psi(n) = J_2(n)/J_1(n) ok 9 - Dedekind psi(n) = divisor_sum(n, moebius(d)^2 / d) ok 10 - Jordan totient 5, using jordan_totient @@ -2823,8 +2859,8 @@ ok 49 - partitions(48) ok 50 - partitions(49) ok 51 - partitions(50) -ok 52 - partitions(101) -ok 53 - partitions(256) +ok 52 - partitions(256) +ok 53 - partitions(101) ok 54 - forpart 0 ok 55 - forpart 1 ok 56 - forpart 2 @@ -2946,8 +2982,8 @@ ok 35 - binomial(20,15) is 15504 ok 36 - forcomb 20,15 yields binomial(20,15) combinations ok 37 - forperm 1 -ok 38 - forperm 2 -ok 39 - forperm 3 +ok 38 - forperm 3 +ok 39 - forperm 2 ok 40 - forperm 4 ok 41 - forperm 0 ok 42 - forperm 7 yields factorial(7) permutations @@ -3047,38 +3083,38 @@ ok 2 - is_prime_power 0 .. 32 ok 3 - is_power 200 small ints ok 4 - is_prime_power 200 small ints -ok 5 - ispower => 4611686018427387904 = 2^62 (2 62) -ok 6 - ispower => 4738381338321616896 = 6^24 (6 24) -ok 7 - ispower => 9223372036854775808 = 2^63 (2 63) -ok 8 - ispower => 609359740010496 = 6^19 (6 19) -ok 9 - ispower => 12157665459056928801 = 3^40 (3 40) -ok 10 - ispower => 16926659444736 = 6^17 (6 17) -ok 11 - ispower => 789730223053602816 = 6^23 (6 23) -ok 12 - ispower => 100000000000000000 = 10^17 (10 17) -ok 13 - ispower => 10000000000000000000 = 10^19 (10 19) -ok 14 - isprimepower => 68630377364883 = 3^29 (3 29) -ok 15 - isprimepower => 3909821048582988049 = 7^22 (7 22) -ok 16 - isprimepower => 450283905890997363 = 3^37 (3 37) +ok 5 - ispower => 789730223053602816 = 6^23 (6 23) +ok 6 - ispower => 16926659444736 = 6^17 (6 17) +ok 7 - ispower => 100000000000000000 = 10^17 (10 17) +ok 8 - ispower => 4738381338321616896 = 6^24 (6 24) +ok 9 - ispower => 10000000000000000000 = 10^19 (10 19) +ok 10 - ispower => 4611686018427387904 = 2^62 (2 62) +ok 11 - ispower => 609359740010496 = 6^19 (6 19) +ok 12 - ispower => 12157665459056928801 = 3^40 (3 40) +ok 13 - ispower => 9223372036854775808 = 2^63 (2 63) +ok 14 - isprimepower => 15181127029874798299 = 19^15 (19 15) +ok 15 - isprimepower => 617673396283947 = 3^31 (3 31) +ok 16 - isprimepower => 7450580596923828125 = 5^27 (5 27) ok 17 - isprimepower => 5559917313492231481 = 11^18 (11 18) -ok 18 - isprimepower => 8650415919381337933 = 13^17 (13 17) -ok 19 - isprimepower => 15181127029874798299 = 19^15 (19 15) -ok 20 - isprimepower => 762939453125 = 5^17 (5 17) -ok 21 - isprimepower => 11398895185373143 = 7^19 (7 19) -ok 22 - isprimepower => 11920928955078125 = 5^23 (5 23) -ok 23 - isprimepower => 7450580596923828125 = 5^27 (5 27) -ok 24 - isprimepower => 2862423051509815793 = 17^15 (17 15) -ok 25 - isprimepower => 232630513987207 = 7^17 (7 17) -ok 26 - isprimepower => 12157665459056928801 = 3^40 (3 40) -ok 27 - isprimepower => 617673396283947 = 3^31 (3 31) +ok 18 - isprimepower => 450283905890997363 = 3^37 (3 37) +ok 19 - isprimepower => 8650415919381337933 = 13^17 (13 17) +ok 20 - isprimepower => 12157665459056928801 = 3^40 (3 40) +ok 21 - isprimepower => 3909821048582988049 = 7^22 (7 22) +ok 22 - isprimepower => 2862423051509815793 = 17^15 (17 15) +ok 23 - isprimepower => 11398895185373143 = 7^19 (7 19) +ok 24 - isprimepower => 762939453125 = 5^17 (5 17) +ok 25 - isprimepower => 11920928955078125 = 5^23 (5 23) +ok 26 - isprimepower => 68630377364883 = 3^29 (3 29) +ok 27 - isprimepower => 232630513987207 = 7^17 (7 17) ok 28 - -8 is a third power ok 29 - -8 is a third power of -2 ok 30 - -8 is not a fourth power ok 31 - -16 is not a fourth power -ok 32 - is_power returns 2 for -ok 33 - is_power returns 0 for -ok 34 - is_power returns 9 for -ok 35 - is_power returns 4 for -ok 36 - is_power returns 3 for +ok 32 - is_power returns 4 for +ok 33 - is_power returns 9 for +ok 34 - is_power returns 0 for +ok 35 - is_power returns 3 for +ok 36 - is_power returns 2 for ok 37 - is_power(-7^0 ) = 0 ok 38 - is_power(-7^1 ) = 0 ok 39 - is_power(-7^2 ) = 0 @@ -3112,60 +3148,60 @@ ok t/26-issquarefree.t .......... 