Diff of the two buildlogs: -- --- b1/build.log 2025-02-08 19:39:16.019016418 +0000 +++ b2/build.log 2025-02-08 19:51:14.882433702 +0000 @@ -1,6 +1,6 @@ I: pbuilder: network access will be disabled during build -I: Current time: Fri Mar 13 13:57:41 -12 2026 -I: pbuilder-time-stamp: 1773453461 +I: Current time: Sun Feb 9 09:39:18 +14 2025 +I: pbuilder-time-stamp: 1739043558 I: Building the build Environment I: extracting base tarball [/var/cache/pbuilder/trixie-reproducible-base.tgz] I: copying local configuration @@ -24,52 +24,84 @@ dpkg-source: info: applying add-Makefile.patch I: Not using root during the build. I: Installing the build-deps -I: user script /srv/workspace/pbuilder/2378953/tmp/hooks/D02_print_environment starting +I: user script /srv/workspace/pbuilder/4000832/tmp/hooks/D01_modify_environment starting +debug: Running on ionos1-amd64. +I: Changing host+domainname to test build reproducibility +I: Adding a custom variable just for the fun of it... +I: Changing /bin/sh to bash +'/bin/sh' -> '/bin/bash' +lrwxrwxrwx 1 root root 9 Feb 8 19:39 /bin/sh -> /bin/bash +I: Setting pbuilder2's login shell to /bin/bash +I: Setting pbuilder2's GECOS to second user,second room,second work-phone,second home-phone,second other +I: user script /srv/workspace/pbuilder/4000832/tmp/hooks/D01_modify_environment finished +I: user script /srv/workspace/pbuilder/4000832/tmp/hooks/D02_print_environment starting I: set - BUILDDIR='/build/reproducible-path' - BUILDUSERGECOS='first user,first room,first work-phone,first home-phone,first other' - BUILDUSERNAME='pbuilder1' - BUILD_ARCH='amd64' - DEBIAN_FRONTEND='noninteractive' - DEB_BUILD_OPTIONS='buildinfo=+all reproducible=+all parallel=42 ' - DISTRIBUTION='trixie' - HOME='/root' - HOST_ARCH='amd64' + BASH=/bin/sh + BASHOPTS=checkwinsize:cmdhist:complete_fullquote:extquote:force_fignore:globasciiranges:globskipdots:hostcomplete:interactive_comments:patsub_replacement:progcomp:promptvars:sourcepath + BASH_ALIASES=() + BASH_ARGC=() + BASH_ARGV=() + BASH_CMDS=() + BASH_LINENO=([0]="12" [1]="0") + BASH_LOADABLES_PATH=/usr/local/lib/bash:/usr/lib/bash:/opt/local/lib/bash:/usr/pkg/lib/bash:/opt/pkg/lib/bash:. + BASH_SOURCE=([0]="/tmp/hooks/D02_print_environment" [1]="/tmp/hooks/D02_print_environment") + BASH_VERSINFO=([0]="5" [1]="2" [2]="37" [3]="1" [4]="release" [5]="x86_64-pc-linux-gnu") + BASH_VERSION='5.2.37(1)-release' + BUILDDIR=/build/reproducible-path + BUILDUSERGECOS='second user,second room,second work-phone,second home-phone,second other' + BUILDUSERNAME=pbuilder2 + BUILD_ARCH=amd64 + DEBIAN_FRONTEND=noninteractive + DEB_BUILD_OPTIONS='buildinfo=+all reproducible=+all parallel=20 ' + DIRSTACK=() + DISTRIBUTION=trixie + EUID=0 + FUNCNAME=([0]="Echo" [1]="main") + GROUPS=() + HOME=/root + HOSTNAME=i-capture-the-hostname + HOSTTYPE=x86_64 + HOST_ARCH=amd64 IFS=' ' - INVOCATION_ID='8da15cc20eef4aff96cff8932d2ac542' - LANG='C' - LANGUAGE='en_US:en' - LC_ALL='C' - MAIL='/var/mail/root' - OPTIND='1' - PATH='/usr/sbin:/usr/bin:/sbin:/bin:/usr/games' - PBCURRENTCOMMANDLINEOPERATION='build' - PBUILDER_OPERATION='build' - PBUILDER_PKGDATADIR='/usr/share/pbuilder' - PBUILDER_PKGLIBDIR='/usr/lib/pbuilder' - PBUILDER_SYSCONFDIR='/etc' - PPID='2378953' - PS1='# ' - PS2='> ' + INVOCATION_ID=d4fa6cbdc9d340e8b1d515a4cdc167f5 + LANG=C + LANGUAGE=et_EE:et + LC_ALL=C + MACHTYPE=x86_64-pc-linux-gnu + MAIL=/var/mail/root + OPTERR=1 + OPTIND=1 + OSTYPE=linux-gnu + PATH=/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/i/capture/the/path + PBCURRENTCOMMANDLINEOPERATION=build + PBUILDER_OPERATION=build + PBUILDER_PKGDATADIR=/usr/share/pbuilder + PBUILDER_PKGLIBDIR=/usr/lib/pbuilder + PBUILDER_SYSCONFDIR=/etc + PIPESTATUS=([0]="0") + POSIXLY_CORRECT=y + PPID=4000832 PS4='+ ' - PWD='/' - SHELL='/bin/bash' - SHLVL='2' - SUDO_COMMAND='/usr/bin/timeout -k 18.1h 18h /usr/bin/ionice -c 3 /usr/bin/nice /usr/sbin/pbuilder --build --configfile /srv/reproducible-results/rbuild-debian/r-b-build.LYWyOqwX/pbuilderrc_9Fzp --distribution trixie --hookdir /etc/pbuilder/first-build-hooks --debbuildopts -b --basetgz /var/cache/pbuilder/trixie-reproducible-base.tgz --buildresult /srv/reproducible-results/rbuild-debian/r-b-build.LYWyOqwX/b1 --logfile b1/build.log octave-signal_1.4.6-1.dsc' - SUDO_GID='110' - SUDO_UID='105' - SUDO_USER='jenkins' - TERM='unknown' - TZ='/usr/share/zoneinfo/Etc/GMT+12' - USER='root' - _='/usr/bin/systemd-run' - http_proxy='http://213.165.73.152:3128' + PWD=/ + SHELL=/bin/bash + SHELLOPTS=braceexpand:errexit:hashall:interactive-comments:posix + SHLVL=3 + SUDO_COMMAND='/usr/bin/timeout -k 24.1h 24h /usr/bin/ionice -c 3 /usr/bin/nice -n 11 /usr/bin/unshare --uts -- /usr/sbin/pbuilder --build --configfile /srv/reproducible-results/rbuild-debian/r-b-build.LYWyOqwX/pbuilderrc_I33w --distribution trixie --hookdir /etc/pbuilder/rebuild-hooks --debbuildopts -b --basetgz /var/cache/pbuilder/trixie-reproducible-base.tgz --buildresult /srv/reproducible-results/rbuild-debian/r-b-build.LYWyOqwX/b2 --logfile b2/build.log octave-signal_1.4.6-1.dsc' + SUDO_GID=110 + SUDO_UID=105 + SUDO_USER=jenkins + TERM=unknown + TZ=/usr/share/zoneinfo/Etc/GMT-14 + UID=0 + USER=root + _='I: set' + http_proxy=http://46.16.76.132:3128 I: uname -a - Linux ionos5-amd64 6.12.9+bpo-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.12.9-1~bpo12+1 (2025-01-19) x86_64 GNU/Linux + Linux i-capture-the-hostname 6.1.0-30-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.124-1 (2025-01-12) x86_64 GNU/Linux I: ls -l /bin - lrwxrwxrwx 1 root root 7 Nov 22 2024 /bin -> usr/bin -I: user script /srv/workspace/pbuilder/2378953/tmp/hooks/D02_print_environment finished + lrwxrwxrwx 1 root root 7 Nov 22 14:40 /bin -> usr/bin +I: user script /srv/workspace/pbuilder/4000832/tmp/hooks/D02_print_environment finished -> Attempting to satisfy build-dependencies -> Creating pbuilder-satisfydepends-dummy package Package: pbuilder-satisfydepends-dummy @@ -683,7 +715,7 @@ Get: 565 http://deb.debian.org/debian trixie/main amd64 texlive-latex-base all 2024.20241115-1 [1278 kB] Get: 566 http://deb.debian.org/debian trixie/main amd64 texlive-latex-recommended all 2024.20241115-1 [8757 kB] Get: 567 http://deb.debian.org/debian trixie/main amd64 texlive all 2024.20241115-1 [18.6 kB] -Fetched 268 MB in 19s (13.9 MB/s) +Fetched 268 MB in 15s (18.0 MB/s) Preconfiguring packages ... Selecting previously unselected package libpython3.13-minimal:amd64. (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 19842 files and directories currently installed.) @@ -2529,8 +2561,8 @@ Setting up tzdata (2024b-6) ... Current default time zone: 'Etc/UTC' -Local time is now: Sat Mar 14 01:59:23 UTC 2026. -Universal Time is now: Sat Mar 14 01:59:23 UTC 2026. +Local time is now: Sat Feb 8 19:44:36 UTC 2025. +Universal Time is now: Sat Feb 8 19:44:36 UTC 2025. Run 'dpkg-reconfigure tzdata' if you wish to change it. Setting up libxcb-present0:amd64 (1.17.0-2+b1) ... @@ -3025,7 +3057,11 @@ Building tag database... -> Finished parsing the build-deps I: Building the package -I: Running cd /build/reproducible-path/octave-signal-1.4.6/ && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games" HOME="/nonexistent/first-build" dpkg-buildpackage -us -uc -b && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games" HOME="/nonexistent/first-build" dpkg-genchanges -S > ../octave-signal_1.4.6-1_source.changes +I: user script /srv/workspace/pbuilder/4000832/tmp/hooks/A99_set_merged_usr starting +Not re-configuring usrmerge for trixie +I: user script /srv/workspace/pbuilder/4000832/tmp/hooks/A99_set_merged_usr finished +hostname: Name or service not known +I: Running cd /build/reproducible-path/octave-signal-1.4.6/ && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/i/capture/the/path" HOME="/nonexistent/second-build" dpkg-buildpackage -us -uc -b && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/i/capture/the/path" HOME="/nonexistent/second-build" dpkg-genchanges -S > ../octave-signal_1.4.6-1_source.changes dpkg-buildpackage: info: source package octave-signal dpkg-buildpackage: info: source version 1.4.6-1 dpkg-buildpackage: info: source distribution unstable @@ -3037,7 +3073,7 @@ dh_auto_clean -O--buildsystem=octave dh_octave_clean make[1]: Entering directory '/build/reproducible-path/octave-signal-1.4.6' -/bin/sh: 1: hg: not found +/bin/sh: line 1: hg: command not found make[1]: hg: No such file or directory rm -f -f doc/signal.html rm -f -f doc/signal.qhc @@ -3072,7 +3108,7 @@ chmod +x doc/mkfuncdocs.py doc/mkqhcp.py make -k doc make[2]: Entering directory '/build/reproducible-path/octave-signal-1.4.6' -/bin/sh: 1: hg: not found +/bin/sh: line 1: hg: command not found make[2]: hg: No such file or directory cd doc && ./mkfuncdocs.py --src-dir=../inst/ --src-dir=../src/ ../INDEX | sed 's/@seealso/@xseealso/g' > functions.texi Generating doc/version.texi @@ -3391,10 +3427,10 @@ /usr/bin/mkoctfile --verbose -Wall -c cl2bp.cc -o cl2bp.o /usr/bin/mkoctfile --verbose -Wall -c cl2bp_lib.cc -o cl2bp_lib.o /usr/bin/mkoctfile --verbose -Wall -c firpm.cc -o firpm.o +g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall __fwht__.cc -o /tmp/oct-l0yOdQ.o /usr/bin/mkoctfile --verbose -c mmfir.c -o mmfir.o -g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall __fwht__.cc -o /tmp/oct-fFjhZn.o /usr/bin/mkoctfile --verbose -Wall medfilt1.cc -o medfilt1.oct -g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall __ultrwin__.cc -o /tmp/oct-Dyhipo.o +g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall __ultrwin__.cc -o /tmp/oct-YXgXeR.o g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall cl2bp.cc -o cl2bp.o /usr/bin/mkoctfile --verbose -Wall remez.cc -o remez.oct g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall cl2bp_lib.cc -o cl2bp_lib.o @@ -3402,18 +3438,18 @@ g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall firpm.cc -o firpm.o /usr/bin/mkoctfile --verbose -Wall upfirdn.cc -o upfirdn.oct gcc -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -fexceptions -g -O2 -Werror=implicit-function-declaration -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection mmfir.c -o mmfir.o -g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall medfilt1.cc -o /tmp/oct-a4BM2A.o -g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall remez.cc -o /tmp/oct-YlMvgU.o -g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall sosfilt.cc -o /tmp/oct-SXqw0D.o -g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall upfirdn.cc -o /tmp/oct-2pPKpC.o -g++ -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall -o __fwht__.oct /tmp/oct-fFjhZn.o -shared -Wl,-Bsymbolic -Wl,-z,relro -flto=auto -ffat-lto-objects -Wl,-z,relro +g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall medfilt1.cc -o /tmp/oct-T5BnJp.o +g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall remez.cc -o /tmp/oct-PKkrJZ.o +g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall sosfilt.cc -o /tmp/oct-8gaHa0.o +g++ -c -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall upfirdn.cc -o /tmp/oct-v8q6Wd.o +g++ -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall -o __fwht__.oct /tmp/oct-l0yOdQ.o -shared -Wl,-Bsymbolic -Wl,-z,relro -flto=auto -ffat-lto-objects -Wl,-z,relro +g++ -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall -o upfirdn.oct /tmp/oct-v8q6Wd.o -shared -Wl,-Bsymbolic -Wl,-z,relro -flto=auto -ffat-lto-objects -Wl,-z,relro +g++ -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall -o sosfilt.oct /tmp/oct-8gaHa0.o -shared -Wl,-Bsymbolic -Wl,-z,relro -flto=auto -ffat-lto-objects -Wl,-z,relro /usr/bin/mkoctfile --verbose -Wall cl2bp.o cl2bp_lib.o -o cl2bp.oct +g++ -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall -o __ultrwin__.oct /tmp/oct-YXgXeR.o -shared -Wl,-Bsymbolic -Wl,-z,relro -flto=auto -ffat-lto-objects -Wl,-z,relro g++ -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall -o cl2bp.oct cl2bp.o cl2bp_lib.o -shared -Wl,-Bsymbolic -Wl,-z,relro -flto=auto -ffat-lto-objects -Wl,-z,relro -g++ -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall -o sosfilt.oct /tmp/oct-SXqw0D.o -shared -Wl,-Bsymbolic -Wl,-z,relro -flto=auto -ffat-lto-objects -Wl,-z,relro -g++ -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall -o medfilt1.oct /tmp/oct-a4BM2A.o -shared -Wl,-Bsymbolic -Wl,-z,relro -flto=auto -ffat-lto-objects -Wl,-z,relro -g++ -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall -o __ultrwin__.oct /tmp/oct-Dyhipo.o -shared -Wl,-Bsymbolic -Wl,-z,relro -flto=auto -ffat-lto-objects -Wl,-z,relro -g++ -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall -o remez.oct /tmp/oct-YlMvgU.o -shared -Wl,-Bsymbolic -Wl,-z,relro -flto=auto -ffat-lto-objects -Wl,-z,relro -g++ -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall -o upfirdn.oct /tmp/oct-2pPKpC.o -shared -Wl,-Bsymbolic -Wl,-z,relro -flto=auto -ffat-lto-objects -Wl,-z,relro +g++ -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall -o medfilt1.oct /tmp/oct-T5BnJp.o -shared -Wl,-Bsymbolic -Wl,-z,relro -flto=auto -ffat-lto-objects -Wl,-z,relro +g++ -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall -o remez.oct /tmp/oct-PKkrJZ.o -shared -Wl,-Bsymbolic -Wl,-z,relro -flto=auto -ffat-lto-objects -Wl,-z,relro /usr/bin/mkoctfile --verbose -Wall firpm.o mmfir.o -o firpm.oct g++ -I/usr/include/octave-9.3.0/octave/.. -I/usr/include/octave-9.3.0/octave -pthread -fopenmp -g -O2 -ffile-prefix-map=/build/reproducible-path/octave-signal-1.4.6=. -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -Wall -o firpm.oct firpm.o mmfir.o -shared -Wl,-Bsymbolic -Wl,-z,relro -flto=auto -ffat-lto-objects -Wl,-z,relro make[1]: Leaving directory '/build/reproducible-path/octave-signal-1.4.6/src' @@ -3424,6 +3460,364 @@ Checking package... Run the unit tests... Checking m files ... +[inst/isminphase.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/isminphase.m +***** demo + b = [3 1]; + a = [1 .5]; + f = isminphase (b, a) + ## test input validation +***** error n = isminphase () +***** error n = isminphase (1, 1, 1, 1) +***** error n = isminphase (1, 1, 1, 1, 1) +***** error n = isminphase ([1:10]', 1) +***** error n = isminphase (1, [1:10]') +***** error n = isminphase ([1:10]', [1:10]') +***** error n = isminphase (1:10, 1:10, 1:10) +***** error n = isminphase (ones (3), ones (3)) +***** test + b = [3 1]; + a = [1 .5]; + f = isminphase (b, a); + assert (f, true) +***** test + [b, a] = butter (1, .5); + f = isminphase (b, a); + assert (f, false) +***** test + [b, a] = butter (8, .5); + f = isminphase (b, a); + assert (f, false) +***** test + b = 1.25^2 * conv (conv (conv ([1 -0.9*e^(-j*0.6*pi)], [1 -0.9*e^(j*0.6*pi)]), [1 -0.8*e^(-j*0.8*pi)]), [1 -0.8*e^(j*0.8*pi)]); + a = 1; + f = isminphase (b, a); + assert (f, true) +12 tests, 12 passed, 0 known failure, 0 skipped +[inst/zp2sos.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/zp2sos.m +***** test + B=[1 0 0 0 0 1]; A=[1 0 0 0 0 .9]; + [z,p,k] = tf2zp(B,A); + [sos,g] = zp2sos(z,p,k); + [Bh,Ah] = sos2tf(sos,g); + assert({Bh,Ah},{B,A},100*eps); +***** test + sos = zp2sos ([]); + assert (sos, [1, 0, 0, 1, 0, 0], 100*eps); +***** test + sos = zp2sos ([], []); + assert (sos, [1, 0, 0, 1, 0, 0], 100*eps); +***** test + sos = zp2sos ([], [], 2); + assert (sos, [2, 0, 0, 1, 0, 0], 100*eps); +***** test + [sos, g] = zp2sos ([], [], 2); + assert (sos, [1, 0, 0, 1, 0, 0], 100*eps); + assert (g, 2, 100*eps); +***** test + sos = zp2sos([], [0], 1); + assert (sos, [0, 1, 0, 1, 0, 0], 100*eps); +***** test + sos = zp2sos([0], [], 1); + assert (sos, [1, 0, 0, 0, 1, 0], 100*eps); +***** test + sos = zp2sos([-1-j -1+j], [-1-2j -1+2j], 10); + assert (sos, [10, 20, 20, 1, 2, 5], 100*eps); +8 tests, 8 passed, 0 known failure, 0 skipped +[inst/poisswin.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/poisswin.m +***** test % even M; odd alpha: + w=[0.3878 0.4308 0.4786 0.5318 0.5908 0.6564 0.7292 0.8102 0.9001 1]; + assert (poisswin (20, 1), [w flip(w)]', 51e-6); +***** test % odd M; even alpha: + w=[0.1353 0.1653 0.2019 0.2466 0.3012 0.3679 0.4493 0.5488 0.6703 0.8187]; + assert (poisswin (21, 2), [w 1 flip(w)]', 51e-6); +***** error poisswin +***** error poisswin (21.5,1) +***** error poisswin (21i,1) +***** error poisswin (21:22,1) +***** error poisswin ({21},1) +***** error poisswin (21, 4i) +***** error poisswin (21, 2:3) +***** error poisswin (21, {4}) +***** error poisswin (21, 4, 1) +11 tests, 11 passed, 0 known failure, 0 skipped +[inst/butter.