1..56 -ok 1 - is_square_free(1) -ok 2 - is_square_free(-1) -ok 3 - is_square_free(752518565) -ok 4 - is_square_free(-752518565) -ok 5 - is_square_free(8) -ok 6 - is_square_free(-8) -ok 7 - is_square_free(758096738) -ok 8 - is_square_free(-758096738) -ok 9 - is_square_free(4) -ok 10 - is_square_free(-4) -ok 11 - is_square_free(15) -ok 12 - is_square_free(-15) -ok 13 - is_square_free(9) -ok 14 - is_square_free(-9) -ok 15 - is_square_free(16) -ok 16 - is_square_free(-16) -ok 17 - is_square_free(2) -ok 18 - is_square_free(-2) -ok 19 - is_square_free(7) -ok 20 - is_square_free(-7) -ok 21 - is_square_free(5) -ok 22 - is_square_free(-5) -ok 23 - is_square_free(602721315) -ok 24 - is_square_free(-602721315) -ok 25 - is_square_free(11) -ok 26 - is_square_free(-11) -ok 27 - is_square_free(870589313) -ok 28 - is_square_free(-870589313) -ok 29 - is_square_free(695486396) -ok 30 - is_square_free(-695486396) -ok 31 - is_square_free(0) -ok 32 - is_square_free(-0) -ok 33 - is_square_free(14) -ok 34 - is_square_free(-14) -ok 35 - is_square_free(506916483) -ok 36 - is_square_free(-506916483) -ok 37 - is_square_free(723570005) -ok 38 - is_square_free(-723570005) -ok 39 - is_square_free(617459403) -ok 40 - is_square_free(-617459403) -ok 41 - is_square_free(13) -ok 42 - is_square_free(-13) -ok 43 - is_square_free(10) -ok 44 - is_square_free(-10) -ok 45 - is_square_free(434420340) -ok 46 - is_square_free(-434420340) -ok 47 - is_square_free(6) -ok 48 - is_square_free(-6) -ok 49 - is_square_free(418431087) -ok 50 - is_square_free(-418431087) -ok 51 - is_square_free(3) -ok 52 - is_square_free(-3) -ok 53 - is_square_free(12) -ok 54 - is_square_free(-12) +ok 1 - is_square_free(602721315) +ok 2 - is_square_free(-602721315) +ok 3 - is_square_free(2) +ok 4 - is_square_free(-2) +ok 5 - is_square_free(870589313) +ok 6 - is_square_free(-870589313) +ok 7 - is_square_free(7) +ok 8 - is_square_free(-7) +ok 9 - is_square_free(12) +ok 10 - is_square_free(-12) +ok 11 - is_square_free(695486396) +ok 12 - is_square_free(-695486396) +ok 13 - is_square_free(8) +ok 14 - is_square_free(-8) +ok 15 - is_square_free(3) +ok 16 - is_square_free(-3) +ok 17 - is_square_free(6) +ok 18 - is_square_free(-6) +ok 19 - is_square_free(434420340) +ok 20 - is_square_free(-434420340) +ok 21 - is_square_free(506916483) +ok 22 - is_square_free(-506916483) +ok 23 - is_square_free(4) +ok 24 - is_square_free(-4) +ok 25 - is_square_free(758096738) +ok 26 - is_square_free(-758096738) +ok 27 - is_square_free(752518565) +ok 28 - is_square_free(-752518565) +ok 29 - is_square_free(15) +ok 30 - is_square_free(-15) +ok 31 - is_square_free(14) +ok 32 - is_square_free(-14) +ok 33 - is_square_free(11) +ok 34 - is_square_free(-11) +ok 35 - is_square_free(16) +ok 36 - is_square_free(-16) +ok 37 - is_square_free(1) +ok 38 - is_square_free(-1) +ok 39 - is_square_free(9) +ok 40 - is_square_free(-9) +ok 41 - is_square_free(617459403) +ok 42 - is_square_free(-617459403) +ok 43 - is_square_free(418431087) +ok 44 - is_square_free(-418431087) +ok 45 - is_square_free(13) +ok 46 - is_square_free(-13) +ok 47 - is_square_free(10) +ok 48 - is_square_free(-10) +ok 49 - is_square_free(5) +ok 50 - is_square_free(-5) +ok 51 - is_square_free(723570005) +ok 52 - is_square_free(-723570005) +ok 53 - is_square_free(0) +ok 54 - is_square_free(-0) ok 55 - 815373060690029363516051578884163974 is square free ok 56 - 638277566021123181834824715385258732627350 is not square free ok @@ -3688,8 +3724,8 @@ ok 1 - CSPRNG is being seeded properly ok 2 - irand values are 32-bit ok 3 - irand values are integers -ok 4 - irand64 all bits on in 6 iterations -ok 5 - irand64 all bits off in 6 iterations +ok 4 - irand64 all bits on in 8 iterations +ok 5 - irand64 all bits off in 8 iterations ok 6 - drand values between 0 and 1-eps ok 7 - drand supplies at least 21 bits (got 53) ok 8 - drand(10): all in range [0,10) @@ -3982,128 +4018,128 @@ ok 246 - factor_exp looks right ok 247 - factors(456789) ok 248 - scalar factors(456789) -ok 249 - factors(5) -ok 250 - scalar factors(5) +ok 249 - factors(0) +ok 250 - scalar factors(0) ok 251 - factors(123456) ok 252 - scalar factors(123456) -ok 253 - factors(3) -ok 254 - scalar factors(3) -ok 255 - factors(30107) -ok 256 - scalar factors(30107) +ok 253 - factors(2) +ok 254 - scalar factors(2) +ok 255 - factors(4) +ok 256 - scalar factors(4) ok 257 - factors(1) ok 258 - scalar factors(1) -ok 259 - factors(2) -ok 260 - scalar factors(2) -ok 261 - factors(115553) -ok 262 - scalar factors(115553) -ok 263 - factors(0) -ok 264 - scalar factors(0) -ok 265 - factors(4) -ok 266 - scalar factors(4) -ok 267 - divisors(42) -ok 268 - scalar divisors(42) -ok 269 - divisor_sum(42,0) -ok 270 - divisor_sum(42) -ok 271 - divisors(1) -ok 272 - scalar divisors(1) -ok 273 - divisor_sum(1,0) -ok 274 - divisor_sum(1) -ok 275 - divisors(30107) -ok 276 - scalar divisors(30107) -ok 277 - divisor_sum(30107,0) -ok 278 - divisor_sum(30107) -ok 279 - divisors(2) -ok 280 - scalar divisors(2) -ok 281 - divisor_sum(2,0) -ok 282 - divisor_sum(2) -ok 283 - divisors(0) -ok 284 - scalar divisors(0) -ok 285 - divisor_sum(0,0) -ok 286 - divisor_sum(0) -ok 287 - divisors(12) -ok 288 - scalar divisors(12) -ok 289 - divisor_sum(12,0) -ok 290 - divisor_sum(12) -ok 291 - divisors(4) -ok 292 - scalar divisors(4) -ok 293 - divisor_sum(4,0) -ok 294 - divisor_sum(4) -ok 295 - divisors(1032924637) -ok 296 - scalar divisors(1032924637) -ok 297 - divisor_sum(1032924637,0) -ok 298 - divisor_sum(1032924637) -ok 299 - divisors(456789) -ok 300 - scalar divisors(456789) -ok 301 - divisor_sum(456789,0) -ok 302 - divisor_sum(456789) -ok 303 - divisors(16) -ok 304 - scalar divisors(16) -ok 305 - divisor_sum(16,0) -ok 306 - divisor_sum(16) -ok 307 - divisors(10) -ok 308 - scalar divisors(10) -ok 309 - divisor_sum(10,0) -ok 310 - divisor_sum(10) -ok 311 - divisors(1234567890) -ok 312 - scalar divisors(1234567890) -ok 313 - divisor_sum(1234567890,0) -ok 314 - divisor_sum(1234567890) +ok 259 - factors(30107) +ok 260 - scalar factors(30107) +ok 261 - factors(3) +ok 262 - scalar factors(3) +ok 263 - factors(5) +ok 264 - scalar factors(5) +ok 265 - factors(115553) +ok 266 - scalar factors(115553) +ok 267 - divisors(4) +ok 268 - scalar divisors(4) +ok 269 - divisor_sum(4,0) +ok 270 - divisor_sum(4) +ok 271 - divisors(10) +ok 272 - scalar divisors(10) +ok 273 - divisor_sum(10,0) +ok 274 - divisor_sum(10) +ok 275 - divisors(456789) +ok 276 - scalar divisors(456789) +ok 277 - divisor_sum(456789,0) +ok 278 - divisor_sum(456789) +ok 279 - divisors(0) +ok 280 - scalar divisors(0) +ok 281 - divisor_sum(0,0) +ok 282 - divisor_sum(0) +ok 283 - divisors(8) +ok 284 - scalar divisors(8) +ok 285 - divisor_sum(8,0) +ok 286 - divisor_sum(8) +ok 287 - divisors(3) +ok 288 - scalar divisors(3) +ok 289 - divisor_sum(3,0) +ok 290 - divisor_sum(3) +ok 291 - divisors(1032924637) +ok 292 - scalar divisors(1032924637) +ok 293 - divisor_sum(1032924637,0) +ok 294 - divisor_sum(1032924637) +ok 295 - divisors(4567890) +ok 296 - scalar divisors(4567890) +ok 297 - divisor_sum(4567890,0) +ok 298 - divisor_sum(4567890) +ok 299 - divisors(12) +ok 300 - scalar divisors(12) +ok 301 - divisor_sum(12,0) +ok 302 - divisor_sum(12) +ok 303 - divisors(1234567890) +ok 304 - scalar divisors(1234567890) +ok 305 - divisor_sum(1234567890,0) +ok 306 - divisor_sum(1234567890) +ok 307 - divisors(42) +ok 308 - scalar divisors(42) +ok 309 - divisor_sum(42,0) +ok 310 - divisor_sum(42) +ok 311 - divisors(9) +ok 312 - scalar divisors(9) +ok 313 - divisor_sum(9,0) +ok 314 - divisor_sum(9) ok 315 - divisors(123456) ok 316 - scalar divisors(123456) ok 317 - divisor_sum(123456,0) ok 318 - divisor_sum(123456) -ok 319 - divisors(3) -ok 320 - scalar divisors(3) -ok 321 - divisor_sum(3,0) -ok 322 - divisor_sum(3) +ok 319 - divisors(2) +ok 320 - scalar divisors(2) +ok 321 - divisor_sum(2,0) +ok 322 - divisor_sum(2) ok 323 - divisors(6) ok 324 - scalar divisors(6) ok 325 - divisor_sum(6,0) ok 326 - divisor_sum(6) -ok 327 - divisors(8) -ok 328 - scalar divisors(8) -ok 329 - divisor_sum(8,0) -ok 330 - divisor_sum(8) -ok 331 - divisors(9) -ok 332 - scalar divisors(9) -ok 333 - divisor_sum(9,0) -ok 334 - divisor_sum(9) -ok 335 - divisors(4567890) -ok 336 - scalar divisors(4567890) -ok 337 - divisor_sum(4567890,0) -ok 338 - divisor_sum(4567890) -ok 339 - divisors(115553) -ok 340 - scalar divisors(115553) -ok 341 - divisor_sum(115553,0) -ok 342 - divisor_sum(115553) -ok 343 - divisors(5) -ok 344 - scalar divisors(5) -ok 345 - divisor_sum(5,0) -ok 346 - divisor_sum(5) +ok 327 - divisors(5) +ok 328 - scalar divisors(5) +ok 329 - divisor_sum(5,0) +ok 330 - divisor_sum(5) +ok 331 - divisors(115553) +ok 332 - scalar divisors(115553) +ok 333 - divisor_sum(115553,0) +ok 334 - divisor_sum(115553) +ok 335 - divisors(16) +ok 336 - scalar divisors(16) +ok 337 - divisor_sum(16,0) +ok 338 - divisor_sum(16) +ok 339 - divisors(1) +ok 340 - scalar divisors(1) +ok 341 - divisor_sum(1,0) +ok 342 - divisor_sum(1) +ok 343 - divisors(30107) +ok 344 - scalar divisors(30107) +ok 345 - divisor_sum(30107,0) +ok 346 - divisor_sum(30107) ok 347 - divisors(7) ok 348 - scalar divisors(7) ok 349 - divisor_sum(7,0) ok 350 - divisor_sum(7) -ok 351 - factor_exp(3) -ok 352 - scalar factor_exp(3) -ok 353 - factor_exp(1) -ok 354 - scalar factor_exp(1) -ok 355 - factor_exp(2) -ok 356 - scalar factor_exp(2) +ok 351 - factor_exp(1) +ok 352 - scalar factor_exp(1) +ok 353 - factor_exp(30107) +ok 354 - scalar factor_exp(30107) +ok 355 - factor_exp(5) +ok 356 - scalar factor_exp(5) ok 357 - factor_exp(115553) ok 358 - scalar factor_exp(115553) -ok 359 - factor_exp(30107) -ok 360 - scalar factor_exp(30107) +ok 359 - factor_exp(3) +ok 360 - scalar factor_exp(3) ok 361 - factor_exp(123456) ok 362 - scalar factor_exp(123456) -ok 363 - factor_exp(4) -ok 364 - scalar factor_exp(4) -ok 365 - factor_exp(0) -ok 366 - scalar factor_exp(0) -ok 367 - factor_exp(456789) -ok 368 - scalar factor_exp(456789) -ok 369 - factor_exp(5) -ok 370 - scalar factor_exp(5) +ok 363 - factor_exp(2) +ok 364 - scalar factor_exp(2) +ok 365 - factor_exp(456789) +ok 366 - scalar factor_exp(456789) +ok 367 - factor_exp(0) +ok 368 - scalar factor_exp(0) +ok 369 - factor_exp(4) +ok 370 - scalar factor_exp(4) ok 371 - trial_factor(1) ok 372 - trial_factor(4) ok 373 - trial_factor(9) @@ -4231,12 +4267,12 @@ ok 3 - primes 0 .. 499 in reverse order ok 4 - 51 primes using array slice ok 5 - random array slice of small primes -ok 6 - primes[4500] == 43063 -ok 7 - primes[78901] == 1005413 -ok 8 - primes[377] == 2593 -ok 9 - primes[123456] == 1632913 -ok 10 - primes[15678] == 172157 -ok 11 - primes[30107] == 351707 +ok 6 - primes[30107] == 351707 +ok 7 - primes[15678] == 172157 +ok 8 - primes[123456] == 1632913 +ok 9 - primes[78901] == 1005413 +ok 10 - primes[4500] == 43063 +ok 11 - primes[377] == 2593 ok 12 - primes[1999] == 17389 ok 13 - primes[4999] == 48611 ok 14 - shift 2 @@ -4263,42 +4299,42 @@ ok 6 - Primes between 0 and 1069 ok 7 - Primes between 0 and 1070 ok 8 - Primes between 0 and 1086 -ok 9 - primes(1) should return [] -ok 10 - primes(18) should return [2 3 5 7 11 13 17] -ok 11 - primes(2) should return [2] -ok 12 - primes(11) should return [2 3 5 7 11] -ok 13 - primes(4) should return [2 3] -ok 14 - primes(7) should return [2 3 5 7] -ok 15 - primes(6) should return [2 3 5] -ok 16 - primes(0) should return [] -ok 17 - primes(5) should return [2 3 5] +ok 9 - primes(2) should return [2] +ok 10 - primes(5) should return [2 3 5] +ok 11 - primes(20) should return [2 3 5 7 11 13 17 19] +ok 12 - primes(6) should return [2 3 5] +ok 13 - primes(19) should return [2 3 5 7 11 13 17 19] +ok 14 - primes(4) should return [2 3] +ok 15 - primes(0) should return [] +ok 16 - primes(7) should return [2 3 5 7] +ok 17 - primes(1) should return [] ok 18 - primes(3) should return [2 3] -ok 19 - primes(19) should return [2 3 5 7 11 13 17 19] -ok 20 - primes(20) should return [2 3 5 7 11 13 17 19] -ok 21 - primes(3089,3163) should return [3089 3109 3119 3121 3137 3163] +ok 19 - primes(18) should return [2 3 5 7 11 13 17] +ok 20 - primes(11) should return [2 3 5 7 11] +ok 21 - primes(3090,3162) should return [3109 3119 3121 3137] ok 22 - primes(2,20) should return [2 3 5 7 11 13 17 19] ok 23 - primes(2010733,2010881) should return [2010733 2010881] -ok 24 - primes(3,7) should return [3 5 7] -ok 25 - primes(2,2) should return [2] -ok 26 - primes(2010734,2010880) should return [] -ok 27 - primes(4,8) should return [5 7] -ok 28 - primes(3,3) should return [3] -ok 29 - primes(20,2) should return [] -ok 30 - primes(1,1) should return [] -ok 31 - primes(2,5) should return [2 3 5] -ok 32 - primes(3088,3164) should return [3089 3109 3119 3121 3137 3163] -ok 33 - primes(3842610774,3842611108) should return [] -ok 34 - primes(30,70) should return [31 37 41 43 47 53 59 61 67] -ok 35 - primes(3842610773,3842611109) should return [3842610773 3842611109] -ok 36 - primes(3,9) should return [3 5 7] -ok 37 - primes(70,30) should return [] -ok 38 - primes(2,3) should return [2 3] +ok 24 - primes(1,1) should return [] +ok 25 - primes(3089,3163) should return [3089 3109 3119 3121 3137 3163] +ok 26 - primes(3,7) should return [3 5 7] +ok 27 - primes(2010734,2010880) should return [] +ok 28 - primes(2,3) should return [2 3] +ok 29 - primes(3842610774,3842611108) should return [] +ok 30 - primes(3,9) should return [3 5 7] +ok 31 - primes(20,2) should return [] +ok 32 - primes(2,2) should return [2] +ok 33 - primes(3842610773,3842611109) should return [3842610773 3842611109] +ok 34 - primes(70,30) should return [] +ok 35 - primes(3088,3164) should return [3089 3109 3119 3121 3137 3163] +ok 36 - primes(3,3) should return [3] +ok 37 - primes(2,5) should return [2 3 5] +ok 38 - primes(30,70) should return [31 37 41 43 47 53 59 61 67] ok 39 - primes(3,6) should return [3 5] -ok 40 - primes(3090,3162) should return [3109 3119 3121 3137] -ok 41 - next prime of 360653 is 360653+96 -ok 42 - prev prime of 360653+96 is 360653 -ok 43 - next prime of 2010733 is 2010733+148 -ok 44 - prev prime of 2010733+148 is 2010733 +ok 40 - primes(4,8) should return [5 7] +ok 41 - next prime of 2010733 is 2010733+148 +ok 42 - prev prime of 2010733+148 is 2010733 +ok 43 - next prime of 360653 is 360653+96 +ok 44 - prev prime of 360653+96 is 360653 ok 45 - next prime of 19609 is 19609+52 ok 46 - prev prime of 19609+52 is 19609 ok 47 - next prime of 19608 is 19609 @@ -4312,115 +4348,115 @@ ok 55 - next_prime for 148 primes before primegap end 2010881 ok 56 - prev_prime for 148 primes before primegap start 2010733 ok 57 - next_prime(1234567890) == 1234567891) -ok 58 - Pi(1000) = 168 -ok 59 - Pi(10000) = 1229 -ok 60 - Pi(65535) = 6542 -ok 61 - Pi(10) = 4 -ok 62 - Pi(60067) = 6062 -ok 63 - Pi(100) = 25 -ok 64 - Pi(1) = 0 -ok 65 - prime_count(191912784 +247) = 1 -ok 66 - prime_count(191912784 +246) = 0 -ok 67 - prime_count(191912783 +248) = 2 -ok 68 - prime_count(4 to 16) = 4 -ok 69 - prime_count(4 to 17) = 5 +ok 58 - Pi(100) = 25 +ok 59 - Pi(10) = 4 +ok 60 - Pi(10000) = 1229 +ok 61 - Pi(1) = 0 +ok 62 - Pi(1000) = 168 +ok 63 - Pi(65535) = 6542 +ok 64 - Pi(60067) = 6062 +ok 65 - prime_count(1e9 +2**14) = 785 +ok 66 - prime_count(4 to 16) = 4 +ok 67 - prime_count(4 to 17) = 5 +ok 68 - prime_count(17 to 13) = 0 +ok 69 - prime_count(191912783 +248) = 2 ok 70 - prime_count(191912783 +247) = 1 ok 71 - prime_count(3 to 17) = 6 -ok 72 - prime_count(17 to 13) = 0 -ok 73 - prime_count(1e9 +2**14) = 785 +ok 72 - prime_count(191912784 +246) = 0 +ok 73 - prime_count(191912784 +247) = 1 ok 74 - prime_count_lower(450) ok 75 - prime_count_upper(450) ok 76 - prime_count_lower(1234567) in range ok 77 - prime_count_upper(1234567) in range ok 78 - prime_count_lower(412345678) in range ok 79 - prime_count_upper(412345678) in range -ok 80 - nth_prime(168) <= 1000 -ok 81 - nth_prime(169) >= 1000 -ok 82 - nth_prime(1229) <= 10000 -ok 83 - nth_prime(1230) >= 10000 -ok 84 - nth_prime(6542) <= 65535 -ok 85 - nth_prime(6543) >= 65535 -ok 86 - nth_prime(4) <= 10 -ok 87 - nth_prime(5) >= 10 -ok 88 - nth_prime(6062) <= 60067 -ok 89 - nth_prime(6063) >= 60067 -ok 90 - nth_prime(25) <= 100 -ok 91 - nth_prime(26) >= 100 -ok 92 - nth_prime(0) <= 1 -ok 93 - nth_prime(1) >= 1 +ok 80 - nth_prime(25) <= 100 +ok 81 - nth_prime(26) >= 100 +ok 82 - nth_prime(4) <= 10 +ok 83 - nth_prime(5) >= 10 +ok 84 - nth_prime(1229) <= 10000 +ok 85 - nth_prime(1230) >= 10000 +ok 86 - nth_prime(0) <= 1 +ok 87 - nth_prime(1) >= 1 +ok 88 - nth_prime(168) <= 1000 +ok 89 - nth_prime(169) >= 1000 +ok 90 - nth_prime(6542) <= 65535 +ok 91 - nth_prime(6543) >= 65535 +ok 92 - nth_prime(6062) <= 60067 +ok 93 - nth_prime(6063) >= 60067 ok 94 - nth_prime(1000) = 7919 -ok 95 - nth_prime(100) = 541 -ok 96 - nth_prime(10) = 29 -ok 97 - nth_prime(1) = 2 +ok 95 - nth_prime(1) = 2 +ok 96 - nth_prime(100) = 541 +ok 97 - nth_prime(10) = 29 ok 98 - MR with 0 shortcut composite ok 99 - MR with 0 shortcut composite ok 100 - MR with 2 shortcut prime ok 101 - MR with 3 shortcut prime ok 102 - 5 pseudoprimes (base 7) -ok 103 - 4 pseudoprimes (base 13) -ok 104 - 4 pseudoprimes (base 11) -ok 105 - 5 pseudoprimes (base aeslucas2) -ok 106 - 4 pseudoprimes (base 23) -ok 107 - 5 pseudoprimes (base slucas) -ok 108 - 5 pseudoprimes (base psp2) -ok 109 - 5 pseudoprimes (base 17) -ok 110 - 4 pseudoprimes (base 73) -ok 111 - 5 pseudoprimes (base 2) -ok 112 - 5 pseudoprimes (base aeslucas1) -ok 113 - 5 pseudoprimes (base psp3) -ok 114 - 4 pseudoprimes (base 3) -ok 115 - 5 pseudoprimes (base 37) -ok 116 - 4 pseudoprimes (base 61) -ok 117 - 4 pseudoprimes (base 5) -ok 118 - 5 pseudoprimes (base 29) -ok 119 - 5 pseudoprimes (base 19) -ok 120 - 5 pseudoprimes (base 31) -ok 121 - 5 pseudoprimes (base lucas) -ok 122 - 6 pseudoprimes (base eslucas) -ok 123 - Ei(40) ~= 6039718263611242 -ok 124 - Ei(1.5) ~= 3.3012854491298 -ok 125 - Ei(-1e-05) ~= -10.9357198000437 -ok 126 - Ei(12) ~= 14959.5326663975 -ok 127 - Ei(5) ~= 40.1852753558032 -ok 128 - Ei(10) ~= 2492.22897624188 -ok 129 - Ei(-0.1) ~= -1.82292395841939 -ok 130 - Ei(20) ~= 25615652.6640566 -ok 131 - Ei(-1e-08) ~= -17.8434650890508 -ok 132 - Ei(-10) ~= -4.15696892968532e-06 +ok 103 - 5 pseudoprimes (base 17) +ok 104 - 5 pseudoprimes (base 31) +ok 105 - 6 pseudoprimes (base eslucas) +ok 106 - 5 pseudoprimes (base slucas) +ok 107 - 4 pseudoprimes (base 23) +ok 108 - 4 pseudoprimes (base 3) +ok 109 - 5 pseudoprimes (base lucas) +ok 110 - 5 pseudoprimes (base psp2) +ok 111 - 4 pseudoprimes (base 11) +ok 112 - 5 pseudoprimes (base 37) +ok 113 - 5 pseudoprimes (base aeslucas2) +ok 114 - 5 pseudoprimes (base 29) +ok 115 - 4 pseudoprimes (base 61) +ok 116 - 5 pseudoprimes (base 19) +ok 117 - 4 