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/butter.m +***** shared sf, sf2, off_db + off_db = 0.5; + ## Sampling frequency must be that high to make the low pass filters pass. + sf = 6000; sf2 = sf/2; + data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)]; +***** test + ## Test low pass order 1 with 3dB @ 50Hz + data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)]; + [b, a] = butter ( 1, 50 / sf2 ); + filtered = filter ( b, a, data ); + damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) ); + assert ( [ damp_db( 4 ) - damp_db( 5 ), damp_db( 1 : 3 ) ], [ 6 0 0 -3 ], off_db ) +***** test + ## Test low pass order 4 with 3dB @ 50Hz + data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)]; + [b, a] = butter ( 4, 50 / sf2 ); + filtered = filter ( b, a, data ); + damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) ); + assert ( [ damp_db( 4 ) - damp_db( 5 ), damp_db( 1 : 3 ) ], [ 24 0 0 -3 ], off_db ) +***** test + ## Test high pass order 1 with 3dB @ 50Hz + data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)]; + [b, a] = butter ( 1, 50 / sf2, "high" ); + filtered = filter ( b, a, data ); + damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) ); + assert ( [ damp_db( 2 ) - damp_db( 1 ), damp_db( 3 : end ) ], [ 6 -3 0 0 ], off_db ) +***** test + ## Test high pass order 4 with 3dB @ 50Hz + data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)]; + [b, a] = butter ( 4, 50 / sf2, "high" ); + filtered = filter ( b, a, data ); + damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) ); + assert ( [ damp_db( 2 ) - damp_db( 1 ), damp_db( 3 : end ) ], [ 24 -3 0 0 ], off_db ) +***** error [a, b] = butter () +***** error [a, b] = butter (1) +***** error [a, b] = butter (1, 2, 3, 4, 5) +***** error [a, b] = butter (.5, .2) +***** error [a, b] = butter (3, .2, "invalid") +***** error [a, b] = butter (9, .6, "stop") +***** error [a, b] = butter (9, .6, "bandpass") +***** error [a, b] = butter (9, .6, "s", "high") +***** test + butter (9, .6); + assert (isrow (ans)); +***** test + A = butter (9, .6); + assert (isrow (A)); +***** test + [A, B] = butter (9, .6); + assert (isrow (A)); + assert (isrow (B)); +***** test + [z, p, g] = butter (9, .6); + assert (iscolumn (z)); + assert (iscolumn (p)); + assert (isscalar (g)); +***** test + [a, b, c, d] = butter (9, .6); + assert (ismatrix (a)); + assert (iscolumn (b)); + assert (isrow (c)); + assert (isscalar (d)); +***** demo + sf = 800; sf2 = sf/2; + data=[[1;zeros(sf-1,1)],sinetone(25,sf,1,1),sinetone(50,sf,1,1),sinetone(100,sf,1,1)]; + [b,a]=butter ( 1, 50 / sf2 ); + filtered = filter(b,a,data); + + clf + subplot ( columns ( filtered ), 1, 1) + plot(filtered(:,1),";Impulse response;") + subplot ( columns ( filtered ), 1, 2 ) + plot(filtered(:,2),";25Hz response;") + subplot ( columns ( filtered ), 1, 3 ) + plot(filtered(:,3),";50Hz response;") + subplot ( columns ( filtered ), 1, 4 ) + plot(filtered(:,4),";100Hz response;") +17 tests, 17 passed, 0 known failure, 0 skipped +[inst/gauspuls.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/gauspuls.m +***** demo + fs = 11025; # arbitrary sample rate + f0 = 100; # pulse train sample rate + x = pulstran (0:1/fs:4/f0, 0:1/f0:4/f0, "gauspuls"); + plot ([0:length(x)-1]*1000/fs, x); + xlabel ("Time (ms)"); + ylabel ("Amplitude"); + title ("Gaussian pulse train at 10 ms intervals"); +***** assert (gauspuls ([]), []) +***** assert (gauspuls (zeros (10, 1)), ones (10, 1)) +***** assert (gauspuls (-1:1), [0, 1, 0]) +***** assert (gauspuls (0:1/100:0.3, 0.1), gauspuls ([0:1/100:0.3]', 0.1)') +***** error gauspuls () +***** error gauspuls (1, 2, 3, 4) +***** error gauspuls (1, -1) +***** error gauspuls (1, 2j) +***** error gauspuls (1, 1e3, 0) +9 tests, 9 passed, 0 known failure, 0 skipped +[inst/peak2rms.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/peak2rms.m +***** assert (peak2rms (1), 1) +***** assert (peak2rms (-5), 1) +***** assert (peak2rms ([-2 3; 4 -2]), [4/sqrt(10), 3/sqrt((9+4)/2)]) +***** assert (peak2rms ([-2 3; 4 -2], 2), [3/sqrt((9+4)/2); 4/sqrt(10)]) +***** assert (peak2rms ([1 2 3], 3), [1 1 1]) +***** error peak2rms () +***** error peak2rms (1, 2, 3) +***** error peak2rms (1, 1.5) +***** error peak2rms (1, -1) +9 tests, 9 passed, 0 known failure, 0 skipped +[inst/xcorr2.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/xcorr2.m +***** test # basic usage + a = magic (5); + b = [6 13 22; 10 18 23; 8 15 23]; + c = [391 807 519 391 473 289 120 + 920 1318 1045 909 1133 702 278 + 995 1476 1338 1534 2040 1161 426 + 828 1045 1501 2047 2108 1101 340 + 571 1219 2074 2155 1896 821 234 + 473 1006 1643 1457 946 347 108 + 242 539 850 477 374 129 54]; + assert (xcorr2 (a, b), c); +***** shared a, b, c, row_shift, col_shift + row_shift = 18; + col_shift = 20; + a = randi (255, 30, 30); + b = a(row_shift-10:row_shift, col_shift-7:col_shift); + c = xcorr2 (a, b, "coeff"); +***** assert (nthargout ([1 2], @find, c == max (c(:))), {row_shift, col_shift}); # should return exact coordinates + m = rand (size (b)) > 0.5; + b(m) = b(m) * 0.95; + b(!m) = b(!m) * 1.05; + c = xcorr2 (a, b, "coeff"); +***** assert (nthargout ([1 2], @find, c == max (c(:))), {row_shift, col_shift}); # even with some small noise, should return exact coordinates +***** test # coeff of autocorrelation must be same as negative of correlation by additive inverse + a = 10 * randn (100, 100); + auto = xcorr2 (a, "coeff"); + add_in = xcorr2 (a, -a, "coeff"); + assert ([min(auto(:)), max(auto(:))], -[max(add_in(:)), min(add_in(:))]); +4 tests, 4 passed, 0 known failure, 0 skipped +[inst/primitive.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/primitive.m +***** demo + f = @(t) sin (2*pi*3*t); + t = [0; sort(rand (100, 1))]; + F = primitive (f, t, 0); + t_true = linspace (0, 1, 1e3).'; + F_true = (1 - cos (2 * pi * 3 * t_true)) / (2 * pi * 3); + h = plot (t, F, "o;Numerical primitive;", t_true, F_true, "-;True primitive;"); + set (h, "linewidth", 2); + title ("Numerical primitive evaluated at random time points"); +***** error primitive () +***** error primitive (1) +***** error primitive (1, 2, 3, 4) +3 tests, 3 passed, 0 known failure, 0 skipped +[inst/welchwin.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/welchwin.m +***** demo + m = 32; + t = [0:m-1]; + printf ("Graph: single period of "); + printf ("%d-point periodic (blue) and symmetric (red) windows\n", m); + xp = welchwin (m, "periodic"); + xs = welchwin (m, "symmetric"); + plot (t, xp, "b", t, xs, "r") +***** demo + m = 32; + t = [0:4*m-1]; + printf ("Graph: 4 periods of "); + printf ("%d-point periodic (blue) and symmetric (red) windows\n", m); + xp = welchwin (m, "periodic"); + xs = welchwin (m, "symmetric"); + xp2 = repmat (xp, 4, 1); + xs2 = repmat (xs, 4, 1); + plot (t, xp2, "b", t, xs2, "r") +***** demo + m = 32; + n = 512; + xp = welchwin (m, "periodic"); + s = fftshift (max (1e-2, abs (fft (postpad (xp, n))))); + f = [-0.5:1/n:0.5-1/n]; + printf ("%dx null-padded, power spectrum of %d-point window\n", n/m, m); + semilogy (f, s) +***** assert (welchwin (3), [0; 1; 0]); +***** assert (welchwin (15), flipud (welchwin (15))); +***** assert (welchwin (16), flipud (welchwin (16))); +***** assert (welchwin (15), welchwin (15, "symmetric")); +***** assert (welchwin (16)(1:15), welchwin (15, "periodic")); +***** error welchwin () +***** error welchwin (0.5) +***** error welchwin (-1) +***** error welchwin (ones (1, 4)) +***** error welchwin (1, 2, 3) +***** error welchwin (1, "invalid") +11 tests, 11 passed, 0 known failure, 0 skipped +[inst/tf2sos.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/tf2sos.m +***** test + B=[1 0 0 0 0 1]; A=[1 0 0 0 0 .9]; + [sos,g] = tf2sos(B,A); + [Bh,Ah] = sos2tf(sos,g); + assert({Bh,Ah},{B,A},100*eps); +1 test, 1 passed, 0 known failure, 0 skipped +[inst/uencode.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/uencode.m +***** test + u = [-3:0.5:3]; + y = uencode (u, 2); + assert (y, [0 0 0 0 0 1 2 3 3 3 3 3 3]); +***** test + u = [-4:0.5:4]; + y = uencode (u, 3, 4); + assert (y, [0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 7]); +***** test + u = [-8:0.5:8]; + y = uencode(u, 4, 8, "unsigned"); + assert (y, [0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 15]); +***** test + u = [-8:0.5:8]; + y = uencode(u, 4, 8, "signed"); + assert (y, [-8 -8 -7 -7 -6 -6 -5 -5 -4 -4 -3 -3 -2 -2 -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 7]); +***** error uencode () +***** error uencode (1) +***** error uencode (1, 2, 3, 4, 5) +***** error uencode (1, 100) +***** error uencode (1, 4, 0) +***** error uencode (1, 4, -1) +***** error uencode (1, 4, 2, "invalid") +11 tests, 11 passed, 0 known failure, 0 skipped +[inst/udecode.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/udecode.m +***** test + u = [0 0 0 0 0 1 2 3 3 3 3 3 3]; + y = udecode(u, 2); + assert(y, [-1 -1 -1 -1 -1 -0.5 0 0.5 0.5 0.5 0.5 0.5 0.5]); +***** test + u = [0 1 2 3 4 5 6 7 8 9 10]; + y = udecode(u, 2, 1, "saturate"); + assert(y, [-1 -0.5 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]); +***** test + u = [0 1 2 3 4 5 6 7 8 9 10]; + y = udecode(u, 2, 1, "wrap"); + assert(y, [-1 -0.5 0 0.5 -1 -0.5 0 0.5 -1 -0.5 0]); +***** test + u = [-4 -3 -2 -1 0 1 2 3]; + y = udecode(u, 3, 2); + assert(y, [-2, -1.5 -1 -0.5 0 0.5 1 1.5]); +***** test + u = [-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7]; + y = udecode(u, 3, 2, "saturate"); + assert(y, [-2 -2 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 1.5 1.5 1.5 1.5]); +***** test + u = [-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7]; + y = udecode(u, 3, 2, "wrap"); + assert(y, [0.5 1 1.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 -2 -1.5 -1 -0.5]); +***** error udecode () +***** error udecode (1) +***** error udecode (1, 2, 3, 4, 5) +***** error udecode (1.5) +***** error udecode (1, 100) +***** error udecode (1, 4, 0) +***** error udecode (1, 4, -1) +***** error udecode (1, 4, 2, "invalid") +14 tests, 14 passed, 0 known failure, 0 skipped +[inst/czt.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/czt.m +***** shared x + x = [1,2,4,1,2,3,5,2,3,5,6,7,8,4,3,6,3,2,5,1]; +***** assert(fft(x),czt(x),10000*eps); +***** assert(fft(x'),czt(x'),10000*eps); +***** assert(fft([x',x']),czt([x',x']),10000*eps); +3 tests, 3 passed, 0 known failure, 0 skipped [inst/fir1.m] >>>>> /build/reproducible-path/octave-signal-1.4.6/inst/fir1.m ***** demo @@ -3463,154 +3857,6 @@ assert (h(5), 1, 1e-3) assert (all (h(2:4) <= [1/sqrt(2), 3e-3, 1/sqrt(2)])) 13 tests, 13 passed, 0 known failure, 0 skipped -[inst/impz.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/impz.m -***** assert (size (impz (1, [1 -1 0.9], 100)), [100 1]) -***** xtest - [h, t] = impz (1, [1 -1 0.9], 0:101); - assert (size (h), [101 1]) - assert (t, 0:101) -!!!!! known failure -impz: N must be empty or a scalar -2 tests, 1 passed, 1 known failure, 0 skipped -[inst/barthannwin.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/barthannwin.m -***** assert (barthannwin (1), 1) -***** assert (barthannwin (2), zeros (2, 1)) -***** error barthannwin () -***** error barthannwin (0.5) -***** error barthannwin (-1) -***** error barthannwin (ones (1, 4)) -***** error barthannwin (1, 2) -7 tests, 7 passed, 0 known failure, 0 skipped -[inst/ismaxphase.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/ismaxphase.m -***** demo - [b, a] = butter (1, .5); - f = ismaxphase (b, a) -***** error n = ismaxphase () -***** error n = ismaxphase (1, 1, 1, 1) -***** error n = ismaxphase (1, 1, 1, 1, 1) -***** error n = ismaxphase ([1:10]', 1) -***** error n = ismaxphase (1, [1:10]') -***** error n = ismaxphase ([1:10]', [1:10]') -***** error n = ismaxphase (1:10, 1:10, 1:10) -***** error n = ismaxphase (ones (3), ones (3)) -***** test - z1 = [0.9*exp(j*0.6*pi), 0.9*exp(-j*0.6*pi)]; - z2 = [0.8*exp(j*0.8*pi), 0.8*exp(-j*0.8*pi)]; - b = poly ([z1 z2]); - a = 1; - f = ismaxphase (b, a); - assert (f, false) -***** test - z1 = [0.9*exp(j*0.6*pi), 0.9*exp(-j*0.6*pi)]; - z2 = [0.8*exp(j*0.8*pi), 0.8*exp(-j*0.8*pi)]; - b = poly ([1./z1 1./z2]); - a = 1; - f = ismaxphase (b, a); - assert (f, true) -***** test - z1 = [0.9*exp(j*0.6*pi), 0.9*exp(-j*0.6*pi)]; - z2 = [0.8*exp(j*0.8*pi), 0.8*exp(-j*0.8*pi)]; - b = poly ([z1 1./z2]); - a = 1; - f = ismaxphase (b, a); - assert (f, false) -***** test - z1 = [0.9*exp(j*0.6*pi), 0.9*exp(-j*0.6*pi)]; - z2 = [0.8*exp(j*0.8*pi), 0.8*exp(-j*0.8*pi)]; - b = poly ([1./z1 z2]); - a = 1; - f = ismaxphase (b, a); - assert (f, false) -***** test - [b, a] = butter (1, .5); - f = ismaxphase (b, a); - assert (f, false) -***** test - [b, a] = butter (8, .5); - f = ismaxphase (b, a); - assert (f, false) -14 tests, 14 passed, 0 known failure, 0 skipped -[inst/bitrevorder.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/bitrevorder.m -***** assert (bitrevorder (0), 0); -***** assert (bitrevorder (0:1), 0:1); -***** assert (bitrevorder ([0:1]'), [0:1]'); -***** assert (bitrevorder (0:7), [0 4 2 6 1 5 3 7]); -***** assert (bitrevorder ([0:7]'), [0 4 2 6 1 5 3 7]'); -***** assert (bitrevorder ([0:7]*i), [0 4 2 6 1 5 3 7]*i); -***** assert (bitrevorder ([0:7]'*i), [0 4 2 6 1 5 3 7]'*i); -***** assert (bitrevorder (0:15), [0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15]); -***** error bitrevorder (); -***** error bitrevorder (1, 2); -***** error bitrevorder ([]); -***** error bitrevorder (0:2); -12 tests, 12 passed, 0 known failure, 0 skipped -[inst/boxcar.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/boxcar.m -***** assert (boxcar (1), 1) -***** assert (boxcar (2), ones (2, 1)) -***** assert (boxcar (100), ones (100, 1)) -***** error boxcar () -***** error boxcar (0.5) -***** error boxcar (-1) -***** error boxcar (ones (1, 4)) -***** error boxcar (1, 2) -8 tests, 8 passed, 0 known failure, 0 skipped -[inst/nuttallwin.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/nuttallwin.m -***** assert (nuttallwin (1), 1) -***** assert (nuttallwin (2), zeros (2, 1), eps) -***** assert (nuttallwin (15), flipud (nuttallwin (15)), 10*eps); -***** assert (nuttallwin (16), flipud (nuttallwin (16)), 10*eps); -***** assert (nuttallwin (15), nuttallwin (15, "symmetric")); -***** assert (nuttallwin (16)(1:15), nuttallwin (15, "periodic")); -***** error nuttallwin () -***** error nuttallwin (0.5) -***** error nuttallwin (-1) -***** error nuttallwin (ones (1, 4)) -***** error nuttallwin (1, 2) -***** error nuttallwin (1, "invalid") -12 tests, 12 passed, 0 known failure, 0 skipped -[inst/blackmanharris.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/blackmanharris.m -***** assert (blackmanharris (1), 1); -***** assert (blackmanharris (2), 0.00006 * ones (2, 1), eps); -***** assert (blackmanharris (15), flipud (blackmanharris (15)), 10*eps); -***** assert (blackmanharris (16), flipud (blackmanharris (16)), 10*eps); -***** assert (blackmanharris (15), blackmanharris (15, "symmetric")); -***** assert (blackmanharris (16)(1:15), blackmanharris (15, "periodic")); -***** error blackmanharris () -***** error blackmanharris (0.5) -***** error blackmanharris (-1) -***** error blackmanharris (ones (1, 4)) -***** error blackmanharris (1, 2) -***** error blackmanharris (1, "invalid") -12 tests, 12 passed, 0 known failure, 0 skipped -[inst/gausswin.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/gausswin.m -***** assert (gausswin (1), 1) -***** assert (gausswin (2), [exp(-3.125); exp(-3.125)]) -***** assert (gausswin (3), [exp(-3.125); 1; exp(-3.125)]) -***** error gausswin () -***** error gausswin (0.5) -***** error gausswin (-1) -***** error gausswin (ones (1, 4)) -***** error gausswin (1, 2, 3) -8 tests, 8 passed, 0 known failure, 0 skipped -[inst/pow2db.