pseudoprimes (base 73) +ok 118 - 5 pseudoprimes (base 2) +ok 119 - 4 pseudoprimes (base 13) +ok 120 - 5 pseudoprimes (base psp3) +ok 121 - 4 pseudoprimes (base 5) +ok 122 - 5 pseudoprimes (base aeslucas1) +ok 123 - Ei(2) ~= 4.95423435600189 +ok 124 - Ei(-10) ~= -4.15696892968532e-06 +ok 125 - Ei(20) ~= 25615652.6640566 +ok 126 - Ei(5) ~= 40.1852753558032 +ok 127 - Ei(0.693147180559945) ~= 1.04516378011749 +ok 128 - Ei(1.5) ~= 3.3012854491298 +ok 129 - Ei(-0.5) ~= -0.55977359477616 +ok 130 - Ei(-0.001) ~= -6.33153936413615 +ok 131 - Ei(12) ~= 14959.5326663975 +ok 132 - Ei(-1e-05) ~= -10.9357198000437 ok 133 - Ei(41) ~= 1.6006649143245e+16 -ok 134 - Ei(1) ~= 1.89511781635594 -ok 135 - Ei(2) ~= 4.95423435600189 -ok 136 - Ei(-0.5) ~= -0.55977359477616 -ok 137 - Ei(0.693147180559945) ~= 1.04516378011749 -ok 138 - Ei(-0.001) ~= -6.33153936413615 -ok 139 - li(100000) ~= 9629.8090010508 -ok 140 - li(1000) ~= 177.609657990152 +ok 134 - Ei(40) ~= 6039718263611242 +ok 135 - Ei(-0.1) ~= -1.82292395841939 +ok 136 - Ei(1) ~= 1.89511781635594 +ok 137 - Ei(-1e-08) ~= -17.8434650890508 +ok 138 - Ei(10) ~= 2492.22897624188 +ok 139 - li(1.01) ~= -4.02295867392994 +ok 140 - li(24) ~= 11.2003157952327 ok 141 - li(100000000000) ~= 4118066400.62161 -ok 142 - li(2) ~= 1.04516378011749 -ok 143 - li(10) ~= 6.1655995047873 -ok 144 - li(4294967295) ~= 203284081.954542 -ok 145 - li(100000000) ~= 5762209.37544803 -ok 146 - li(1.01) ~= -4.02295867392994 -ok 147 - li(10000000000) ~= 455055614.586623 -ok 148 - li(24) ~= 11.2003157952327 -ok 149 - li(0) ~= 0 -ok 150 - R(18446744073709551615) ~= 4.25656284014012e+17 -ok 151 - R(2) ~= 1.54100901618713 +ok 142 - li(10) ~= 6.1655995047873 +ok 143 - li(4294967295) ~= 203284081.954542 +ok 144 - li(100000000) ~= 5762209.37544803 +ok 145 - li(0) ~= 0 +ok 146 - li(10000000000) ~= 455055614.586623 +ok 147 - li(100000) ~= 9629.8090010508 +ok 148 - li(1000) ~= 177.609657990152 +ok 149 - li(2) ~= 1.04516378011749 +ok 150 - R(2) ~= 1.54100901618713 +ok 151 - R(1000) ~= 168.359446281167 ok 152 - R(10000000000) ~= 455050683.306847 -ok 153 - R(1000) ~= 168.359446281167 -ok 154 - R(4294967295) ~= 203280697.513261 -ok 155 - R(1000000) ~= 78527.3994291277 -ok 156 - R(1.01) ~= 1.00606971806229 -ok 157 - R(10000000) ~= 664667.447564748 -ok 158 - R(10) ~= 4.56458314100509 -ok 159 - Zeta(4.5) ~= 0.0547075107614543 -ok 160 - Zeta(180) ~= 6.52530446799852e-55 -ok 161 - Zeta(20.6) ~= 6.29339157357821e-07 -ok 162 - Zeta(80) ~= 8.27180612553034e-25 -ok 163 - Zeta(7) ~= 0.00834927738192283 -ok 164 - Zeta(2) ~= 0.644934066848226 -ok 165 - Zeta(8.5) ~= 0.00285925088241563 -ok 166 - Zeta(2.5) ~= 0.341487257250917 +ok 153 - R(18446744073709551615) ~= 4.25656284014012e+17 +ok 154 - R(1000000) ~= 78527.3994291277 +ok 155 - R(10000000) ~= 664667.447564748 +ok 156 - R(4294967295) ~= 203280697.513261 +ok 157 - R(10) ~= 4.56458314100509 +ok 158 - R(1.01) ~= 1.00606971806229 +ok 159 - Zeta(80) ~= 8.27180612553034e-25 +ok 160 - Zeta(4.5) ~= 0.0547075107614543 +ok 161 - Zeta(180) ~= 6.52530446799852e-55 +ok 162 - Zeta(2) ~= 0.644934066848226 +ok 163 - Zeta(8.5) ~= 0.00285925088241563 +ok 164 - Zeta(2.5) ~= 0.341487257250917 +ok 165 - Zeta(20.6) ~= 6.29339157357821e-07 +ok 166 - Zeta(7) ~= 0.00834927738192283 ok 167 - LambertW(6588) ok 168 - test factoring for 34 primes ok 169 - test factoring for 141 composites @@ -4523,17 +4559,17 @@ ok 266 - vecmax(2^32-1000,2^32-2000,2^32-3000) ok 267 - chebyshev_theta(7001) =~ 6929.2748 ok 268 - chebyshev_psi(6588) =~ 6597.07453 -ok 269 - is_prob_prime(36010357) should be 2 -ok 270 - is_prob_prime(7080249) should be 0 -ok 271 - is_prob_prime(7080233) should be 2 -ok 272 - is_prob_prime(697) should be 0 -ok 273 - is_prob_prime(10) should be 0 -ok 274 - is_prob_prime(5) should be 2 -ok 275 - is_prob_prime(17471061) should be 0 -ok 276 - is_prob_prime(347) should be 2 -ok 277 - is_prob_prime(17471059) should be 2 -ok 278 - is_prob_prime(49) should be 0 -ok 279 - is_prob_prime(36010359) should be 0 +ok 269 - is_prob_prime(49) should be 0 +ok 270 - is_prob_prime(36010359) should be 0 +ok 271 - is_prob_prime(5) should be 2 +ok 272 - is_prob_prime(36010357) should be 2 +ok 273 - is_prob_prime(17471059) should be 2 +ok 274 - is_prob_prime(347) should be 2 +ok 275 - is_prob_prime(7080249) should be 0 +ok 276 - is_prob_prime(697) should be 0 +ok 277 - is_prob_prime(17471061) should be 0 +ok 278 - is_prob_prime(7080233) should be 2 +ok 279 - is_prob_prime(10) should be 0 ok 280 - primorial(24) ok 281 - primorial(118) ok 