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/pow2db.m -***** shared pow - pow = [0, 10, 20, 60, 100]; -***** assert (pow2db (pow), [-Inf, 10.000, 13.010, 17.782, 20.000], 0.01) -***** assert (pow2db (pow'), [-Inf; 10.000; 13.010; 17.782; 20.000], 0.01) -***** error pow2db () -***** error pow2db (1, 2) -***** error pow2db (-5) -***** error pow2db ([-5 7]) -6 tests, 6 passed, 0 known failure, 0 skipped [inst/firpmord.m] >>>>> /build/reproducible-path/octave-signal-1.4.6/inst/firpmord.m ***** error firpmord ([1 2], [1 0], [1 1], [1 1]); @@ -3754,199 +4000,184 @@ % Figure shows analysis of filter designed iteratively % using firpm with firpmord, so that specs. are met. 21 tests, 21 passed, 0 known failure, 0 skipped -[inst/cheb2ap.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cheb2ap.m -***** error cheb2ap (-1, 3) -***** error cheb2ap (3, -1) -***** demo - w=0:0.01:1000; - [z, p, k] = cheb2ap (3, 3); - [b, a] = zp2tf (z, p, k); - Gs = freqs (b, a, w); - semilogx (w, abs (Gs)); - xlabel('Frequency in rad/sec') - ylabel('Magnitude of G(s)'); - title('Type 2 Chebyshev Low-Pass Filter, k=3, 3 dB ripple in stop band') - grid; -2 tests, 2 passed, 0 known failure, 0 skipped -[inst/buffer.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/buffer.m -***** error (buffer(1:10, 4.1)) -***** assert (buffer(1:10, 4), reshape([1:10,0,0],[4,3])) -***** assert (buffer(1:10, 4, 1), reshape([0:3,3:6,6:9,9,10,0,0],[4,4])) -***** assert (buffer(1:10, 4, 2), reshape ([0,0:2,1:4,3:6,5:8,7:10],[4,5])) -***** assert (buffer(1:10, 4, 3), [0,0,0:7;0,0:8;0:9;1:10]) -***** error (buffer(1:10, 4, 3.1)) -***** error (buffer(1:10, 4, 4)) -***** assert (buffer(1:10, 4, -1), reshape([1:4,6:9],[4,2])) -***** assert (buffer(1:10, 4, -2), reshape([1:4,7:10],[4,2])) -***** assert (buffer(1:10, 4, -3), reshape([1:4,8:10,0],[4,2])) -***** assert (buffer(1:10, 4, 1, 11), reshape([11,1:3,3:6,6:9,9,10,0,0],[4,4])) -***** error (buffer(1:10, 4, 1, [10,11])) -***** assert (buffer(1:10, 4, 1, 'nodelay'), reshape([1:4,4:7,7:10],[4,3])) -***** error (buffer(1:10, 4, 1, 'badstring')) -***** assert (buffer(1:10, 4, 2,'nodelay'), reshape ([1:4,3:6,5:8,7:10],[4,4])) -***** assert (buffer(1:10, 4, 3, [11,12,13]),[11,12,13,1:7;12,13,1:8;13,1:9;1:10]) -***** assert (buffer(1:10, 4, 3, 'nodelay'),[1:8;2:9;3:10;4:10,0]) -***** assert (buffer(1:11,4,-2,1),reshape([2:5,8:11],4,2)) +[inst/xcorr.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/xcorr.m +***** shared x, y + x = 0.5.^(0:15); + y = circshift(x,5); +***** error xcorr () +***** error xcorr (1) +***** error xcorr (x, 1, x) +***** error xcorr (x, 'none', x) +***** error xcorr (x, x, 'invalid') +***** error xcorr (x, 'invalid') ***** test - [y, z] = buffer(1:12,4); - assert (y, reshape(1:12,4,3)); - assert (z, zeros (1,0)); + [c,lags] = xcorr(x); + # largest spike at 0 lag, where X matches itself - ie the center + [m, im] = max(c); + assert(m, 4/3, 1e-6) + assert(im, (numel(lags)+1)/2); + + [c1,lags1] = xcorr(x, x); + [m, im] = max(c1); + assert(m, 4/3, 1e-6) + assert(im, (numel(lags1)+1)/2); + assert(c1, c, 2*eps); + assert(lags1, lags); ***** test - [y, z] = buffer(1:11,4); - assert (y, reshape(1:8,4,2)); - assert (z, [9, 10, 11]); + [c,lags] = xcorr(x,y); + # largest spike at 0 lag, where X matches Y + [m, im] = max(c); + assert(m, 4/3, 1e-6) + assert(lags(im), -5); ***** test - [y, z] = buffer([1:12]',4); - assert (y, reshape(1:12,4,3)); - assert (z, zeros (0,1)); + [c0,lags0] = xcorr(x,y); + [c1,lags1] = xcorr(x,y, 'none'); + assert(c0, c1); + assert(lags0, lags1); ***** test - [y, z] = buffer([1:11]',4); - assert (y, reshape(1:8,4,2)); - assert (z, [9; 10; 11]); + [c0,lags0] = xcorr(x,y); + [c1,lags1] = xcorr(x,y, 'normalized'); + assert(lags0, lags1); + [m, im] = max(c1); + # at 0 lag, should be 1 + assert(m, 1, 1e-6); + [c2,lags2] = xcorr(x,y, 'coeff'); + assert(c1, c2); + assert(lags1, lags2); ***** test - [y,z,opt] = buffer(1:15,4,-2,1); - assert (y, reshape([2:5,8:11],4,2)); - assert (z, [14, 15]); - assert (opt, 0); + [c0,lags0] = xcorr(x,y); + [c1,lags1] = xcorr(x,y, 'biased'); + assert(lags0, lags1); + [m, im] = max(c1); + assert(m, 1/12, 1e-6); + + [c1,lags1] = xcorr(x, 'biased'); + assert(lags0, lags1); + [m, im] = max(c1); + assert(m, 1/12, 1e-6); ***** test - [y,z,opt] = buffer(1:11,4,-2,1); - assert (y, reshape([2:5,8:11],4,2)); - assert (z, zeros (1,0)); - assert (opt, 2); + [c0,lags0] = xcorr(x,y); + [c1,lags1] = xcorr(x,y, 'unbiased'); + assert(lags0, lags1); + [m, im] = max(c1); + assert(m, 1/8.25, 1e-6); ***** test - [y,z,opt] = buffer([1:15]',4,-2,1); - assert (y, reshape([2:5,8:11],4,2)); - assert (z, [14; 15]); - assert (opt, 0); + [c,lags] = xcorr(x,y, 10); + [m, im] = max(c); + assert(lags(im), -5); + assert(lags(1), -10); + assert(lags(end), 10); + + [c,lags] = xcorr(x,10); + [m, im] = max(c); + assert(lags(1), -10); + assert(lags(end), 10); ***** test - [y,z,opt] = buffer([1:11]',4,-2,1); - assert (y, reshape([2:5,8:11],4,2)); - assert (z, zeros (0, 1)); - assert (opt, 2); + [c0,lags0] = xcorr(x,y, 'normalized', 10); + [c1,lags1] = xcorr(x,y, 10, 'normalized'); + assert(c0, c1); + assert(lags0, lags1); +14 tests, 14 passed, 0 known failure, 0 skipped +[inst/filtic.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/filtic.m ***** test - [y,z,opt] = buffer([1:11],5,2,[-1,0]); - assert (y, reshape ([-1:3,2:6,5:9],[5,3])); - assert (z, [10, 11]); - assert (opt, [8; 9]); + ## Simple low pass filter + b=[0.25 0.25]; + a=[1.0 -0.5]; + zf_ref=0.75; + zf=filtic(b,a,[1.0],[1.0]); + assert(zf,zf_ref,8*eps); + ***** test - [y,z,opt] = buffer([1:11]',5,2,[-1,0]); - assert (y, reshape ([-1:3,2:6,5:9],[5,3])); - assert (z, [10; 11]); - assert (opt, [8; 9]); + ## Simple high pass filter + b=[0.25 -0.25]; + a=[1.0 0.5]; + zf_ref = [-0.25]; + zf=filtic(b,a,[0.0],[1.0]); + assert(zf,zf_ref,8*eps); + ***** test - [y, z, opt] = buffer (1:10, 6, 4); - assert (y, [0 0 1:2:5; 0 0 2:2:6; 0 1:2:7; 0 2:2:8; 1:2:9; 2:2:10]) - assert (z, zeros (1, 0)) - assert (opt, [7; 8; 9; 10]) -29 tests, 29 passed, 0 known failure, 0 skipped -[inst/ultrwin.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/ultrwin.m + ## Second order cases + [b,a]=butter(2,0.4); + N=1000; ## Long enough for filter to settle + xx=ones(1,N); + [yy,zf_ref] = filter(b,a,xx); + x=xx(N:-1:N-1); + y=yy(N:-1:N-1); + zf = filtic(b,a,y,x); + assert(zf,zf_ref,8*eps); + + xx = cos(2*pi*linspace(0,N-1,N)/8); + [yy,zf_ref] = filter(b,a,xx); + x=xx(N:-1:N-1); + y=yy(N:-1:N-1); + zf = filtic(b,a,y,x); + assert(zf,zf_ref,8*eps); + ***** test - assert(ultrwin(100, 1, 1), ones(100, 1), 1e-14); + ## Third order filter - takes longer to settle + N=10000; + [b,a]=cheby1(3,10,0.5); + xx=ones(1,N); + [yy,zf_ref] = filter(b,a,xx); + x=xx(N:-1:N-2); + y=yy(N:-1:N-2); + zf = filtic(b,a,y,x); + assert(zf,zf_ref,8*eps); + ***** test - L = 201; xmu = 1.01; m = L-1; - for mu = -1.35:.3:1.35 - x = xmu*cos([0:m]*pi/L); - C(2,:) = 2*mu*x; C(1,:) = 1; - for k = 2:m; C(k+1,:) = 2*(k+mu-1)/k*x.*C(k,:) - (k+2*mu-2)/k*C(k-1,:); end - b = real(ifft(C(m+1,:))); b = b(m/2+2:L)/b(1); - assert(ultrwin(L, mu, xmu, "x")', [b 1 fliplr(b)], 1e-12); - end + ## Eight order high pass filter + N=10000; + [b,a]=butter(8,0.2); + xx = cos(2*pi*linspace(0,N-1,N)/8); + [yy,zf_ref] = filter(b,a,xx); + x=xx(N:-1:N-7); + y=yy(N:-1:N-7); + zf = filtic(b,a,y,x); + assert(zf,zf_ref,8*eps); + ***** test - b = [ - 5.7962919401511820e-03 - 1.6086991349967078e-02 - 3.6019014684117417e-02 - 6.8897525451558125e-02 - 1.1802364384553447e-01 - 1.8566749737411145e-01 - 2.7234740630826737e-01 - 3.7625460141456091e-01 - 4.9297108901880221e-01 - 6.1558961695849457e-01 - 7.3527571856983598e-01 - 8.4222550739092694e-01 - 9.2688779484512085e-01 - 9.8125497127708561e-01]'; - [w xmu] = ultrwin(29, 0, 3); - assert(w', [b 1 fliplr(b)], 1e-14); - assert(xmu, 1.053578297819277, 1e-14); + ## Case with 3 args + [b,a]=butter(2,0.4); + N=100; + xx=[ones(1,N) zeros(1,2)]; + [yy,zf_ref] = filter(b,a,xx); + y=[yy(N+2) yy(N+1)]; + zf=filtic(b,a,y); + assert(zf,zf_ref,8*eps); ***** test - b = [ - 2.9953636903962466e-02 - 7.6096450051659603e-02 - 1.5207129867916891e-01 - 2.5906995366355179e-01 - 3.9341065451220536e-01 - 5.4533014012036929e-01 - 6.9975915071207051e-01 - 8.3851052636906720e-01 - 9.4345733548690369e-01]'; - assert(ultrwin(20, .5, 50, "a")', [b 1 1 fliplr(b)], 1e-14); + a = [2, -3, 1]; + b = [4, -3]; + y = [0; 1]; + z = filtic (b, a, y); + assert (z, [-0.5; 0]); +7 tests, 7 passed, 0 known failure, 0 skipped +[inst/fwht.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/fwht.m +***** assert (isempty (fwht ([]))); +***** assert (fwht (zeros (16)), zeros (16)); +***** assert (fwht (ones (16, 1)), [1; (zeros (15, 1))]); +***** assert (fwht (zeros (17, 1)), zeros (32, 1)); +***** assert (fwht ([1 -1 1 -1 1 -1 1 -1]), [0 0 0 0 0 0 0 1]); ***** test - b = [ - 1.0159906492322712e-01 - 1.4456358609406283e-01 - 2.4781689516201011e-01 - 3.7237015168857646e-01 - 5.1296973026690407e-01 - 6.5799041448113671e-01 - 7.9299087042967320e-01 - 9.0299778924260576e-01 - 9.7496213649820296e-01]'; - assert(ultrwin(19, -.4, 40, "l")', [b 1 fliplr(b)], 1e-14); -***** demo - w=ultrwin(120, -1, 40, "l"); [W,f]=freqz(w); clf - subplot(2,1,1); plot(f/pi, 20*log10(W/abs(W(1)))); grid; axis([0 1 -90 0]) - subplot(2,1,2); plot(0:length(w)-1, w); grid - %----------------------------------------------------------- - % Figure shows an Ultraspherical window with MU=-1, LATT=40: - % frequency domain above, time domain below. -***** demo - c="krbm"; clf; subplot(2, 1, 1) - for beta=2:5 - w=ultrwin(80, -.5, beta); [W,f]=freqz(w); - plot(f/pi, 20*log10(W/abs(W(1))), c(1+mod(beta, length(c)))); hold on - end; grid; axis([0 1 -140 0]); hold off - subplot(2, 1, 2); - for n=2:10 - w=ultrwin(n*20, 1, 3); [W,f]=freqz(w,1,2^11); - plot(f/pi, 20*log10(W/abs(W(1))), c(1+mod(n, length(c)))); hold on - end; grid; axis([0 .2 -100 0]); hold off - %-------------------------------------------------- - % Figure shows transfers of Ultraspherical windows: - % above: varying BETA with fixed N & MU, - % below: varying N with fixed MU & BETA. -***** demo - c="krbm"; clf; subplot(2, 1, 1) - for j=0:4 - w=ultrwin(80, j*.6-1.2, 50, "a"); [W,f]=freqz(w); - plot(f/pi, 20*log10(W/abs(W(1))), c(1+mod(j, length(c)))); hold on - end; grid; axis([0 1 -100 0]); hold off - subplot(2, 1, 2); - for j=4:-1:0 - w=ultrwin(80, j*.75-1.5, 50, "l"); [W,f]=freqz(w); - plot(f/pi, 20*log10(W/abs(W(1))), c(1+mod(j, length(c)))); hold on - end; grid; axis([0 1 -100 0]); hold off - %-------------------------------------------------- - % Figure shows transfers of Ultraspherical windows: - % above: varying MU with fixed N & ATT, - % below: varying MU with fixed N & LATT. -***** demo - clf; a=[.8 2 -115 5]; fc=1.1/pi; l="labelxy"; - for k=1:3; switch (k); case 1; w=kaiser(L=159, 7.91); - case 2; w=ultrwin(L=165, 0, 2.73); case 3; w=ultrwin(L=153, .5, 2.6); end - subplot(3, 1, 4-k); f=[1:(L-1)/2]*pi;f=sin(fc*f)./f; f=[fliplr(f) fc f]'; - [h,f]=freqz(w.*f,1,2^14); plot(f,20*log10(h)); grid; axis(a,l); l="labely"; - end - %----------------------------------------------------------- - % Figure shows example lowpass filter design (Fp=1, Fs=1.2 - % rad/s, att=80 dB) and comparison with other windows. From - % top to bottom: Ultraspherical, Dolph-Chebyshev, and Kaiser - % windows, with lengths 153, 165, and 159 respectively. -5 tests, 5 passed, 0 known failure, 0 skipped + x = randi (16, 16); + assert (ifwht (fwht (x)), x); +***** test + x = randi (16, 16); + assert (ifwht (fwht (x, [], "sequency"), [], "sequency"), x); +***** test + x = randi (16, 16); + assert (ifwht (fwht (x, [], "hadamard"), [], "hadamard"), x); +***** test + x = randi (16, 16); + assert (ifwht (fwht (x, [], "dyadic"), [], "dyadic"), x); +***** error fwht (); +***** error fwht (1, 2, 3, 4); +***** error fwht (0, 0); +***** error fwht (0, 5); +***** error fwht (0, [], "invalid"); +14 tests, 14 passed, 0 known failure, 0 skipped [inst/rssq.m] >>>>> /build/reproducible-path/octave-signal-1.4.6/inst/rssq.m ***** assert (rssq ([]), 0) @@ -3958,6 +4189,99 @@ ***** error rssq (1, 1.5) ***** error rssq (1, -1) 8 tests, 8 passed, 0 known failure, 0 skipped +[inst/cplxreal.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cplxreal.m +***** test + [zc, zr] = cplxreal ([]); + assert (isempty (zc)) + assert (isempty (zr)) +***** test + [zc, zr] = cplxreal (1); + assert (isempty (zc)) + assert (zr, 1) +***** test + [zc, zr] = cplxreal ([1+1i, 1-1i]); + assert (zc, 1+1i) + assert (isempty (zr)) +***** test + [zc, zr] = cplxreal (roots ([1, 0, 0, 1])); + assert (zc, complex (0.5, sin (pi/3)), 10*eps) + assert (zr, -1, 2*eps) +***** test + [zc, zr] = cplxreal (roots ([1, 0, 0, 1, 0])); + assert (zc, complex (0.5, sin (pi/3)), 10*eps) + assert (zr, [-1; 0], 2*eps) +***** test + [zc, zr] = cplxreal (roots ([1, 0, 0, 1, 0, 0])); + assert (zc, complex (0.5, sin (pi/3)), 10*eps) + assert (zr, [-1; 0; 0], 2*eps) +***** error cplxreal () +***** error cplxreal (1, 2, 3, 4) +***** error cplxreal (1, ones (2, 3)) +***** error cplxreal (1, -1) +***** error cplxreal (1, [], 3) +11 tests, 11 passed, 0 known failure, 0 skipped +[inst/residued.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/residued.m +***** test + B=1; A=[1 -1]; + [r,p,f,m] = residued(B,A); + assert({r,p,f,m},{1,1,[],1},100*eps); + [r2,p2,f2,m2] = residuez(B,A); + assert({r,p,f,m},{r2,p2,f2,m2},100*eps); +***** test + B=[1 -2 1]; A=[1 -1]; + [r,p,f,m] = residued(B,A); + assert({r,p,f,m},{0,1,[1 -1],1},100*eps); +***** test + B=[1 -2 1]; A=[1 -0.5]; + [r,p,f,m] = residued(B,A); + assert({r,p,f,m},{0.25,0.5,[1 -1.5],1},100*eps); +***** test + B=1; A=[1 -0.75 0.125]; + [r,p,f,m] = residued(B,A); + [r2,p2,f2,m2] = residuez(B,A); + assert({r,p,f,m},{r2,p2,f2,m2},100*eps); +***** test + B=1; A=[1 -2 1]; + [r,p,f,m] = residued(B,A); + [r2,p2,f2,m2] = residuez(B,A); + assert({r,p,f,m},{r2,p2,f2,m2},100*eps); +***** test + B=[6,2]; A=[1 -2 1]; + [r,p,f,m] = residued(B,A); + [r2,p2,f2,m2] = residuez(B,A); + assert({r,p,f,m},{r2,p2,f2,m2},100*eps); +***** test + B=[1 1 1]; A=[1 -2 1]; + [r,p,f,m] = residued(B,A); + assert(r,[0;3],1e-7); + assert(p,[1;1],1e-8); + assert(f,1,100*eps); + assert(m,[1;2],100*eps); +***** test + B=[2 6 6 2]; A=[1 -2 1]; + [r,p,f,m] = residued(B,A); + assert(r,[8;16],3e-7); + assert(p,[1;1],1e-8); + assert(f,[2,10],100*eps); + assert(m,[1;2],100*eps); +***** test + B=[1,6,2]; A=[1 -2 1]; + [r,p,f,m] = residued(B,A); + assert(r,[-1;9],3e-7); + assert(p,[1;1],1e-8); + assert(f,1,100*eps); + assert(m,[1;2],100*eps); +***** test + B=[1 0 0 0 1]; A=[1 0 0 0 -1]; + [r,p,f,m] = residued(B,A); + [~,is] = sort(angle(p)); + assert(r(is),[-1/2;-j/2;1/2;j/2],100*eps); + assert(p(is),[-1;-j;1;j],100*eps); + assert(f,1,100*eps); + assert(m,[1;1;1;1],100*eps); +10 tests, 10 passed, 0 known failure, 0 skipped [inst/triang.m] >>>>> /build/reproducible-path/octave-signal-1.4.6/inst/triang.m ***** assert (triang (1), 1) @@ -3997,47 +4321,1115 @@ axis; grid("off"); title("n even, triang(n)!=bartlett(n+2)"); 10 tests, 10 passed, 0 known failure, 0 skipped -[inst/shiftdata.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/shiftdata.m +[inst/db2pow.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/db2pow.m +***** shared db + db = [-10, 0, 10, 20, 25]; +***** assert (db2pow (db), [0.10000, 1.00000, 10.00000, 100.00000, 316.22777], 0.00001) +***** assert (db2pow (db'), [0.10000; 1.00000; 10.00000; 100.00000; 316.22777], 0.00001) +***** error db2pow () +***** error db2pow (1, 2) +4 tests, 4 passed, 0 known failure, 0 skipped +[inst/blackmannuttall.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/blackmannuttall.m +***** assert (blackmannuttall (1), 1) +***** assert (blackmannuttall (2), 0.0003628 * ones (2, 1), eps) +***** assert (blackmannuttall (15), flipud (blackmannuttall (15)), 10*eps); +***** assert (blackmannuttall (16), flipud (blackmannuttall (16)), 10*eps); +***** assert (blackmannuttall (15), blackmannuttall (15, "symmetric")); +***** assert (blackmannuttall (16)(1:15), blackmannuttall (15, "periodic")); +***** error blackmannuttall () +***** error blackmannuttall (0.5) +***** error blackmannuttall (-1) +***** error blackmannuttall (ones (1, 4)) +***** error blackmannuttall (1, 2) +***** error blackmannuttall (1, "invalid") +12 tests, 12 passed, 0 known failure, 0 skipped +[inst/lpc.