282 - pn_primorial(7) @@ -4585,20 +4621,20 @@ ok 26 - 890745785790123461234805903467891234681234 is not probably prime ok 27 - 3317044064679887385961981 is not prime ok 28 - 3317044064679887385961981 is not probably prime -ok 29 - 3825123056546413051 is not prime -ok 30 - 3825123056546413051 is not probably prime -ok 31 - 318665857834031151167461 is not prime -ok 32 - 318665857834031151167461 is not probably prime -ok 33 - 21652684502221 is not prime -ok 34 - 21652684502221 is not probably prime -ok 35 - 75792980677 is not prime -ok 36 - 75792980677 is not probably prime -ok 37 - 59276361075595573263446330101 is not prime -ok 38 - 59276361075595573263446330101 is not probably prime -ok 39 - 564132928021909221014087501701 is not prime -ok 40 - 564132928021909221014087501701 is not probably prime -ok 41 - 6003094289670105800312596501 is not prime -ok 42 - 6003094289670105800312596501 is not probably prime +ok 29 - 75792980677 is not prime +ok 30 - 75792980677 is not probably prime +ok 31 - 59276361075595573263446330101 is not prime +ok 32 - 59276361075595573263446330101 is not probably prime +ok 33 - 3825123056546413051 is not prime +ok 34 - 3825123056546413051 is not probably prime +ok 35 - 6003094289670105800312596501 is not prime +ok 36 - 6003094289670105800312596501 is not probably prime +ok 37 - 318665857834031151167461 is not prime +ok 38 - 318665857834031151167461 is not probably prime +ok 39 - 21652684502221 is not prime +ok 40 - 21652684502221 is not probably prime +ok 41 - 564132928021909221014087501701 is not prime +ok 42 - 564132928021909221014087501701 is not probably prime ok 43 - 65635624165761929287 is prime ok 44 - 65635624165761929287 is provably prime ok 45 - 1162566711635022452267983 is prime @@ -4616,13 +4652,13 @@ ok 57 - iterator 3 primes starting at 10^24+910 ok 58 - prime_count(87..7752, 87..7872) ok 59 - 3317044064679887385961981 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,73,325,9375 -ok 60 - 3825123056546413051 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,325,9375 -ok 61 - 318665857834031151167461 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,325,9375 -ok 62 - 21652684502221 is a strong pseudoprime to bases 2,7,37,61,9375 -ok 63 - 75792980677 is a strong pseudoprime to bases 2 -ok 64 - 59276361075595573263446330101 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,325,9375 -ok 65 - 564132928021909221014087501701 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,325,9375 -ok 66 - 6003094289670105800312596501 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,61,325,9375 +ok 60 - 75792980677 is a strong pseudoprime to bases 2 +ok 61 - 59276361075595573263446330101 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,325,9375 +ok 62 - 3825123056546413051 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,325,9375 +ok 63 - 6003094289670105800312596501 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,61,325,9375 +ok 64 - 318665857834031151167461 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,325,9375 +ok 65 - 21652684502221 is a strong pseudoprime to bases 2,7,37,61,9375 +ok 66 - 564132928021909221014087501701 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,325,9375 ok 67 - PC approx(31415926535897932384) ok 68 - prime count bounds for 31415926535897932384 are in the right order ok 69 - PC lower with RH @@ -4699,7 +4735,7 @@ t/94-weaken.t ................ skipped: these tests are for release candidate testing t/97-synopsis.t .............. skipped: these tests are for release candidate testing All tests successful. -Files=79, Tests=4065, 115 wallclock secs ( 4.21 usr 0.91 sys + 104.25 cusr 8.83 csys = 118.20 CPU) +Files=79, Tests=4065, 370 wallclock secs ( 3.44 usr 0.78 sys + 110.78 cusr 7.68 csys = 122.68 CPU) Result: PASS make[1]: Leaving directory '/build/reproducible-path/libmath-prime-util-perl-0.73' create-stamp debian/debhelper-build-stamp @@ -4707,7 +4743,7 @@ debian/rules override_dh_auto_install make[1]: Entering directory '/build/reproducible-path/libmath-prime-util-perl-0.73' dh_auto_install - make -j3 install DESTDIR=/build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl AM_UPDATE_INFO_DIR=no PREFIX=/usr + make -j6 install DESTDIR=/build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl AM_UPDATE_INFO_DIR=no PREFIX=/usr make[2]: Entering directory '/build/reproducible-path/libmath-prime-util-perl-0.73' "/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- Util.bs blib/arch/auto/Math/Prime/Util/Util.bs 644 Manifying 