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/lpc.m +***** demo + noise = randn (10000, 1); + x = filter (1, [1 1/2 1/4 1/8], noise); + x = x(end-4096:end); + [a, g] = lpc (x, 3); + xe = filter ([0 -a(2:end)], 1, x); + e = x - xe; + [ac, k] = xcorr (e, "coeff"); + subplot (2,1,1); plot (x(1:100), "b-", xe(1:100), "r--"); + xlabel ("sample"); ylabel ("amplitude"); legend ("original","LPC estimate"); + subplot (2,1,2); plot (k,ac,"b-"); xlabel ("lag"); + title ("autocorrelation of prediction error"); +***** demo + if !isempty ( pkg ("list", "ltfat") ) + pkg load ltfat + [sig, fs] = linus; + x = sig(13628:14428); + [a, g] = lpc (x, 8); + F = round (sort (unique (abs (angle (roots (a))))) * fs / (2 * pi) ); + [h, w] = freqz (1, a, 512, "whole"); + subplot (2, 1, 1); + plot ( 1E3 * [0:1/fs:(length (x)-1)*1/fs], x); + xlabel ("time (ms)"); ylabel ("Amplitude"); + title ( "'linus' test signal" ); + subplot (2, 1, 2); + plot (w(1:256)/pi, 20*log10 (abs (h(1:256)))); + xlabel ("Normalized Frequency ({\\times \\pi} rad/sample)") + ylabel ("Magnitude (dB)") + txt = sprintf (['Signal sampling rate = %d kHz\nFormant frequencies: ' ... + '\nF1 = %d Hz\nF2 = %d Hz\nF3 = %d Hz\nF4 = %d Hz'], fs/1E3, ... + F(1), F(2), F(3), F(4)); + text (0.6, 20, txt); + endif + ## test input validation +***** error [a, g] = lpc () +***** error [a, g] = lpc (1) +***** error [a, g] = lpc (1, 1) +***** error [a, g] = lpc (1, 1, 1) +***** error [a, g] = lpc (1:10, 0) +***** error [a, g] = lpc (1:10, 10) +***** error [a, g] = lpc (1:10, 0.5) +***** error [a, g] = lpc (1:10, 1, [1 2]) ***** test - X = [1 2 3; 4 5 6; 7 8 9]; - [Y, perm, shifts] = shiftdata (X, 2); - assert (Y, [1 4 7; 2 5 8; 3 6 9]); - assert (perm, [2 1]); + x = [1:4 4:-1:1]; + [a, g] = lpc (x, 5); + assert (a, [1.0 -1.823903 1.101798 -0.405738 0.521153 -0.340032], 1e-6) + assert (g, 0.272194, 1e-6) +9 tests, 9 passed, 0 known failure, 0 skipped +[inst/rectwin.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/rectwin.m +***** assert (rectwin (1), 1) +***** assert (rectwin (2), ones (2, 1)) +***** assert (rectwin (100), ones (100, 1)) +***** error rectwin () +***** error rectwin (0.5) +***** error rectwin (-1) +***** error rectwin (ones (1, 4)) +***** error rectwin (1, 2) +8 tests, 8 passed, 0 known failure, 0 skipped +[inst/xcov.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/xcov.m +***** error xcov () ***** test - X = [27 42 11; 63 48 5; 67 74 93]; - X(:, :, 2) = [15 23 81; 34 60 28; 70 54 38]; - [Y, perm, shifts] = shiftdata(X, 2); - T = [27 63 67; 42 48 74; 11 5 93]; - T(:, :, 2) = [15 34 70; 23 60 54; 81 28 38]; - assert(Y, T); - assert(perm, [2 1 3]); + x = 1:5; + [c, l] = xcov(x); + assert(c, [-4.0 -4.0 -1.0 4.0 10.0 4.0 -1.0 -4.0 -4.0], 2*eps) + assert(l, [-4 -3 -2 -1 0 1 2 3 4]) +***** test + x = 1:5; + y = 1:5; + [c, l] = xcov(x,y); + assert(c, [-4.0 -4.0 -1.0 4.0 10.0 4.0 -1.0 -4.0 -4.0], 2*eps) + assert(l, [-4 -3 -2 -1 0 1 2 3 4]) + + y = 1; + [c, l] = xcov(x,y); + assert(c, [4.0 10.0 4.0], 2*eps) + assert(l, [-1 0 1]) +***** test + x = 1:5; + y = 1:5; + # maxlag + [c, l] = xcov(x,y, 2); + assert(c, [-1.0 4.0 10.0 4.0 -1.0], 2*eps) + assert(l, [-2 -1 0 1 2]) +***** test + x = 1:5; + y = 1:5; + # scale + [c, l] = xcov(x,y, 'none'); + assert(c, [-4.0 -4.0 -1.0 4.0 10.0 4.0 -1.0 -4.0 -4.0], 2*eps) + assert(l, [-4 -3 -2 -1 0 1 2 3 4]) + + [c, l] = xcov(x,y, 'biased'); + assert(c, [-0.8 -0.8 -0.2 0.8 2.0 0.8 -0.2 -0.8 -0.8], 2*eps) + assert(l, [-4 -3 -2 -1 0 1 2 3 4]) +5 tests, 5 passed, 0 known failure, 0 skipped +[inst/filternorm.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/filternorm.m +***** demo + b = [1 0]; + a = [1 1]; + L = filternorm (b, a) +***** demo + [b, a] = butter(5, .5); + L = filternorm (b, a) + ## test input validation +***** error n = filternorm () +***** error n = filternorm (1) +***** error n = filternorm (1, 1, 1) +***** error n = filternorm (1, 1, 1, 1) +***** error n = filternorm (1, 1, 1, 1, 1) +***** error n = filternorm ([1:10]', 1) +***** error n = filternorm (1, [1:10]') +***** error n = filternorm ([1:10]', [1:10]') +***** error n = filternorm (1:10, 1:10, 1:10) +***** error n = filternorm (ones(3), ones(3)) +***** test + [b, a] = butter (5, .5); + L = filternorm (b, a); + assert (L, sqrt(2)/2, 1e-8) +***** test + [b, a] = butter (5, .5); + Linf = filternorm (b, a, Inf); + assert (Linf, 1, 1e-8); +12 tests, 12 passed, 0 known failure, 0 skipped +[inst/ellipord.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/ellipord.m +***** demo + fs = 44100; + Npts = fs; + fpass = 4000; + fstop = 13713; + Rpass = 3; + Rstop = 40; + Wpass = 2/fs * fpass; + Wstop = 2/fs * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) + [b, a] = ellip (n, Rpass, Rstop, Wn); + f = 0:fs/2; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))); + outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; + outline_lp_pass_y = [-Rpass, -Rpass , -80]; + outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; + outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; + hold on + plot (outline_lp_pass_x, outline_lp_pass_y, "m", outline_lp_stop_x, outline_lp_stop_y, "m"); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("2nd order digital elliptical low-pass (without margin)"); +***** demo + fs = 44100; + Npts = fs; + fpass = 4000; + fstop = 13712; + Rpass = 3; + Rstop = 40; + Wpass = 2/fs * fpass; + Wstop = 2/fs * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) + [b, a] = ellip (n, Rpass, Rstop, Wn); + f = 0:fs/2; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))); + outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; + outline_lp_pass_y = [-Rpass, -Rpass , -80]; + outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; + outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; + hold on + plot (outline_lp_pass_x, outline_lp_pass_y, "m", outline_lp_stop_x, outline_lp_stop_y, "m"); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("3rd order digital elliptical low-pass (just exceeds 2nd order i.e. large margin)"); +***** demo + fs = 44100; + Npts = fs; + fstop = 4000; + fpass = 13713; + Rpass = 3; + Rstop = 40; + Wpass = 2/fs * fpass; + Wstop = 2/fs * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) + [b, a] = ellip (n, Rpass, Rstop, Wn, "high"); + f = 0:fs/2; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))); + outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; + outline_hp_pass_y = [-80 , -Rpass , -Rpass]; + outline_hp_stop_x = [min(f) , fstop(1), fstop(1), max(f)]; + outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; + hold on + plot (outline_hp_pass_x, outline_hp_pass_y, "m", outline_hp_stop_x, outline_hp_stop_y, "m"); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("2nd order digital elliptical high-pass (without margin)"); +***** demo + fs = 44100; + Npts = fs; + fstop = 4000; + fpass = 13712; + Rpass = 3; + Rstop = 40; + Wpass = 2/fs * fpass; + Wstop = 2/fs * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) + [b, a] = ellip (n, Rpass, Rstop, Wn, "high"); + f = 0:fs/2; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))); + outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; + outline_hp_pass_y = [-80 , -Rpass , -Rpass]; + outline_hp_stop_x = [min(f) , fstop(1), fstop(1), max(f)]; + outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; + hold on + plot (outline_hp_pass_x, outline_hp_pass_y, "m", outline_hp_stop_x, outline_hp_stop_y, "m"); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("3rd order digital elliptical high-pass (just exceeds 2nd order i.e. large margin)"); +***** demo + fs = 44100; + Npts = fs; + fpass = [9500 9750]; + fstop = [8500 10261]; + Rpass = 3; + Rstop = 40; + Wpass = 2/fs * fpass; + Wstop = 2/fs * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) + [b, a] = ellip (n, Rpass, Rstop, Wn); + f = 5000:15000; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; + hold on + plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("4th order digital elliptical band-pass (without margin) limitation on upper freq"); +***** demo + fs = 44100; + Npts = fs; + fpass = [9500 9750]; + fstop = [9000 10700]; + Rpass = 3; + Rstop = 40; + Wpass = 2/fs * fpass; + Wstop = 2/fs * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) + [b, a] = ellip (n, Rpass, Rstop, Wn); + f = 5000:15000; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; + hold on + plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("4th order digital elliptical band-pass (without margin) limitation on lower freq"); +***** demo + fs = 44100; + Npts = fs; + fpass = [9500 9750]; + fstop = [8500 10260]; + Rpass = 3; + Rstop = 40; + Wpass = 2/fs * fpass; + Wstop = 2/fs * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) + [b, a] = ellip (n, Rpass, Rstop, Wn); + f = 5000:15000; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; + hold on + plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("6th order digital elliptical band-pass (just exceeds 4th order i.e. large margin) limitation on upper freq"); +***** demo + fs = 44100; + Npts = fs; + fpass = [9500 9750]; + fstop = [9001 10700]; + Rpass = 3; + Rstop = 40; + Wpass = 2/fs * fpass; + Wstop = 2/fs * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) + [b, a] = ellip (n, Rpass, Rstop, Wn); + f = 5000:15000; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; + hold on + plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("6th order digital elliptical band-pass (just exceeds 4th order i.e. large margin) limitation on lower freq"); +***** demo + fs = 44100; + Npts = fs; + fstop = [9875 10126.5823]; + fpass = [8500 11073]; + Rpass = 0.5; + Rstop = 40; + Wpass = 2/fs * fpass; + Wstop = 2/fs * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) + [b, a] = ellip (n, Rpass, Rstop, Wn, "stop"); + f = 5000:15000; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; + hold on + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("4th order digital elliptical notch (without margin) limit on upper freq"); +***** demo + fs = 44100; + Npts = fs; + fstop = [9875 10126.5823]; + fpass = [8952 12000]; + Rpass = 0.5; + Rstop = 40; + Wpass = 2/fs * fpass; + Wstop = 2/fs * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) + [b, a] = ellip (n, Rpass, Rstop, Wn, "stop"); + f = 5000:15000; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; + hold on + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("4th order digital elliptical notch (without margin) limit on lower freq"); +***** demo + fs = 44100; + Npts = fs; + fstop = [9875 10126.5823]; + fpass = [8500 11072]; + Rpass = 0.5; + Rstop = 40; + Wpass = 2/fs * fpass; + Wstop = 2/fs * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) + [b, a] = ellip (n, Rpass, Rstop, Wn, "stop"); + f = 5000:15000; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; + hold on + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("6th order digital elliptical notch (just exceeds 4th order) limit on upper freq"); +***** demo + fs = 44100; + Npts = fs; + fstop = [9875 10126.5823]; + fpass = [8953 12000]; + Rpass = 0.5; + Rstop = 40; + Wpass = 2/fs * fpass; + Wstop = 2/fs * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) + [b, a] = ellip (n, Rpass, Rstop, Wn, "stop"); + f = 5000:15000; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; + hold on + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("6th order digital elliptical notch (just exceeds 4th order) limit on lower freq"); +***** demo + fpass = 4000; + fstop = 20224; + Rpass = 3; + Rstop = 40; + Wpass = 2*pi * fpass; + Wstop = 2*pi * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = ellip (n, Rpass, Rstop, Wn, "s"); + f = 1000:10:100000; + W = 2*pi * f; + H = freqs (b, a, W); + semilogx(f, 20 * log10 (abs (H))) + outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; + outline_lp_pass_y = [-Rpass, -Rpass , -80]; + outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; + outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; + hold on + plot (outline_lp_pass_x, outline_lp_pass_y, "m", outline_lp_stop_x, outline_lp_stop_y, "m") + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("2nd order analog elliptical low-pass (without margin)"); +***** demo + fpass = 4000; + fstop = 20223; + Rpass = 3; + Rstop = 40; + Wpass = 2*pi * fpass; + Wstop = 2*pi * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = ellip (n, Rpass, Rstop, Wn, "s"); + f = 1000:10:100000; + W = 2*pi * f; + H = freqs (b, a, W); + semilogx (f, 20 * log10 (abs (H))) + outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; + outline_lp_pass_y = [-Rpass, -Rpass , -80]; + outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; + outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; + hold on + plot (outline_lp_pass_x, outline_lp_pass_y, "m", outline_lp_stop_x, outline_lp_stop_y, "m") + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("3rd order analog elliptical low-pass (just exceeds 2nd order i.e. large margin)"); +***** demo + fstop = 4000; + fpass = 20224; + Rpass = 3; + Rstop = 40; + Wpass = 2*pi * fpass; + Wstop = 2*pi * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = ellip (n, Rpass, Rstop, Wn, "high", "s"); + f = 1000:10:100000; + W = 2*pi * f; + H = freqs (b, a, W); + semilogx (f, 20 * log10 (abs (H))) + outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; + outline_hp_pass_y = [-80 , -Rpass , -Rpass]; + outline_hp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; + outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; + hold on + plot (outline_hp_pass_x, outline_hp_pass_y, "m", outline_hp_stop_x, outline_hp_stop_y, "m") + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("2nd order analog elliptical high-pass (without margin)"); +***** demo + fstop = 4000; + fpass = 20223; + Rpass = 3; + Rstop = 40; + Wpass = 2*pi * fpass; + Wstop = 2*pi * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = ellip (n, Rpass, Rstop, Wn, "high", "s"); + f = 1000:10:100000; + W = 2*pi * f; + H = freqs (b, a, W); + semilogx (f, 20 * log10 (abs (H))) + outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; + outline_hp_pass_y = [-80 , -Rpass , -Rpass]; + outline_hp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; + outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; + hold on + plot (outline_hp_pass_x, outline_hp_pass_y, "m", outline_hp_stop_x, outline_hp_stop_y, "m") + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("3rd order analog elliptical high-pass (just exceeds 2nd order i.e. large margin)"); +***** demo + fpass = [9875 10126.5823]; + fstop = [9000 10657]; + Rpass = 3; + Rstop = 40; + fcenter = sqrt (fpass(1) * fpass(2)); + Wpass = 2*pi * fpass; + Wstop = 2*pi * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = ellip (n, Rpass, Rstop, Wn, "s"); + f = 5000:15000; + W = 2*pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; + hold on + plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("4th order analog elliptical band-pass (without margin) limitation on upper freq"); +***** demo + fpass = [9875 10126.5823]; + fstop = [9384 12000]; + Rpass = 3; + Rstop = 40; + fcenter = sqrt (fpass(1) * fpass(2)); + Wpass = 2*pi * fpass; + Wstop = 2*pi * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = ellip (n, Rpass, Rstop, Wn, "s"); + f = 5000:15000; + W = 2*pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; + hold on + plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("4th order analog elliptical band-pass (without margin) limitation on lower freq"); +***** demo + fpass = [9875 10126.5823]; + fstop = [9000 10656]; + Rpass = 3; + Rstop = 40; + fcenter = sqrt (fpass(1) * fpass(2)); + Wpass = 2*pi * fpass; + Wstop = 2*pi * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = ellip (n, Rpass, Rstop, Wn, "s"); + f = 5000:15000; + W = 2*pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; + hold on + plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("6th order analog elliptical band-pass (just exceeds 4th order i.e. large margin) limitation on upper freq"); +***** demo + fpass = [9875 10126.5823]; + fstop = [9385 12000]; + Rpass = 3; + Rstop = 40; + fcenter = sqrt (fpass(1) * fpass(2)); + Wpass = 2*pi * fpass; + Wstop = 2*pi * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = ellip (n, Rpass, Rstop, Wn, "s"); + f = 5000:15000; + W = 2*pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; + hold on + plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("6th order analog elliptical band-pass (just exceeds 4th order i.e. large margin) limitation on lower freq"); +***** demo + fstop = [9875 10126.5823]; + fpass = [9000 10657]; + Rpass = 3; + Rstop = 40; + fcenter = sqrt (fpass(1) * fpass(2)); + Wpass = 2*pi * fpass; + Wstop = 2*pi * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = ellip (n, Rpass, Rstop, Wn, "stop", "s"); + f = 5000:15000; + W = 2*pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; + hold on + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("4th order analog elliptical notch (without margin) limit on upper freq"); +***** demo + fstop = [9875 10126.5823]; + fpass = [9384 12000]; + Rpass = 3; + Rstop = 40; + fcenter = sqrt (fpass(1) * fpass(2)); + Wpass = 2*pi * fpass; + Wstop = 2*pi * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = ellip (n, Rpass, Rstop, Wn, "stop", "s"); + f = 5000:15000; + W = 2*pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; + hold on + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("4th order analog elliptical notch (without margin) limit on lower freq"); +***** demo + fstop = [9875 10126.5823]; + fpass = [9000 10656]; + Rpass = 3; + Rstop = 40; + fcenter = sqrt (fpass(1) * fpass(2)); + Wpass = 2*pi * fpass; + Wstop = 2*pi * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = ellip (n, Rpass, Rstop, Wn, "stop", "s"); + f = 5000:15000; + W = 2*pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; + hold on + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("6th order analog elliptical notch (just exceeds 4th order) limit on upper freq"); +***** demo + fstop = [9875 10126.5823]; + fpass = [9385 12000]; + Rpass = 3; + Rstop = 40; + fcenter = sqrt (fpass(1) * fpass(2)); + Wpass = 2*pi * fpass; + Wstop = 2*pi * fstop; + [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = ellip (n, Rpass, Rstop, Wn, "stop", "s"); + f = 5000:15000; + W = 2*pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))) + outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; + hold on + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") + xlim ([f(1), f(end)]); + ylim ([-80, 0]); + grid on + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + title ("6th order analog elliptical notch (just exceeds 4th order) limit on lower freq"); +***** test + # Analog band-pass + [n, Wn] = ellipord (2 * pi * [9875, 10126.5823], ... + 2 * pi * [9000, 10657], 3, 40, "s"); + assert (n, 2); + assert (round (Wn), [62046, 63627]); +***** test + # Analog band-pass + [n, Wn] = ellipord (2 * pi * [9875, 10126.5823], ... + 2 * pi * [9384, 12000], 3, 40, "s"); + assert (n, 2); + assert (round (Wn), [62046, 63627]); +***** test + # Analog band-pass + [n, Wn] = ellipord (2 * pi * [9875, 10126.5823], ... + 2 * pi * [9000, 10656], 3, 40, "s"); + assert (n, 3); + assert (round (Wn), [62046, 63627]); +***** test + # Analog band-pass + [n, Wn] = ellipord (2 * pi * [9875, 10126.5823], ... + 2 * pi * [9385, 12000], 3, 40, "s"); + assert (n, 3); + assert (round (Wn), [62046, 63627]); +***** test + # Analog high-pass + [n, Wn] = ellipord (2 * pi * 20224, 2 * pi * 4000, 3, 40, "s"); + assert (n, 2); + assert (round (Wn), 127071); +***** test + # Analog high-pass + [n, Wn] = ellipord (2 * pi * 20223, 2 * pi * 4000, 3, 40, "s"); + assert (n, 3); + assert (round (Wn), 127065); +***** test + # Analog low-pass + [n, Wn] = ellipord (2 * pi * 4000, 2 * pi * 20224, 3, 40, "s"); + assert (n, 2); + assert (round (Wn), 25133); +***** test + # Analog low-pass + [n, Wn] = ellipord (2 * pi * 4000, 2 * pi * 20223, 3, 40, "s"); + assert (n, 3); + assert (round (Wn), 25133); +***** test + # Analog notch (narrow band-stop) + [n, Wn] = ellipord (2 * pi * [9000, 10657], ... + 2 * pi * [9875, 10126.5823], 3, 40, "s"); + assert (n, 2); + assert (round (Wn), [58958, 66960]); +***** test + # Analog notch (narrow band-stop) + [n, Wn] = ellipord (2 * pi * [9384, 12000], ... + 2 * pi * [9875, 10126.5823], 3, 40, "s"); + assert (n, 2); + assert (round (Wn), [58961 , 66956]); +***** test + # Analog notch (narrow band-stop) + [n, Wn] = ellipord (2 * pi * [9000, 10656], ... + 2 * pi * [9875, 10126.5823], 3, 40, "s"); + assert (n, 3); + assert (round (Wn), [58964, 66954]); +***** test + # Analog notch (narrow band-stop) + [n, Wn] = ellipord (2 * pi * [9385, 12000], ... + 2 * pi * [9875, 10126.5823], 3, 40, "s"); + assert (n, 3); + assert (round (Wn), [58968, 66949]); +***** test + # Digital band-pass + fs = 44100; + [n, Wn] = ellipord (2 / fs * [9500, 9750], 2 / fs * [8500, 10261], 3, 40); + Wn = Wn * fs / 2; + assert (n, 2); + assert (round (Wn), [9500, 9750]); +***** test + # Digital band-pass + fs = 44100; + [n, Wn] = ellipord (2 / fs * [9500, 9750], 2 / fs * [9000, 10700], 3, 40); + Wn = Wn * fs / 2; + assert (n, 2); + assert (round (Wn), [9500, 9750]); +***** test + # Digital band-pass + fs = 44100; + [n, Wn] = ellipord (2 / fs * [9500, 9750], 2 / fs * [8500, 10260], 3, 40); + Wn = Wn * fs / 2; + assert (n, 3); + assert (round (Wn), [9500, 9750]); +***** test + # Digital band-pass + fs = 44100; + [n, Wn] = ellipord (2 / fs * [9500, 9750], 2 / fs * [9001, 10700], 3, 40); + Wn = Wn * fs / 2; + assert (n, 3); + assert (round (Wn), [9500, 9750]); +***** test + # Digital high-pass + fs = 44100; + [n, Wn] = ellipord (2 / fs * 13713, 2 / fs * 4000, 3, 40); + Wn = Wn * fs / 2; + assert (n, 2); + assert (round (Wn), 13713); +***** test + # Digital high-pass + fs = 44100; + [n, Wn] = ellipord (2 / fs * 13712, 2 / fs * 4000, 3, 40); + Wn = Wn * fs / 2; + assert (n, 3); + assert (round (Wn), 13712); +***** test + # Digital low-pass + fs = 44100; + [n, Wn] = ellipord (2 / fs * 4000, 2 / fs * 13713, 3, 40); + Wn = Wn * fs / 2; + assert (n, 2); + assert (round (Wn), 4000); +***** test + # Digital low-pass + fs = 44100; + [n, Wn] = ellipord (2 / fs * 4000, 2 / fs * 13712, 3, 40); + Wn = Wn * fs / 2; + assert (n, 3); + assert (round (Wn), 4000); +***** test + # Digital notch (narrow band-stop) + fs = 44100; + [n, Wn] = ellipord (2 / fs * [8500, 11073], 2 / fs * [9875, 10126.5823], 0.5, 40); + Wn = Wn * fs / 2; + assert (n, 2); + assert (round (Wn), [8952, 11073]); +***** test + # Digital notch (narrow band-stop) + fs = 44100; + [n, Wn] = ellipord (2 / fs * [8952, 12000], 2 / fs * [9875, 10126.5823], 0.5, 40); + Wn = Wn * fs / 2; + assert (n, 2); + assert (round (Wn), [8952, 11073]); +***** test + # Digital notch (narrow band-stop) + fs = 44100; + [n, Wn] = ellipord (2 / fs * [8500, 11072], 2 / fs * [9875, 10126.5823], 0.5, 40); + Wn = Wn * fs / 2; + assert (n, 3); + assert (round (Wn), [8953, 11072]); +***** test + # Digital notch (narrow band-stop) + fs = 44100; + [n, Wn] = ellipord (2 / fs * [8953, 12000], 2 / fs * [9875, 10126.5823], 0.5, 40); + Wn = Wn * fs / 2; + assert (n, 3); + assert (round (Wn), [8953, 11072]); +***** error ellipord () +***** error ellipord (.1) +***** error ellipord (.1, .2) +***** error ellipord (.1, .2, 3) +***** error ellipord ([.1 .1], [.2 .2], 3, 4) +***** error ellipord ([.1 .2], [.5 .6], 3, 4) +***** error ellipord ([.1 .5], [.2 .6], 3, 4) +31 tests, 31 passed, 0 known failure, 0 skipped +[inst/ellip.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/ellip.m +***** demo + [n, Ws] = ellipord ([.1 .2], [.01 .4], 1, 90); + [b, a] = ellip (5, 1, 90, [.1 .2]); + [h, w] = freqz (b, a); + + plot (w./pi, 20*log10 (abs (h)), ";;") + xlabel ("Frequency"); + ylabel ("abs(H[w])[dB]"); + axis ([0, 1, -100, 0]); + + hold ("on"); + x=ones (1, length (h)); + plot (w./pi, x.*-1, ";-1 dB;") + plot (w./pi, x.*-90, ";-90 dB;") + hold ("off"); +***** error [a, b] = ellip () +***** error [a, b] = ellip (1) +***** error [a, b] = ellip (1, 2) +***** error [a, b] = ellip (1, 2, 3) +***** error [a, b] = ellip (1, 2, 3, 4, 5, 6, 7) +***** error [a, b] = ellip (.5, 2, 40, .2) +***** error [a, b] = ellip (3, 2, 40, .2, "invalid") +***** test + ellip (6, 3, 50, .6); + assert (isrow (ans)); +***** test + A = ellip (6, 3, 50, .6); + assert (isrow (A)); +***** test + [A, B] = ellip (6, 3, 50, .6); + assert (isrow (A)); + assert (isrow (B)); +***** test + [z, p, g] = ellip (6, 3, 50, .6); + assert (iscolumn (z)); + assert (iscolumn (p)); + assert (isscalar (g)); +***** test + [a, b, c, d] = ellip (6, 3, 50, .6); + assert (ismatrix (a)); + assert (iscolumn (b)); + assert (isrow (c)); + assert (isscalar (d)); +12 tests, 12 passed, 0 known failure, 0 skipped +[inst/unshiftdata.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/unshiftdata.m +***** test + x = 1:5; + [y, perm, shifts] = shiftdata (x); + x2 = unshiftdata (y, perm, shifts); + assert (x, x2); +***** test + X = fix (rand (3, 3) * 100); + [Y, perm, shifts] = shiftdata (X, 2); + X2 = unshiftdata (Y, perm, shifts); + assert (X, X2); ***** test X = fix (rand (4, 4, 4, 4) * 100); [Y, perm, shifts] = shiftdata (X, 3); - T = 0; - for i = 1:3 - for j = 1:3 - for k = 1:2 - for l = 1:2 - T = [T Y(k, i, j, l) - X(i, j, k ,l)]; - endfor - endfor - endfor - endfor - assert (T, zeros (size (T))); -***** error shiftdata () -***** error shiftdata (1, 2, 3) -***** error shiftdata (1, 2.5) + X2 = unshiftdata (Y, perm, shifts); + assert (X, X2); +***** test + X = fix (rand (1, 1, 3, 4) * 100); + [Y, perm, shifts] = shiftdata (X); + X2 = unshiftdata (Y, perm, shifts); + assert (X, X2); +***** error unshiftdata () +***** error unshiftdata (1, 2) +***** error unshiftdata (1, 2, 3, 4) +***** error unshiftdata (1, 2.5) +***** error unshiftdata (1, [], 2.5) +***** error unshiftdata (1, [], []) +10 tests, 10 passed, 0 known failure, 0 skipped +[inst/idst.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/idst.m +***** test + x = log(gausswin(32)); + assert(x, idst(dst(x)), 100*eps) +1 test, 1 passed, 0 known failure, 0 skipped +[inst/ifwht.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/ifwht.m +***** assert (isempty (ifwht ([]))); +***** assert (ifwht (zeros (16)), zeros (16)); +***** assert (ifwht ([1; (zeros (15, 1))]), ones (16, 1)); +***** assert (ifwht (zeros (17, 1)), zeros (32, 1)); +***** assert (ifwht ([0 0 0 0 0 0 0 1]), [1 -1 1 -1 1 -1 1 -1]); +***** error ifwht (); +***** error ifwht (1, 2, 3, 4); +***** error ifwht (0, 0); +***** error ifwht (0, 5); +***** error ifwht (0, [], "invalid"); +10 tests, 10 passed, 0 known failure, 0 skipped +[inst/tripuls.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/tripuls.m +***** demo + fs = 11025; # arbitrary sample rate + f0 = 100; # pulse train sample rate + w = 0.5/f0; # pulse width 1/10th the distance between pulses + x = pulstran (0:1/fs:4/f0, 0:1/f0:4/f0, "tripuls", w); + plot ([0:length(x)-1]*1000/fs, x); + xlabel ("Time (ms)"); + ylabel ("Amplitude"); + title ("Triangular pulse train of 5 ms pulses at 10 ms intervals"); +***** demo + fs = 11025; # arbitrary sample rate + f0 = 100; # pulse train sample rate + w = 0.5/f0; # pulse width 1/10th the distance between pulses + x = pulstran (0:1/fs:4/f0, 0:1/f0:4/f0, "tripuls", w, -0.5); + plot ([0:length(x)-1]*1000/fs, x); + xlabel ("Time (ms)"); + ylabel ("Amplitude"); + title ("Triangular pulse train of 5 ms pulses at 10 ms intervals, skew = -0.5"); +***** assert (tripuls ([]), []) +***** assert (tripuls ([], 0.1), []) +***** assert (tripuls (zeros (10, 1)), ones (10, 1)) +***** assert (tripuls (-1:1), [0, 1, 0]) +***** assert (tripuls (-5:5, 9), [0, 1, 3, 5, 7, 9, 7, 5, 3, 1, 0] / 9) +***** assert (tripuls (0:1/100:0.3, 0.1), tripuls ([0:1/100:0.3]', 0.1)') +***** error tripuls () +***** error tripuls (1, 2, 3, 4) +***** error tripuls (1, 2j) +***** error tripuls (1, 2, 2) +***** error tripuls (1, 2, -2) +11 tests, 11 passed, 0 known failure, 0 skipped +[inst/isstable.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/isstable.m +***** test + b = [1 2 3 4 5 5 1 2]; + a = []; + assert (isstable (b,a), true) +***** test + b = [1 2 3 4 5 5 1 2]; + a = [4 5 6 7 9 10 4 6]; + assert (isstable (b,a), false) +***** test + b = [1 2 3 4 5 5 1 2]; + a = [4 5 6 7 9 10 4 6]; + a = polystab(a); + assert (isstable (b,a), true) +***** test + [z,p,g] = butter(6,0.7,'high'); + sos = zp2sos(z,p,g); + assert (isstable(sos) , true) +4 tests, 4 passed, 0 known failure, 0 skipped +[inst/gaussian.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/gaussian.m +***** assert (gaussian (1), 1) +***** error gaussian () +***** error gaussian (0.5) +***** error gaussian (-1) +***** error gaussian (ones (1, 4)) +***** error gaussian (1, 2, 3) 6 tests, 6 passed, 0 known failure, 0 skipped -[inst/upsample.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/upsample.m -***** assert(upsample([1,3,5],2),[1,0,3,0,5,0]); -***** assert(upsample([1;3;5],2),[1;0;3;0;5;0]); -***** assert(upsample([1,2;5,6;9,10],2),[1,2;0,0;5,6;0,0;9,10;0,0]); -***** assert(upsample([2,4],2,1),[0,2,0,4]); -***** assert(upsample([3,4;7,8],2,1),[0,0;3,4;0,0;7,8]); -5 tests, 5 passed, 0 known failure, 0 skipped [inst/taylorwin.m] >>>>> /build/reproducible-path/octave-signal-1.4.6/inst/taylorwin.m ***** test % odd M; even NBAR: @@ -4068,104 +5460,135 @@ ***** demo taylorwin (2000, 7, -50, 1); ***** demo taylorwin (2000, 11, -70, 1); 19 tests, 19 passed, 0 known failure, 0 skipped -[inst/sos2zp.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/sos2zp.m -***** test - b1t=[1 2 3]; a1t=[1 .2 .3]; - b2t=[4 5 6]; a2t=[1 .4 .5]; - sos=[b1t a1t; b2t a2t]; - z = [-1-1.41421356237310i;-1+1.41421356237310i;... - -0.625-1.05326872164704i;-0.625+1.05326872164704i]; - p = [-0.2-0.678232998312527i;-0.2+0.678232998312527i;... - -0.1-0.538516480713450i;-0.1+0.538516480713450i]; - k = 4; - [z2,p2,k2] = sos2zp(sos,1); - assert({cplxpair(z2),cplxpair(p2),k2},{z,p,k},100*eps); -***** test - sos = [1, 1, 0, 1, 1, 0.5]; - [Z, P] = sos2zp (sos); - assert (Z, roots (sos(1,1:3)), 10*eps); - assert (P, roots (sos(1,4:6)), 10*eps); +[inst/pow2db.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/pow2db.m +***** shared pow + pow = [0, 10, 20, 60, 100]; +***** assert (pow2db (pow), [-Inf, 10.000, 13.010, 17.782, 20.000], 0.01) +***** assert (pow2db (pow'), [-Inf; 10.000; 13.010; 17.782; 20.000], 0.01) +***** error pow2db () +***** error pow2db (1, 2) +***** error pow2db (-5) +***** error pow2db ([-5 7]) +6 tests, 6 passed, 0 known failure, 0 skipped +[inst/kaiser.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/kaiser.m +***** demo + % use demo("kaiserord"); +***** assert (kaiser (1), 1) +***** error kaiser () +***** error kaiser (0.5) +***** error kaiser (-1) +***** error kaiser (ones (1, 4)) +***** error kaiser (1, 2, 3) +6 tests, 6 passed, 0 known failure, 0 skipped +[inst/pulstran.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/pulstran.m +***** error pulstran +***** error pulstran(1,2,3,4,5,6) +***** ## parameter size and shape checking +***** shared t,d + t = 0:0.01:1; d=0:0.1:1; +***** assert (isempty(pulstran([], d, 'sin'))); +***** assert (pulstran(t, [], 'sin'), zeros(size(t))); +***** assert (isempty(pulstran([], d, boxcar(5)))); +***** assert (pulstran(t, [], boxcar(5)), zeros(size(t))); +***** assert (size(pulstran(t,d,'sin')), size(t)); +***** assert (size(pulstran(t,d','sin')), size(t)); +***** assert (size(pulstran(t',d,'sin')), size(t')); +***** assert (size(pulstran(t,d','sin')), size(t)); +***** demo + fs = 11025; # arbitrary sample rate + f0 = 100; # pulse train sample rate + w = 0.003; # pulse width of 3 milliseconds + t = 0:1/fs:0.1; d=0:1/f0:0.1; # define sample times and pulse times + a = hanning(length(d)); # define pulse amplitudes + + subplot(221); + x = pulstran(t', d', 'rectpuls', w); + plot([0:length(x)-1]*1000/fs, x); + hold on; plot(d*1000,ones(size(d)),'g*;pulse;'); hold off; + ylabel("amplitude"); xlabel("time (ms)"); + title("rectpuls"); + + subplot(223); + x = pulstran(f0*t, [f0*d', a], 'sinc'); + plot([0:length(x)-1]*1000/fs, x); + hold on; plot(d*1000,a,'g*;pulse;'); hold off; + ylabel("amplitude"); xlabel("time (ms)"); + title("sinc => band limited interpolation"); + + subplot(222); + pulse = boxcar(30); # pulse width of 3 ms at 10 kHz + x = pulstran(t, d', pulse, 10000); + plot([0:length(x)-1]*1000/fs, x); + hold on; plot(d*1000,ones(size(d)),'g*;pulse;'); hold off; + ylabel("amplitude"); xlabel("time (ms)"); + title("interpolated boxcar"); + + subplot(224); + pulse = sin(2*pi*[0:0.0001:w]/w).