14 pod documents @@ -4715,34 +4751,34 @@ Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/auto/Math/Prime/Util/Util.so Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/ntheory.pm Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util.pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/PPFE.pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/RandomPrimes.pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/PrimeIterator.pm Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/PrimalityProving.pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/PrimeIterator.pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/MemFree.pm Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/ECAffinePoint.pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/ChaCha.pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/ZetaBigFloat.pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/Entropy.pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/PrimeArray.pm Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/ECProjectivePoint.pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/RandomPrimes.pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/Entropy.pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/PPFE.pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/ZetaBigFloat.pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/ChaCha.pm Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/PP.pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/PrimeArray.pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/lib/arm-linux-gnueabihf/perl5/5.40/Math/Prime/Util/MemFree.pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::PP.3pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::PrimeArray.3pm Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::ChaCha.3pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::ECProjectivePoint.3pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::PPFE.3pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util.3pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::RandomPrimes.3pm Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::PrimeIterator.3pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::Entropy.3pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::MemFree.3pm Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::ZetaBigFloat.3pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::PrimeArray.3pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util.3pm Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/ntheory.3pm Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::ECAffinePoint.3pm Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::PrimalityProving.3pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::Entropy.3pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::MemFree.3pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::RandomPrimes.3pm -Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/bin/primes.pl +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::PP.3pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::PPFE.3pm +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man3/Math::Prime::Util::ECProjectivePoint.3pm Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/bin/factor.pl +Installing /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/bin/primes.pl make[2]: Leaving directory '/build/reproducible-path/libmath-prime-util-perl-0.73' mv /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/bin/primes.pl /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/bin/primes mkdir -p /build/reproducible-path/libmath-prime-util-perl-0.73/debian/libmath-prime-util-perl/usr/share/man/man1 @@ -4788,12 +4824,14 @@ dpkg-buildpackage: info: binary-only upload (no source included) dpkg-genchanges: info: not including original source code in upload I: copying local configuration +I: user script /srv/workspace/pbuilder/12544/tmp/hooks/B01_cleanup starting +I: user script /srv/workspace/pbuilder/12544/tmp/hooks/B01_cleanup finished I: unmounting dev/ptmx filesystem I: unmounting dev/pts filesystem I: unmounting dev/shm filesystem I: unmounting proc filesystem I: unmounting sys filesystem I: cleaning the build env -I: removing directory /srv/workspace/pbuilder/25940 and its subdirectories -I: Current time: Wed Dec 18 02:06:34 -12 2024 -I: pbuilder-time-stamp: 1734530794 +I: removing directory /srv/workspace/pbuilder/12544 and its subdirectories +I: Current time: Thu Dec 19 04:26:33 +14 2024 +I: pbuilder-time-stamp: 1734531993