*[w:-0.0001:0]; + x = pulstran(t', [d', a], pulse', 10000); + plot([0:length(x)-1]*1000/fs, x); + hold on; plot(d*1000,a*w,'g*;pulse;'); hold off; title(""); + ylabel("amplitude"); xlabel("time (ms)"); + title("interpolated asymmetric sin"); + + %---------------------------------------------------------- + % Should see (1) rectangular pulses centered on *, + % (2) rectangular pulses to the right of *, + % (3) smooth interpolation between the *'s, and + % (4) asymmetric sines to the right of * +10 tests, 10 passed, 0 known failure, 0 skipped +[inst/cheby1.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cheby1.m +***** error [a, b] = cheby1 () +***** error [a, b] = cheby1 (1) +***** error [a, b] = cheby1 (1, 2) +***** error [a, b] = cheby1 (1, 2, 3, 4, 5, 6) +***** error [a, b] = cheby1 (.5, 2, .2) +***** error [a, b] = cheby1 (3, 2, .2, "invalid") ***** test - sos = [0, 1, 1, 1, 0.5, 0]; - [Z, P] = sos2zp (sos); - assert (Z, roots (sos(1,1:3)), 10*eps); - assert (P, roots (sos(1,4:6)), 10*eps); + cheby1 (3, 4, .5); + assert (isrow (ans)); ***** test - sos = [1, 1, 0, 1, 0.5, 0]; - [Z, P] = sos2zp (sos); - assert (Z, roots (sos(1,1:3)), 10*eps); - assert (P, roots (sos(1,4:6)), 10*eps); + A = cheby1 (3, 4, .5); + assert (isrow (A)); ***** test - sos = [0, 1, 1, 1, 1, 0.5]; - [Z, P] = sos2zp (sos); - assert (Z, roots (sos(1,1:3)), 10*eps); - assert (P, roots (sos(1,4:6)), 10*eps); + [A, B] = cheby1 (3, 4, .5); + assert (isrow (A)); + assert (isrow (B)); ***** test - sos = [1, 1, 0, 0, 1, 0.5]; - [Z, P] = sos2zp (sos); - assert (Z, roots (sos(1,1:3)), 10*eps); - assert (P, roots (sos(1,4:6)), 10*eps); + [z, p, g] = cheby1 (3, 4, .5); + assert (iscolumn (z)); + assert (iscolumn (p)); + assert (isscalar (g)); ***** test - sos = [0, 1, 1, 0, 1, 0.5]; - [Z, P] = sos2zp (sos); - assert (Z, roots (sos(1,1:3)), 10*eps); - assert (P, roots (sos(1,4:6)), 10*eps); -7 tests, 7 passed, 0 known failure, 0 skipped -[inst/phasez.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/phasez.m + [a, b, c, d] = cheby1 (3, 4, .5); + assert (ismatrix (a)); + assert (iscolumn (b)); + assert (isrow (c)); + assert (isscalar (d)); +11 tests, 11 passed, 0 known failure, 0 skipped +[inst/tukeywin.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/tukeywin.m ***** demo - N = 2; - b = ones (1, N)/N; - a = 1; - [phi, w] = phasez (b, a) - ## test input validation -***** error n = phasez () -***** error n = phasez (1, 1, 1, 1, 1) -***** error n = phasez (1:10, 1:10, 1:10) -***** error n = phasez (ones (3), ones (3)) -***** test - % moving average - N = 2; - b = ones (1, N)/N; - a = 1; - [phi, w] = phasez (b, a); - PHI = -w * (N-1) /2; - assert (phi, PHI, eps^(3/5)) -***** test - % moving average - N = 5; - b = ones (1, N)/N; - a = 1; - [phi, w] = phasez (b, a); - PHI = -w * (N-1) /2; - assert (phi, PHI, eps^(3/5)) -***** test - % Oppenheim - Example 5.6 - 2nd-Order IIR System - % - % 1 - % H(z) = --------------------------- - % 1 − 2r cos θz^−1 + r^2 z^−2 - % - % ang(H(e^jω)) = − arctan[ r sin(ω − θ) / (1 − r cos(ω − θ)) ] − arctan[ r sin(ω + θ) / (1 − r cos(ω + θ)) ] - % - r = 0.5; theta = pi/4; - b = 1; - a = [ 1 -2*r*cos(theta) r^2]; - [phi, w] = phasez (b, a); - PHI = - atan ( r*sin (w - theta) ./ (1 - r*cos (w - theta)) ) - atan ( r*sin (w + theta) ./ (1 - r*cos (w+theta)) ); - assert (phi, PHI, eps^(3/5)) -7 tests, 7 passed, 0 known failure, 0 skipped -[inst/convmtx.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/convmtx.m -***** assert(convmtx([3,4,5],3),[3,4,5,0,0;0,3,4,5,0;0,0,3,4,5]) -***** assert(convmtx([3;4;5],3),[3,0,0;4,3,0;5,4,3;0,5,4;0,0,5]) -2 tests, 2 passed, 0 known failure, 0 skipped -[inst/fht.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/fht.m -***** assert( fht([1 2 3 4]),[10 -4 -2 0] ) - -1 test, 1 passed, 0 known failure, 0 skipped + m = 100; + r = 1/3; + w = tukeywin (m, r); + title(sprintf("%d-point Tukey window, R = %d/%d", m, [p, q] = rat(r), q)); + plot(w); +***** assert (tukeywin (1), 1) +***** assert (tukeywin (2), zeros (2, 1)) +***** assert (tukeywin (3), [0; 1; 0]) +***** assert (tukeywin (16, 0), rectwin (16)) +***** assert (tukeywin (16, 1), hanning (16)) +***** error tukeywin () +***** error tukeywin (0.5) +***** error tukeywin (-1) +***** error tukeywin (ones (1, 4)) +***** error tukeywin (1, 2, 3) +10 tests, 10 passed, 0 known failure, 0 skipped [inst/rceps.m] >>>>> /build/reproducible-path/octave-signal-1.4.6/inst/rceps.m ***** test @@ -4230,631 +5653,208 @@ % and the reconstruction and that there are peaks in the % cepstrum at 14 ms intervals corresponding to an F0 of 70 Hz. 7 tests, 7 passed, 0 known failure, 0 skipped -[inst/filtic.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/filtic.m -***** test - ## Simple low pass filter - b=[0.25 0.25]; - a=[1.0 -0.5]; - zf_ref=0.75; - zf=filtic(b,a,[1.0],[1.0]); - assert(zf,zf_ref,8*eps); - -***** test - ## Simple high pass filter - b=[0.25 -0.25]; - a=[1.0 0.5]; - zf_ref = [-0.25]; - zf=filtic(b,a,[0.0],[1.0]); - assert(zf,zf_ref,8*eps); - -***** test - ## Second order cases - [b,a]=butter(2,0.4); - N=1000; ## Long enough for filter to settle - xx=ones(1,N); - [yy,zf_ref] = filter(b,a,xx); - x=xx(N:-1:N-1); - y=yy(N:-1:N-1); - zf = filtic(b,a,y,x); - assert(zf,zf_ref,8*eps); - - xx = cos(2*pi*linspace(0,N-1,N)/8); - [yy,zf_ref] = filter(b,a,xx); - x=xx(N:-1:N-1); - y=yy(N:-1:N-1); - zf = filtic(b,a,y,x); - assert(zf,zf_ref,8*eps); - -***** test - ## Third order filter - takes longer to settle - N=10000; - [b,a]=cheby1(3,10,0.5); - xx=ones(1,N); - [yy,zf_ref] = filter(b,a,xx); - x=xx(N:-1:N-2); - y=yy(N:-1:N-2); - zf = filtic(b,a,y,x); - assert(zf,zf_ref,8*eps); - +[inst/phasez.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/phasez.m +***** demo + N = 2; + b = ones (1, N)/N; + a = 1; + [phi, w] = phasez (b, a) + ## test input validation +***** error n = phasez () +***** error n = phasez (1, 1, 1, 1, 1) +***** error n = phasez (1:10, 1:10, 1:10) +***** error n = phasez (ones (3), ones (3)) ***** test - ## Eight order high pass filter - N=10000; - [b,a]=butter(8,0.2); - xx = cos(2*pi*linspace(0,N-1,N)/8); - [yy,zf_ref] = filter(b,a,xx); - x=xx(N:-1:N-7); - y=yy(N:-1:N-7); - zf = filtic(b,a,y,x); - assert(zf,zf_ref,8*eps); - + % moving average + N = 2; + b = ones (1, N)/N; + a = 1; + [phi, w] = phasez (b, a); + PHI = -w * (N-1) /2; + assert (phi, PHI, eps^(3/5)) ***** test - ## Case with 3 args - [b,a]=butter(2,0.4); - N=100; - xx=[ones(1,N) zeros(1,2)]; - [yy,zf_ref] = filter(b,a,xx); - y=[yy(N+2) yy(N+1)]; - zf=filtic(b,a,y); - assert(zf,zf_ref,8*eps); + % moving average + N = 5; + b = ones (1, N)/N; + a = 1; + [phi, w] = phasez (b, a); + PHI = -w * (N-1) /2; + assert (phi, PHI, eps^(3/5)) ***** test - a = [2, -3, 1]; - b = [4, -3]; - y = [0; 1]; - z = filtic (b, a, y); - assert (z, [-0.5; 0]); + % Oppenheim - Example 5.6 - 2nd-Order IIR System + % + % 1 + % H(z) = --------------------------- + % 1 − 2r cos θz^−1 + r^2 z^−2 + % + % ang(H(e^jω)) = − arctan[ r sin(ω − θ) / (1 − r cos(ω − θ)) ] − arctan[ r sin(ω + θ) / (1 − r cos(ω + θ)) ] + % + r = 0.5; theta = pi/4; + b = 1; + a = [ 1 -2*r*cos(theta) r^2]; + [phi, w] = phasez (b, a); + PHI = - atan ( r*sin (w - theta) ./ (1 - r*cos (w - theta)) ) - atan ( r*sin (w + theta) ./ (1 - r*cos (w+theta)) ); + assert (phi, PHI, eps^(3/5)) 7 tests, 7 passed, 0 known failure, 0 skipped -[inst/hann.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/hann.m -***** assert (hann (1), 1); -***** assert (hann (2), zeros (2, 1)); -***** assert (hann (16), flipud (hann (16)), 10*eps); -***** assert (hann (15), flipud (hann (15)), 10*eps); -***** test - N = 15; - A = hann (N); - assert (A(ceil (N/2)), 1); -***** assert (hann (15), hann (15, "symmetric")); -***** assert (hann (16)(1:15), hann (15, "periodic")); +[inst/ultrwin.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/ultrwin.m ***** test - N = 16; - A = hann (N, "periodic"); - assert (A (N/2 + 1), 1); -***** error hann () -***** error hann (0.5) -***** error hann (-1) -***** error hann (1, "invalid") -12 tests, 12 passed, 0 known failure, 0 skipped -[inst/peak2peak.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/peak2peak.m + assert(ultrwin(100, 1, 1), ones(100, 1), 1e-14); ***** test - X = [23 42 85; 62 46 65; 18 40 28]; - Y = peak2peak (X); - assert (Y, [44 6 57]); - Y = peak2peak (X, 1); - assert (Y, [44 6 57]); - Y = peak2peak (X, 2); - assert (Y, [62; 19; 22]); + L = 201; xmu = 1.01; m = L-1; + for mu = -1.35:.3:1.35 + x = xmu*cos([0:m]*pi/L); + C(2,:) = 2*mu*x; C(1,:) = 1; + for k = 2:m; C(k+1,:) = 2*(k+mu-1)/k*x.*C(k,:) - (k+2*mu-2)/k*C(k-1,:); end + b = real(ifft(C(m+1,:))); b = b(m/2+2:L)/b(1); + assert(ultrwin(L, mu, xmu, "x")', [b 1 fliplr(b)], 1e-12); + end ***** test - X = [71 62 33]; - X(:, :, 2) = [88 36 21]; - X(:, :, 3) = [83 46 85]; - Y = peak2peak (X); - T = [38]; - T(:, :, 2) = [67]; - T(:, :, 3) = [39]; - assert (Y, T); + b = [ + 5.7962919401511820e-03 + 1.6086991349967078e-02 + 3.6019014684117417e-02 + 6.8897525451558125e-02 + 1.1802364384553447e-01 + 1.8566749737411145e-01 + 2.7234740630826737e-01 + 3.7625460141456091e-01 + 4.9297108901880221e-01 + 6.1558961695849457e-01 + 7.3527571856983598e-01 + 8.4222550739092694e-01 + 9.2688779484512085e-01 + 9.8125497127708561e-01]'; + [w xmu] = ultrwin(29, 0, 3); + assert(w', [b 1 fliplr(b)], 1e-14); + assert(xmu, 1.053578297819277, 1e-14); ***** test - X = [71 72 22; 16 22 50; 29 44 14]; - X(:, :, 2) = [10 15 62; 1 94 30; 72 43 53]; - X(:, :, 3) = [57 98 32; 84 95 51; 25 24 0]; - Y = peak2peak (X); - T = [55 50 36]; - T(:, :, 2) = [71 79 32]; - T(:, :, 3) = [59 74 51]; - assert (Y, T); - Y = peak2peak (X, 2); - T = [50; 34; 30]; - T(:, :, 2) = [52; 93; 29]; - T(:, :, 3) = [66; 44; 25]; - assert (Y, T); - Y = peak2peak (X, 3); - T = [61 83 40; 83 73 21; 47 20 53]; - assert (Y, T); + b = [ + 2.9953636903962466e-02 + 7.6096450051659603e-02 + 1.5207129867916891e-01 + 2.5906995366355179e-01 + 3.9341065451220536e-01 + 5.4533014012036929e-01 + 6.9975915071207051e-01 + 8.3851052636906720e-01 + 9.4345733548690369e-01]'; + assert(ultrwin(20, .5, 50, "a")', [b 1 1 fliplr(b)], 1e-14); ***** test - X = [60 61; 77 77]; - X(:, :, 2) = [24 24; 22 74]; - temp = [81 87; 88 62]; - temp(:, :, 2) = [20 83; 81 18]; - X(:, :, :, 2) = temp; - Y = peak2peak (X); - T = [17 16]; - T(:, :, 2) = [2 50]; - T2 = [7 25]; - T2(:, :, 2) = [61 65]; - T(:, :, :, 2) = T2; - assert (Y, T); -***** error peak2peak () -***** error peak2peak (1, 2, 3) -***** error peak2peak (1, 1.5) -***** error peak2peak (1, 0) -8 tests, 8 passed, 0 known failure, 0 skipped -[inst/cconv.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cconv.m -***** shared x - x = [1, 2, 3, 4, 5]; -***** assert (cconv (x, 1), [1, 2, 3, 4, 5], 2*eps) -***** assert (cconv (x', 1), [1; 2; 3; 4; 5], 2*eps) -***** assert (real (cconv (x, [1 1])), [1, 3, 5, 7, 9, 5], 2*eps) -***** assert (cconv (x, [1 1], 3), [8, 12, 10]) -***** assert (cconv ([2 1 2 1], [1 2 3 4]), [2 5 10 16 12 11 4], 1e-14) -***** assert (cconv ([2 1 2 1], [1 2 3 4], 4), [14 16 14 16]) -***** assert (cconv ([2 1 2 1], [1 2 3 4], 3), [22 17 21]) -***** assert (cconv ([2 1 2 1], [1 2 3 4], 2), [28 32]) -***** assert (cconv ([2 1 2 1], [1 2 3 4], 1), 60) -***** assert (cconv (x*j, 1), [1j, 2j, 3j, 4j, 5j]) -***** assert (cconv (x'*j, 1), [1j; 2j; 3j; 4j; 5j]) -***** error cconv () -***** error cconv (1) -***** error cconv (1, 1, [1 1]) -***** error cconv (ones (2, 2), 1) -***** error cconv (1, ones (2, 2)) -***** error cconv (1, 1, 3.5) -17 tests, 17 passed, 0 known failure, 0 skipped -[inst/rectpuls.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/rectpuls.m + b = [ + 1.0159906492322712e-01 + 1.4456358609406283e-01 + 2.4781689516201011e-01 + 3.7237015168857646e-01 + 5.1296973026690407e-01 + 6.5799041448113671e-01 + 7.9299087042967320e-01 + 9.0299778924260576e-01 + 9.7496213649820296e-01]'; + assert(ultrwin(19, -.4, 40, "l")', [b 1 fliplr(b)], 1e-14); ***** demo - fs = 11025; # arbitrary sample rate - f0 = 100; # pulse train sample rate - w = 0.3/f0; # pulse width 1/10th the distance between pulses - x = pulstran (0:1/fs:4/f0, 0:1/f0:4/f0, "rectpuls", w); - plot ([0:length(x)-1]*1000/fs, x); - xlabel ("Time (ms)"); - ylabel ("Amplitude"); - title ("Rectangular pulse train of 3 ms pulses at 10 ms intervals"); -***** assert (rectpuls ([]), []) -***** assert (rectpuls ([], 0.1), []) -***** assert (rectpuls (zeros (10, 1)), ones (10, 1)) -***** assert (rectpuls (-1:1), [0, 1, 0]) -***** assert (rectpuls (-5:5, 9), [0, ones(1,9), 0]) -***** assert (rectpuls (0:1/100:0.3, 0.1), rectpuls ([0:1/100:0.3]', 0.1)') -***** error rectpuls () -***** error rectpuls (1, 2, 3) -***** error rectpuls (1, 2j) -9 tests, 9 passed, 0 known failure, 0 skipped -[inst/cceps.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cceps.m -***** test - x = randn (256, 1); - c = cceps (x); - assert (size (c), size (x)) -***** error cceps () -***** error cceps (1, 2, 3) -***** error cceps (ones (4)) -***** error cceps (0) -***** error cceps (zeros (10, 1)) -6 tests, 6 passed, 0 known failure, 0 skipped -[inst/chebwin.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/chebwin.m -***** assert (chebwin (1), 1) -***** assert (chebwin (2), ones (2, 1)) -***** error chebwin () -***** error chebwin (0.5) -***** error chebwin (-1) -***** error chebwin (ones (1, 4)) -***** error chebwin (1, 2, 3) -7 tests, 7 passed, 0 known failure, 0 skipped -[inst/zp2sos.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/zp2sos.m -***** test - B=[1 0 0 0 0 1]; A=[1 0 0 0 0 .9]; - [z,p,k] = tf2zp(B,A); - [sos,g] = zp2sos(z,p,k); - [Bh,Ah] = sos2tf(sos,g); - assert({Bh,Ah},{B,A},100*eps); -***** test - sos = zp2sos ([]); - assert (sos, [1, 0, 0, 1, 0, 0], 100*eps); -***** test - sos = zp2sos ([], []); - assert (sos, [1, 0, 0, 1, 0, 0], 100*eps); -***** test - sos = zp2sos ([], [], 2); - assert (sos, [2, 0, 0, 1, 0, 0], 100*eps); -***** test - [sos, g] = zp2sos ([], [], 2); - assert (sos, [1, 0, 0, 1, 0, 0], 100*eps); - assert (g, 2, 100*eps); -***** test - sos = zp2sos([], [0], 1); - assert (sos, [0, 1, 0, 1, 0, 0], 100*eps); -***** test - sos = zp2sos([0], [], 1); - assert (sos, [1, 0, 0, 0, 1, 0], 100*eps); -***** test - sos = zp2sos([-1-j -1+j], [-1-2j -1+2j], 10); - assert (sos, [10, 20, 20, 1, 2, 5], 100*eps); -8 tests, 8 passed, 0 known failure, 0 skipped -[inst/impinvar.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/impinvar.m -***** function err = stozerr(bs,as,fs) - - # number of time steps - n=100; - - # impulse invariant transform to z-domain - [bz az]=impinvar(bs,as,fs); - - # create sys object of transfer function - s=tf(bs,as); - - # calculate impulse response of continuous time system - # at discrete time intervals 1/fs - ys=impulse(s,(n-1)/fs,1/fs)'; - - # impulse response of discrete time system - yz=filter(bz,az,[1 zeros(1,n-1)]); - - # find rms error - err=sqrt(sum((yz*fs-ys).^2)/length(ys)); - endfunction - -***** assert(stozerr([1],[1 1],100),0,0.0001); -***** assert(stozerr([1],[1 2 1],100),0,0.0001); -***** assert(stozerr([1 1],[1 2 1],100),0,0.0002); -***** assert(stozerr([1],[1 3 3 1],100),0,0.0001); -***** assert(stozerr([1 1],[1 3 3 1],100),0,0.0001); -***** assert(stozerr([1 1 1],[1 3 3 1],100),0,0.0001); -***** assert(stozerr([1],[1 0 1],100),0,0.0001); -***** assert(stozerr([1 1],[1 0 1],100),0,0.0001); -***** assert(stozerr([1],[1 0 2 0 1],100),0,0.0001); -***** assert(stozerr([1 1],[1 0 2 0 1],100),0,0.0001); -***** assert(stozerr([1 1 1],[1 0 2 0 1],100),0,0.0001); -***** assert(stozerr([1 1 1 1],[1 0 2 0 1],100),0,0.0001); -12 tests, 12 passed, 0 known failure, 0 skipped -[inst/expwin.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/expwin.m -***** test % even M; odd alpha: - w=[0.0321 0.09385 0.184 0.3011 0.4386 0.5858 0.7289 0.8532 0.945 0.9938]; - assert (expwin (20, 5), [w flip(w)]', 51e-6); -***** test % odd M; even alpha: - w=[0.06202 0.1437 0.2443 0.3611 0.488 0.6172 0.7396 0.8464 0.9294 0.982]; - assert (expwin (21, 4), [w 1 flip(w)]', 51e-6); -***** test % even M; odd alpha; canonical: - w=[0.006738 0.06285 0.145 0.2583 0.3973 0.5507 0.7035 0.8384 0.9392 0.9931]; - assert (expwin (20, 5, 'canonical'), [w flip(w)]', 51e-6); -***** test % odd M; even alpha; canonical: - w=[0.01832 0.1047 0.2019 0.3187 0.4493 0.5851 0.7161 0.8317 0.9224 0.9801]; - assert (expwin (21, 4, 'canonical'), [w 1 flip(w)]', 51e-6); -***** error expwin -***** error expwin (21.5,1) -***** error expwin (21i,1) -***** error expwin (21:22,1) -***** error expwin ({21},1) -***** error expwin (21, 4i) -***** error expwin (21, 2:3) -***** error expwin (21, {4}) -***** error expwin (21, 4, 1) -***** error expwin (21, 4, 'canonical', 1) -14 tests, 14 passed, 0 known failure, 0 skipped -[inst/primitive.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/primitive.m + w=ultrwin(120, -1, 40, "l"); [W,f]=freqz(w); clf + subplot(2,1,1); plot(f/pi, 20*log10(W/abs(W(1)))); grid; axis([0 1 -90 0]) + subplot(2,1,2); plot(0:length(w)-1, w); grid + %----------------------------------------------------------- + % Figure shows an Ultraspherical window with MU=-1, LATT=40: + % frequency domain above, time domain below. ***** demo - f = @(t) sin (2*pi*3*t); - t = [0; sort(rand (100, 1))]; - F = primitive (f, t, 0); - t_true = linspace (0, 1, 1e3).'; - F_true = (1 - cos (2 * pi * 3 * t_true)) / (2 * pi * 3); - h = plot (t, F, "o;Numerical primitive;", t_true, F_true, "-;True primitive;"); - set (h, "linewidth", 2); - title ("Numerical primitive evaluated at random time points"); -***** error primitive () -***** error primitive (1) -***** error primitive (1, 2, 3, 4) -3 tests, 3 passed, 0 known failure, 0 skipped -[inst/downsample.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/downsample.m -***** assert(downsample([1,2,3,4,5],2),[1,3,5]); -***** assert(downsample([1;2;3;4;5],2),[1;3;5]); -***** assert(downsample([1,2;3,4;5,6;7,8;9,10],2),[1,2;5,6;9,10]); -***** assert(downsample([1,2,3,4,5],2,1),[2,4]); -***** assert(downsample([1,2;3,4;5,6;7,8;9,10],2,1),[3,4;7,8]); + c="krbm"; clf; subplot(2, 1, 1) + for beta=2:5 + w=ultrwin(80, -.5, beta); [W,f]=freqz(w); + plot(f/pi, 20*log10(W/abs(W(1))), c(1+mod(beta, length(c)))); hold on + end; grid; axis([0 1 -140 0]); hold off + subplot(2, 1, 2); + for n=2:10 + w=ultrwin(n*20, 1, 3); [W,f]=freqz(w,1,2^11); + plot(f/pi, 20*log10(W/abs(W(1))), c(1+mod(n, length(c)))); hold on + end; grid; axis([0 .2 -100 0]); hold off + %-------------------------------------------------- + % Figure shows transfers of Ultraspherical windows: + % above: varying BETA with fixed N & MU, + % below: varying N with fixed MU & BETA. +***** demo + c="krbm"; clf; subplot(2, 1, 1) + for j=0:4 + w=ultrwin(80, j*.6-1.2, 50, "a"); [W,f]=freqz(w); + plot(f/pi, 20*log10(W/abs(W(1))), c(1+mod(j, length(c)))); hold on + end; grid; axis([0 1 -100 0]); hold off + subplot(2, 1, 2); + for j=4:-1:0 + w=ultrwin(80, j*.75-1.5, 50, "l"); [W,f]=freqz(w); + plot(f/pi, 20*log10(W/abs(W(1))), c(1+mod(j, length(c)))); hold on + end; grid; axis([0 1 -100 0]); hold off + %-------------------------------------------------- + % Figure shows transfers of Ultraspherical windows: + % above: varying MU with fixed N & ATT, + % below: varying MU with fixed N & LATT. +***** demo + clf; a=[.8 2 -115 5]; fc=1.1/pi; l="labelxy"; + for k=1:3; switch (k); case 1; w=kaiser(L=159, 7.91); + case 2; w=ultrwin(L=165, 0, 2.73); case 3; w=ultrwin(L=153, .5, 2.6); end + subplot(3, 1, 4-k); f=[1:(L-1)/2]*pi;f=sin(fc*f)./f; f=[fliplr(f) fc f]'; + [h,f]=freqz(w.*f,1,2^14); plot(f,20*log10(h)); grid; axis(a,l); l="labely"; + end + %----------------------------------------------------------- + % Figure shows example lowpass filter design (Fp=1, Fs=1.2 + % rad/s, att=80 dB) and comparison with other windows. From + % top to bottom: Ultraspherical, Dolph-Chebyshev, and Kaiser + % windows, with lengths 153, 165, and 159 respectively. 5 tests, 5 passed, 0 known failure, 0 skipped -[inst/window.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/window.m -***** assert (window (@bartlett, 16), window ("bartlett", 16)) -***** assert (window (@hamming, 16), window ("hamming", 16)) -***** assert (window (@hanning, 16), window ("hanning", 16)) -***** assert (window (@triang, 16), window ("triang", 16)) -***** error window () -***** error window (1) -***** error window ("hanning") -7 tests, 7 passed, 0 known failure, 0 skipped -[inst/upsamplefill.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/upsamplefill.m -***** assert(upsamplefill([1,3,5],2),[1,2,3,2,5,2]); -***** assert(upsamplefill([1;3;5],2),[1;2;3;2;5;2]); -***** assert(upsamplefill([1,2,5],[2 -2]),[1,2,-2,2,2,-2,5,2,-2]); -***** assert(upsamplefill(eye(2),2,true),[1,0;1,0;1,0;0,1;0,1;0,1]); -***** assert(upsamplefill([1,3,5],2,true),[1,1,1,3,3,3,5,5,5]); -***** assert(upsamplefill([1;3;5],2,true),[1;1;1;3;3;3;;5;5;5]); -6 tests, 6 passed, 0 known failure, 0 skipped -[inst/sos2tf.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/sos2tf.m -***** test - B = [1, 1]; - A = [1, 0.5]; - [sos, g] = tf2sos (B, A); - [Bh, Ah] = sos2tf (sos, g); - assert (g, 1); - assert (Bh, B, 10*eps); - assert (Ah, A, 10*eps); -***** test - B = [1, 0, 0, 0, 0, 1]; - A = [1, 0, 0, 0, 0, 0.9]; - [sos, g] = tf2sos (B, A); - [Bh, Ah] = sos2tf (sos, g); - assert (g, 1); - assert (Bh, B, 100*eps); - assert (Ah, A, 100*eps); -***** test - B = [1, 1]; - A = [1, 0.5]; - [sos, g] = tf2sos (B, A); - [Bh, Ah] = sos2tf (sos, 2); - assert (g, 1); - assert (Bh, 2 * B, 10*eps); - assert (Ah, A, 10*eps); -***** test - B = [1, 1]; - A = [1, 0.5]; - [sos, g] = tf2sos (B, A); - [Bh, Ah] = sos2tf (sos, [2, 2, 2]); - assert (g, 1); - assert (Bh, 8 * B, 10*eps); - assert (Ah, A, 10*eps); -***** test - sos = [1, 1, 0, 0, 1, 0.5]; - [Bh, Ah] = sos2tf (sos); - assert (Bh, sos(1,1:3) , 10*eps); - assert (Ah, sos(1,4:6), 10*eps); -***** test - sos = [0, 1, 1, 1, 0.5, 0]; - [Bh, Ah] = sos2tf (sos); - assert (Bh, sos(1,1:3) , 10*eps); - assert (Ah, sos(1,4:6), 10*eps); -***** test - sos = [1, 1, 0, 1, 0.5, 0]; - [Bh, Ah] = sos2tf (sos); - assert (Bh, [1, 1] , 10*eps); - assert (Ah, [1, 0.5], 10*eps); -***** test - sos = [0, 1, 1, 1, 1, 0.5]; - [Bh, Ah] = sos2tf (sos); - assert (Bh, sos(1,1:3) , 10*eps); - assert (Ah, sos(1,4:6), 10*eps); -***** test - sos = [1, 1, 0, 0, 1, 0.5]; - [Bh, Ah] = sos2tf (sos); - assert (Bh, sos(1,1:3) , 10*eps); - assert (Ah, sos(1,4:6), 10*eps); -***** test - sos = [0, 1, 1, 0, 1, 0.5]; - [Bh, Ah] = sos2tf (sos); - assert (Bh, [1, 1] , 10*eps); - assert (Ah, [1, 0.5], 10*eps); -***** test - sos = [1, 1, 0, 1, 0.5, 0; 1, 1, 0, 1, 0.5, 0; 1, 1, 0, 1, 0.5, 0]; - [Bh, Ah] = sos2tf (sos); - assert (Bh, [1, 3, 3, 1] , 10*eps); - assert (Ah, [1, 1.5 0.75 0.125], 10*eps); -***** test - sos = [0, 1, 1, 0, 1, 0.5; 0, 1, 1, 0, 1, 0.5;0, 1, 1, 0, 1, 0.5]; - [Bh, Ah] = sos2tf (sos); - assert (Bh, [1, 3, 3, 1] , 10*eps); - assert (Ah, [1, 1.5 0.75 0.125], 10*eps); -12 tests, 12 passed, 0 known failure, 0 skipped -[inst/pulstran.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/pulstran.m -***** error pulstran -***** error pulstran(1,2,3,4,5,6) -***** ## parameter size and shape checking -***** shared t,d - t = 0:0.01:1; d=0:0.1:1; -***** assert (isempty(pulstran([], d, 'sin'))); -***** assert (pulstran(t, [], 'sin'), zeros(size(t))); -***** assert (isempty(pulstran([], d, boxcar(5)))); -***** assert (pulstran(t, [], boxcar(5)), zeros(size(t))); -***** assert (size(pulstran(t,d,'sin')), size(t)); -***** assert (size(pulstran(t,d','sin')), size(t)); -***** assert (size(pulstran(t',d,'sin')), size(t')); -***** assert (size(pulstran(t,d','sin')), size(t)); +[inst/chirp.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/chirp.m ***** demo - fs = 11025; # arbitrary sample rate - f0 = 100; # pulse train sample rate - w = 0.003; # pulse width of 3 milliseconds - t = 0:1/fs:0.1; d=0:1/f0:0.1; # define sample times and pulse times - a = hanning(length(d)); # define pulse amplitudes - - subplot(221); - x = pulstran(t', d', 'rectpuls', w); - plot([0:length(x)-1]*1000/fs, x); - hold on; plot(d*1000,ones(size(d)),'g*;pulse;'); hold off; - ylabel("amplitude"); xlabel("time (ms)"); - title("rectpuls"); - - subplot(223); - x = pulstran(f0*t, [f0*d', a], 'sinc'); - plot([0:length(x)-1]*1000/fs, x); - hold on; plot(d*1000,a,'g*;pulse;'); hold off; - ylabel("amplitude"); xlabel("time (ms)"); - title("sinc => band limited interpolation"); - - subplot(222); - pulse = boxcar(30); # pulse width of 3 ms at 10 kHz - x = pulstran(t, d', pulse, 10000); - plot([0:length(x)-1]*1000/fs, x); - hold on; plot(d*1000,ones(size(d)),'g*;pulse;'); hold off; - ylabel("amplitude"); xlabel("time (ms)"); - title("interpolated boxcar"); - - subplot(224); - pulse = sin(2*pi*[0:0.0001:w]/w).*[w:-0.0001:0]; - x = pulstran(t', [d', a], pulse', 10000); - plot([0:length(x)-1]*1000/fs, x); - hold on; plot(d*1000,a*w,'g*;pulse;'); hold off; title(""); - ylabel("amplitude"); xlabel("time (ms)"); - title("interpolated asymmetric sin"); - - %---------------------------------------------------------- - % Should see (1) rectangular pulses centered on *, - % (2) rectangular pulses to the right of *, - % (3) smooth interpolation between the *'s, and - % (4) asymmetric sines to the right of * -10 tests, 10 passed, 0 known failure, 0 skipped -[inst/czt.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/czt.m -***** shared x - x = [1,2,4,1,2,3,5,2,3,5,6,7,8,4,3,6,3,2,5,1]; -***** assert(fft(x),czt(x),10000*eps); -***** assert(fft(x'),czt(x'),10000*eps); -***** assert(fft([x',x']),czt([x',x']),10000*eps); -3 tests, 3 passed, 0 known failure, 0 skipped -[inst/data2fun.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/data2fun.m -***** shared t, y - t = linspace (0, 1, 10); - y = t.^2 - 2*t + 1; -***** test - fhandle = data2fun (t, y); - assert (y, fhandle (t)); -***** test - unwind_protect - # Change to temporary folder in case tester cannot write current folder - olddir = pwd(); - cd(tempdir()); - - [fhandle fname] = data2fun (t, y, "file", "testdata2fun"); - yt = testdata2fun (t); - assert (y, yt); - assert (y, fhandle (t)); - unwind_protect_cleanup - unlink (fname); - unlink ([fname(1:end-2) ".mat"]); - cd(olddir) - end_unwind_protect -***** test - unwind_protect - # Change to temporary folder in case tester cannot write current folder - olddir = pwd(); - cd(tempdir()); - - [fhandle fname] = data2fun (t, y, "file", ""); - # generate commmand to execute using random file name - cmd = sprintf ("yt = %s(t);", nthargout (2, @fileparts, fname)); - eval (cmd); - assert (y, yt); - assert (y, fhandle (t)); - unwind_protect_cleanup - unlink (fname); - unlink ([fname(1:end-2) ".mat"]); - cd(olddir) - end_unwind_protect -***** test - unwind_protect - # Change to temporary folder in case tester cannot write current folder - olddir = pwd(); - cd(tempdir()); - [fhandle fname] = data2fun (t, y, "file", "testdata2fun", "interp", "linear"); - yt = testdata2fun (t); - assert (y, yt); - assert (y, fhandle (t)); - unwind_protect_cleanup - unlink (fname); - unlink ([fname(1:end-2) ".mat"]); - cd(olddir) - end_unwind_protect -***** error data2fun () -***** error data2fun (1) -***** error data2fun (1, 2, "file") -7 tests, 7 passed, 0 known failure, 0 skipped -[inst/tripuls.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/tripuls.m + t = 0:0.001:5; + y = chirp (t); + specgram (y, 256, 1000); + %------------------------------------------------------------ + % Shows linear sweep of 100 Hz/sec starting at zero for 5 sec + % since the sample rate is 1000 Hz, this should be a diagonal + % from bottom left to top right. ***** demo - fs = 11025; # arbitrary sample rate - f0 = 100; # pulse train sample rate - w = 0.5/f0; # pulse width 1/10th the distance between pulses - x = pulstran (0:1/fs:4/f0, 0:1/f0:4/f0, "tripuls", w); - plot ([0:length(x)-1]*1000/fs, x); - xlabel ("Time (ms)"); - ylabel ("Amplitude"); - title ("Triangular pulse train of 5 ms pulses at 10 ms intervals"); + t = -2:0.001:15; + y = chirp (t, 400, 10, 100, "quadratic"); + [S, f, t] = specgram (y, 256, 1000); + t = t - 2; + imagesc(t, f, 20 * log10 (abs (S))); + set (gca (), "ydir", "normal"); + xlabel ("Time"); + ylabel ("Frequency"); + %------------------------------------------------------------ + % Shows a quadratic chirp of 400 Hz at t=0 and 100 Hz at t=10 + % Time goes from -2 to 15 seconds. ***** demo - fs = 11025; # arbitrary sample rate - f0 = 100; # pulse train sample rate - w = 0.5/f0; # pulse width 1/10th the distance between pulses - x = pulstran (0:1/fs:4/f0, 0:1/f0:4/f0, "tripuls", w, -0.5); - plot ([0:length(x)-1]*1000/fs, x); - xlabel ("Time (ms)"); - ylabel ("Amplitude"); - title ("Triangular pulse train of 5 ms pulses at 10 ms intervals, skew = -0.5"); -***** assert (tripuls ([]), []) -***** assert (tripuls ([], 0.1), []) -***** assert (tripuls (zeros (10, 1)), ones (10, 1)) -***** assert (tripuls (-1:1), [0, 1, 0]) -***** assert (tripuls (-5:5, 9), [0, 1, 3, 5, 7, 9, 7, 5, 3, 1, 0] / 9) -***** assert (tripuls (0:1/100:0.3, 0.1), tripuls ([0:1/100:0.3]', 0.1)') -***** error tripuls () -***** error tripuls (1, 2, 3, 4) -***** error tripuls (1, 2j) -***** error tripuls (1, 2, 2) -***** error tripuls (1, 2, -2) -11 tests, 11 passed, 0 known failure, 0 skipped -[inst/ifht.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/ifht.m -***** assert(ifht(fht(1:4)),[1 2 3 4]) -1 test, 1 passed, 0 known failure, 0 skipped -[inst/fwhm.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/fwhm.m -***** test - x=-pi:0.001:pi; y=cos(x); - assert( abs(fwhm(x, y) - 2*pi/3) < 0.01 ); - -***** test - assert( fwhm(-10:10) == 0 && fwhm(ones(1,50)) == 0 ); - -***** test - x=-20:1:20; - y1=-4+zeros(size(x)); y1(4:10)=8; - y2=-2+zeros(size(x)); y2(4:11)=2; - y3= 2+zeros(size(x)); y3(5:13)=10; - assert( max(abs(fwhm(x, [y1;y2;y3]') - [20.0/3,7.5,9.25])) < 0.01 ); - -***** test - x=1:3; y=[-1,3,-1]; assert(abs(fwhm(x,y)-0.75)<0.001 && abs(fwhm(x,y,'zero')-0.75)<0.001 && abs(fwhm(x,y,'min')-1.0)<0.001); - + t = 0:1/8000:5; + y = chirp (t, 200, 2, 500, "logarithmic"); + specgram (y, 256, 8000); + %------------------------------------------------------------- + % Shows a logarithmic chirp of 200 Hz at t=0 and 500 Hz at t=2 + % Time goes from 0 to 5 seconds at 8000 Hz. +***** shared t + t = (0:5000) ./ 1000; ***** test - x=1:3; y=[-1,3,-1]; assert(abs(fwhm(x,y, 'rlevel', 0.1)-1.35)<0.001 && abs(fwhm(x,y,'zero', 'rlevel', 0.1)-1.35)<0.001 && abs(fwhm(x,y,'min', 'rlevel', 0.1)-1.40)<0.001); - + y1 = chirp (t); + y2 = chirp (t, 0, 1, 100, "linear", 0); + assert (y2, y1) ***** test - x=1:3; y=[-1,3,-1]; assert(abs(fwhm(x,y, 'alevel', 2.5)-0.25)<0.001 && abs(fwhm(x,y,'alevel', -0.5)-1.75)<0.001); - + y1 = chirp (t, [], [], [], "li"); + y2 = chirp (t, 0, 1, 100, "linear", 0); + assert (y2, y1) ***** test - x=-10:10; assert( fwhm(x.*x) == 0 ); - + y1 = chirp (t, [], [], [], "q"); + y2 = chirp (t, 0, 1, 100, "quadratic", 0); + assert (y2, y1) ***** test - x=-5:5; y=18-x.*x; assert( abs(fwhm(y)-6.0) < 0.001 && abs(fwhm(x,y,'zero')-6.0) < 0.001 && abs(fwhm(x,y,'min')-7.0 ) < 0.001); + y1 = chirp (t, [], [], [], "lo"); + y2 = chirp (t, 1e-6, 1, 100, "logarithmic", 0); + assert (y2, y1) +***** error chirp () +***** error chirp (1, 2, 3, 4, 5, 6, 7) +***** error chirp (0, [], [], [], "l") +***** error chirp (0, [], [], [], "foo") 8 tests, 8 passed, 0 known failure, 0 skipped -[inst/parzenwin.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/parzenwin.m -***** assert (parzenwin (1), 1) -***** assert (parzenwin (2), 0.25 * ones (2, 1)) -***** error parzenwin () -***** error parzenwin (0.5) -***** error parzenwin (-1) -***** error parzenwin (ones (1, 4)) -***** error parzenwin (1, 2) -7 tests, 7 passed, 0 known failure, 0 skipped [inst/resample.m] >>>>> /build/reproducible-path/octave-signal-1.4.6/inst/resample.m ***** test @@ -4931,80 +5931,416 @@ y2 = resample (x, uint8 (3), 2); assert (y1, y2); 4 tests, 4 passed, 0 known failure, 0 skipped -[inst/isminphase.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/isminphase.m +[inst/ismaxphase.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/ismaxphase.m ***** demo - b = [3 1]; - a = [1 .5]; - f = isminphase (b, a) - ## test input validation -***** error n = isminphase () -***** error n = isminphase (1, 1, 1, 1) -***** error n = isminphase (1, 1, 1, 1, 1) -***** error n = isminphase ([1:10]', 1) -***** error n = isminphase (1, [1:10]') -***** error n = isminphase ([1:10]', [1:10]') -***** error n = isminphase (1:10, 1:10, 1:10) -***** error n = isminphase (ones (3), ones (3)) + [b, a] = butter (1, .5); + f = ismaxphase (b, a) +***** error n = ismaxphase () +***** error n = ismaxphase (1, 1, 1, 1) +***** error n = ismaxphase (1, 1, 1, 1, 1) +***** error n = ismaxphase ([1:10]', 1) +***** error n = ismaxphase (1, [1:10]') +***** error n = ismaxphase ([1:10]', [1:10]') +***** error n = ismaxphase (1:10, 1:10, 1:10) +***** error n = ismaxphase (ones (3), ones (3)) ***** test - b = [3 1]; - a = [1 .5]; - f = isminphase (b, a); + z1 = [0.9*exp(j*0.6*pi), 0.9*exp(-j*0.6*pi)]; + z2 = [0.8*exp(j*0.8*pi), 0.8*exp(-j*0.8*pi)]; + b = poly ([z1 z2]); + a = 1; + f = ismaxphase (b, a); + assert (f, false) +***** test + z1 = [0.9*exp(j*0.6*pi), 0.9*exp(-j*0.6*pi)]; + z2 = [0.8*exp(j*0.8*pi), 0.8*exp(-j*0.8*pi)]; + b = poly ([1./z1 1./z2]); + a = 1; + f = ismaxphase (b, a); assert (f, true) ***** test + z1 = [0.9*exp(j*0.6*pi), 0.9*exp(-j*0.6*pi)]; + z2 = [0.8*exp(j*0.8*pi), 0.8*exp(-j*0.8*pi)]; + b = poly ([z1 1./z2]); + a = 1; + f = ismaxphase (b, a); + assert (f, false) +***** test + z1 = [0.9*exp(j*0.6*pi), 0.9*exp(-j*0.6*pi)]; + z2 = [0.8*exp(j*0.8*pi), 0.8*exp(-j*0.8*pi)]; + b = poly ([1./z1 z2]); + a = 1; + f = ismaxphase (b, a); + assert (f, false) +***** test [b, a] = butter (1, .5); - f = isminphase (b, a); + f = ismaxphase (b, a); assert (f, false) ***** test [b, a] = butter (8, .5); - f = isminphase (b, a); + f = ismaxphase (b, a); assert (f, false) +14 tests, 14 passed, 0 known failure, 0 skipped +[inst/impz.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/impz.m +***** assert (size (impz (1, [1 -1 0.9], 100)), [100 1]) +***** xtest + [h, t] = impz (1, [1 -1 0.9], 0:101); + assert (size (h), [101 1]) + assert (t, 0:101) +!!!!! known failure +impz: N must be empty or a scalar +2 tests, 1 passed, 1 known failure, 0 skipped +[inst/fir2.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/fir2.m +***** xtest + f = [0 0.6 0.6 1]; m = [1 1 0 0]; + b9 = fir2 (30, f, m, 9); + b16 = fir2 (30, f, m, 16); + b17 = fir2 (30, f, m, 17); + b32 = fir2 (30, f, m, 32); + assert ( isequal (b9, b16)) + assert ( isequal (b17, b32)) + assert (~isequal (b16, b17)) ***** test - b = 1.25^2 * conv (conv (conv ([1 -0.9*e^(-j*0.6*pi)], [1 -0.9*e^(j*0.6*pi)]), [1 -0.8*e^(-j*0.8*pi)]), [1 -0.8*e^(j*0.8*pi)]); - a = 1; - f = isminphase (b, a); - assert (f, true) -12 tests, 12 passed, 0 known failure, 0 skipped -[inst/zerocrossing.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/zerocrossing.m + f = [0, 0.7, 0.7, 1]; m = [0, 0, 1, 1]; + b = fir2 (50, f, m); + h = abs (freqz (b, 1, [0, 0.7, 1], 2)); + assert (h(1) <= 3e-3) + assert (h(2) <= 1/sqrt (2)) + assert (h(3), 1, 2e-3) ***** test - x = linspace(0,1,100); - y = rand(1,100)-0.5; - x0= zerocrossing(x,y); - y0 = interp1(x,y,x0); - assert(norm(y0,inf), 0, 100*eps) + f = [0, 0.25, 0.25, 0.75, 0.75, 1]; m = [0, 0, 1, 1, 0, 0]; + b = fir2 (50, f, m); + h = abs (freqz (b, 1, [0, 0.25, 0.5, 0.75, 1], 2)); + assert (h(1) <= 3e-3) + assert (h(2) <= 1/sqrt (2)) + assert (h(3), 1, 2e-3) + assert (h(4) <= 1/sqrt (2)) + assert (h(5) <= 3e-3) ***** test - x = linspace(0,1,100); - y = rand(1,100)-0.5; - y(10:20) = 0; - x0= zerocrossing(x,y); - y0 = interp1(x,y,x0); - assert(norm(y0,inf), 0, 100*eps) + f = [0, 0.45, 0.45, 0.55, 0.55, 1]; m = [1, 1, 0, 0, 1, 1]; + b = fir2 (50, f, m); + h = abs (freqz (b, 1, [0, 0.45, 0.5, 0.55, 1], 2)); + assert (h(1), 1, 2e-3) + assert (h(2) <= 1/sqrt (2)) + assert (h(3) <= 1e-1) + assert (h(4) <= 1/sqrt (2)) + assert (h(5), 1, 2e-3) +***** test #bug 59066 + f = [0, 0.45, 0.45, 0.55, 0.55, 1]; m = [1, 1, 0, 0, 1, 1]; + b = fir2 (int32(50), f, m); + assert(numel(b), 51) + + fail ("fir2 (50.1, f, m)", "fir2: n must be a non negative integer") + fail ("fir2 (-1, f, m)", "fir2: n must be a non negative integer") ***** demo - x = linspace(0,1,100); - y = rand(1,100)-0.5; - x0= zerocrossing(x,y); - y0 = interp1(x,y,x0); - plot(x,y,x0,y0,'x') + f=[0, 0.3, 0.3, 0.6, 0.6, 1]; m=[0, 0, 1, 1/2, 0, 0]; + [h, w] = freqz(fir2(100,f,m)); + subplot(121); + plot(f,m,';target response;',w/pi,abs(h),';filter response;'); + subplot(122); + plot(f,20*log10(m+1e-5),';target response (dB);',... + w/pi,20*log10(abs(h)),';filter response (dB);'); ***** demo - x = linspace(0,1,100); - y = rand(1,100)-0.5; - y(10:20) = 0; - x0= zerocrossing(x,y); - y0 = interp1(x,y,x0); - plot(x,y,x0,y0,'x') -2 tests, 2 passed, 0 known failure, 0 skipped -[inst/rectwin.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/rectwin.m -***** assert (rectwin (1), 1) -***** assert (rectwin (2), ones (2, 1)) -***** assert (rectwin (100), ones (100, 1)) -***** error rectwin () -***** error rectwin (0.5) -***** error rectwin (-1) -***** error rectwin (ones (1, 4)) -***** error rectwin (1, 2) -8 tests, 8 passed, 0 known failure, 0 skipped + f=[0, 0.3, 0.3, 0.6, 0.6, 1]; m=[0, 0, 1, 1/2, 0, 0]; + plot(f,20*log10(m+1e-5),';target response;'); + hold on; + [h, w] = freqz(fir2(50,f,m,512,0)); + plot(w/pi,20*log10(abs(h)),';filter response (ramp=0);'); + [h, w] = freqz(fir2(50,f,m,512,25.6)); + plot(w/pi,20*log10(abs(h)),';filter response (ramp=pi/20 rad);'); + [h, w] = freqz(fir2(50,f,m,512,51.2)); + plot(w/pi,20*log10(abs(h)),';filter response (ramp=pi/10 rad);'); + hold off; +***** demo + % Classical Jakes spectrum + % X represents the normalized frequency from 0 + % to the maximum Doppler frequency + asymptote = 2/3; + X = linspace(0,asymptote-0.0001,200); + Y = (1 - (X./asymptote).^2).^(-1/4); + + % The target frequency response is 0 after the asymptote + X = [X, asymptote, 1]; + Y = [Y, 0, 0]; + + plot(X,Y,'b;Target spectrum;'); + hold on; + [H,F]=freqz(fir2(20, X, Y)); + plot(F/pi,abs(H),'c;Synthesized spectrum (n=20);'); + [H,F]=freqz(fir2(50, X, Y)); + plot(F/pi,abs(H),'r;Synthesized spectrum (n=50);'); + [H,F]=freqz(fir2(200, X, Y)); + plot(F/pi,abs(H),'g;Synthesized spectrum (n=200);'); + hold off; + title('Theoretical/Synthesized CLASS spectrum'); + xlabel('Normalized frequency (Fs=2)'); + ylabel('Magnitude'); +5 tests, 5 passed, 0 known failure, 0 skipped +[inst/shiftdata.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/shiftdata.m +***** test + X = [1 2 3; 4 5 6; 7 8 9]; + [Y, perm, shifts] = shiftdata (X, 2); + assert (Y, [1 4 7; 2 5 8; 3 6 9]); + assert (perm, [2 1]); +***** test + X = [27 42 11; 63 48 5; 67 74 93]; + X(:, :, 2) = [15 23 81; 34 60 28; 70 54 38]; + [Y, perm, shifts] = shiftdata(X, 2); + T = [27 63 67; 42 48 74; 11 5 93]; + T(:, :, 2) = [15 34 70; 23 60 54; 81 28 38]; + assert(Y, T); + assert(perm, [2 1 3]); +***** test + X = fix (rand (4, 4, 4, 4) * 100); + [Y, perm, shifts] = shiftdata (X, 3); + T = 0; + for i = 1:3 + for j = 1:3 + for k = 1:2 + for l = 1:2 + T = [T Y(k, i, j, l) - X(i, j, k ,l)]; + endfor + endfor + endfor + endfor + assert (T, zeros (size (T))); +***** error shiftdata () +***** error shiftdata (1, 2, 3) +***** error shiftdata (1, 2.5) +6 tests, 6 passed, 0 known failure, 0 skipped +[inst/rectpuls.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/rectpuls.m +***** demo + fs = 11025; # arbitrary sample rate + f0 = 100; # pulse train sample rate + w = 0.3/f0; # pulse width 1/10th the distance between pulses + x = pulstran (0:1/fs:4/f0, 0:1/f0:4/f0, "rectpuls", w); + plot ([0:length(x)-1]*1000/fs, x); + xlabel ("Time (ms)"); + ylabel ("Amplitude"); + title ("Rectangular pulse train of 3 ms pulses at 10 ms intervals"); +***** assert (rectpuls ([]), []) +***** assert (rectpuls ([], 0.1), []) +***** assert (rectpuls (zeros (10, 1)), ones (10, 1)) +***** assert (rectpuls (-1:1), [0, 1, 0]) +***** assert (rectpuls (-5:5, 9), [0, ones(1,9), 0]) +***** assert (rectpuls (0:1/100:0.3, 0.1), rectpuls ([0:1/100:0.3]', 0.1)') +***** error rectpuls () +***** error rectpuls (1, 2, 3) +***** error rectpuls (1, 2j) +9 tests, 9 passed, 0 known failure, 0 skipped +[inst/sos2ss.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/sos2ss.m +***** test + sos = [1, 1, 0, 1, 0.5, 0]; + g = 1; + [a, b, c, d] = sos2ss (sos, g); + assert ({a, b, c, d}, {-0.5, 0.5, 1, 1}); +1 test, 1 passed, 0 known failure, 0 skipped +[inst/fht.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/fht.m +***** assert( fht([1 2 3 4]),[10 -4 -2 0] ) + +1 test, 1 passed, 0 known failure, 0 skipped +[inst/flattopwin.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/flattopwin.m +***** assert (flattopwin (1), 1); +***** assert (flattopwin (2), 0.0042 / 4.6402 * ones (2, 1), eps); +***** assert (flattopwin (15), flipud (flattopwin (15)), 10*eps); +***** assert (flattopwin (16), flipud (flattopwin (16)), 10*eps); +***** assert (flattopwin (15), flattopwin (15, "symmetric")); +***** assert (flattopwin (16)(1:15), flattopwin (15, "periodic")); +***** error flattopwin () +***** error flattopwin (0.5) +***** error flattopwin (-1) +***** error flattopwin (ones (1, 4)) +***** error flattopwin (1, 2) +***** error flattopwin (1, 2, 3) +***** error flattopwin (1, "invalid") +13 tests, 13 passed, 0 known failure, 0 skipped +[inst/statelevels.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/statelevels.m +***** error l = statelevels() +***** error l = statelevels("test") +***** error l = statelevels(1) +***** error l = statelevels([1 2 3], 'test') +***** error l = statelevels([1 2 3], 3, 'test') +***** error l = statelevels([1 2 3], 3, 'mode', 1) +***** error l = statelevels([1 2 3], 3, 'mode', [1 -1]) +***** shared X + t = linspace(0,2*pi*10,100); + X = square(t) + cos(t); +***** test + l = statelevels(X); + assert(l, [-1.9795 1.9800], 1e5) +***** test + [l, h] = statelevels(X); + assert(l, [-1.9795 1.9800], 1e5) + assert(sum(h), 100) + assert(length(h), 100) +***** test + [l, h, b] = statelevels(X); + assert(l, [-1.9795 1.9800], 1e5) + assert(sum(h), 100) + assert(length(h), 100) + assert(h(1), 4) + assert(h(2), 2) + assert(h(4), 1) + assert(h(11), 0) + assert(b(1), -1.9795, 1e5) + assert(b(2), -1.9395, 1e5) +***** test + [l, h, b] = statelevels(X, 100); + assert(l, [-1.9795 1.9800], 1e5) + assert(sum(h), 100) + assert(length(h), 100) + assert(h(1), 4) + assert(h(2), 2) + assert(h(4), 1) + assert(h(11), 0) + assert(b(1), -1.9795, 1e5) + assert(b(2), -1.9395, 1e5) +***** test + [l, h, b] = statelevels(X, 50); + assert(l, [-1.9595 1.9600], 1e5) + assert(sum(h), 100) + assert(length(h), 50) + assert(h(1), 6) + assert(h(2), 3) + assert(h(4), 2) + assert(h(11), 1) + assert(b(1), -1.9595, 1e5) + assert(b(2), -1.8795, 1e5) +***** test + [l, h, b] = statelevels(X, 100, 'mode'); + assert(l, [-1.9795 1.9800], 1e5) + assert(sum(h), 100) + assert(length(h), 100) + assert(h(1), 4) + assert(h(2), 2) + assert(h(4), 1) + assert(h(11), 0) + assert(b(1), -1.9795, 1e5) + assert(b(2), -1.9395, 1e5) +***** test + [l, h, b] = statelevels(X, 100, 'mean'); + assert(l, [-1.0090 0.9532], 1e5) + assert(sum(h), 100) + assert(length(h), 100) + assert(h(1), 4) + assert(h(2), 2) + assert(h(4), 1) + assert(h(11), 0) + assert(b(1), -1.9795, 1e5) + assert(b(2), -1.9395, 1e5) +***** test + [l, h, b] = statelevels(X, 100, 'mode', [-1.8 1.0]); + assert(l, [-1.7860 0.0060], 1e5) + assert(sum(h), 64) + assert(length(h), 100) + assert(h(1), 1) + assert(h(2), 1) + assert(h(3), 0) + assert(b(1), -1.7860, 1e5) + assert(b(2), -1.7580, 1e5) +***** demo + # Generate test signal + t = linspace(0,2*pi*10,100); + X = square(t) + cos(t); + # plot the waveform and provide the levels + statelevels(X) +15 tests, 15 passed, 0 known failure, 0 skipped +[inst/fracshift.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/fracshift.m +***** test + d = [1.5 7/6]; + N = 1024; + t = ((0:N-1)-N/2).'; + tt = bsxfun (@minus, t, d); + err1= err2 = zeros(N/2,1); + for n = 0:N/2-1, + phi0 = 2*pi*rand; + f0 = n/N; + sigma = N/4; + x = exp(-t.^2/(2*sigma)).*sin(2*pi*f0*t + phi0); + xx = exp(-tt.^2/(2*sigma)).*sin(2*pi*f0*tt + phi0); + [y,h] = fracshift(x, d(1)); + err1(n+1) = max (abs (y - xx(:,1))); + [y,h] = fracshift(x, d(2)); + err2(n+1) = max (abs (y - xx(:,2))); + endfor + rolloff = .1; + rejection = 10^-3; + idx_inband = 1:ceil((1-rolloff)*N/2)-1; + assert (max (err1(idx_inband)) < rejection); + assert (max (err2(idx_inband)) < rejection); +***** test + N = 1024; + p = 6; + q = 7; + d1 = 64; + d2 = d1*p/q; + t = 128; + + [b a] = butter (10,.25); + n = zeros (N, 1); + n(N/2+(-t:t)) = randn(2*t+1,1); + n = filter(b,a,n); + n1 = fracshift(n,d1); + n1 = resample(n1,p,q); + n2 = resample(n,p,q); + n2 = fracshift(n2,d2); + err = abs (n2 - n1); + rejection = 10^-3; + assert(max (err) < rejection); +***** test #integer shift similar similar to non-integer + N = 1024; + t = linspace(0, 1, N).'; + x = exp(-t.^2/2/0.25^2).*sin(2*pi*10*t); + d = 10; + y = fracshift(x, d); + yh = fracshift(x, d+1e-8); + assert(y, yh, 1e-8) +***** warning fracshift([1 2 3 2 1], 3, h=0.5); #integer shift and filter provided +***** test #bug 52758 + x = [0 1 0 0 0 0 0 0]; + y = fracshift(x, 1); + assert (size(x) == size(y)) +***** test #bug 47387 + N = 1024; + t = linspace(0, 1, N).'; + x = exp(-t.^2/2/0.25^2).*sin(2*pi*10*t); + dt = 0.25; + d = dt / (t(2) - t(1)); + y = fracshift(x, d); + L = 37; + _t = (-L:L).'; + ideal_filter = sinc (_t - (d - fix (d))); + m = 2 * L; + _t = (0:m).' - (d - fix (d)); + beta = 5.6533; + _t = 2 * beta / m * sqrt (_t .* (m - _t)); + w = besseli (0, _t) / besseli (0, beta); + h = w .* ideal_filter; + yh = fracshift(x, d, h); + assert(y, yh, 1e-8) +***** demo + N = 1024; + t = linspace (0, 1, N).'; + x = exp(-t.^2/2/0.25^2).*sin(2*pi*10*t); + + dt = 0.25; + d = dt / (t(2) - t(1)); + y = fracshift(x, d); + + plot(t,y,'r-;shifted;', t, x, 'k-;original;') + axis tight + xlabel ('time') + ylabel ('signal') +6 tests, 6 passed, 0 known failure, 0 skipped [inst/residuez.m] >>>>> /build/reproducible-path/octave-signal-1.4.6/inst/residuez.m ***** test @@ -5127,388 +6463,1406 @@ assert(abs(imag(p(is))), abs(imag(expected_p)), 1e-5); assert(k, expected_k, 100*eps); 11 tests, 11 passed, 0 known failure, 0 skipped -[inst/udecode.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/udecode.m +[inst/filtord.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/filtord.m +***** demo + b = [1 0]; + a = [1 1]; + n = filtord (b, a) +***** demo + b = [1 0 0 0 0 0 0 1]; + a = [1 0 0 0 0 0 0 .5]; + [sos, g] = tf2sos (b, a); + n = filtord (sos) + ## test input validation +***** error n = filtord () +***** error n = filtord (1, 1, 1) +***** error n = filtord ([1:10]', 1) +***** error n = filtord (1, [1:10]') +***** error n = filtord ([1:10]', [1:10]') +***** error n = filtord (1:10, 1:10, 1:10) +***** error n = filtord (ones(3), ones(3)) ***** test - u = [0 0 0 0 0 1 2 3 3 3 3 3 3]; - y = udecode(u, 2); - assert(y, [-1 -1 -1 -1 -1 -0.5 0 0.5 0.5 0.5 0.5 0.5 0.5]); + b = [1 0 0]; + a = [1 0 0 0]; + n = filtord (b, a); + assert (n, 3, 1e-6) ***** test - u = [0 1 2 3 4 5 6 7 8 9 10]; - y = udecode(u, 2, 1, "saturate"); - assert(y, [-1 -0.5 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]); + [b, a] = butter (5, .5); + n = filtord (b, a); + assert (n, 5, 1e-6) ***** test - u = [0 1 2 3 4 5 6 7 8 9 10]; - y = udecode(u, 2, 1, "wrap"); - assert(y, [-1 -0.5 0 0.5 -1 -0.5 0 0.5 -1 -0.5 0]); + [b, a] = butter (6, .5); + n = filtord (b, a); + assert (n, 6, 1e-6) ***** test - u = [-4 -3 -2 -1 0 1 2 3]; - y = udecode(u, 3, 2); - assert(y, [-2, -1.5 -1 -0.5 0 0.5 1 1.5]); + b = [1 0 0 0 0 0 1]; + a = [1 0 0 0 0 0 .5]; + [sos, g] = tf2sos (b, a); + n = filtord (sos); + assert (n, 6, 1e-6) ***** test - u = [-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7]; - y = udecode(u, 3, 2, "saturate"); - assert(y, [-2 -2 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 1.5 1.5 1.5 1.5]); + b = [1 0 0 0 0 0 0 1]; + a = [1 0 0 0 0 0 0 .5]; + [sos, g] = tf2sos (b, a); + n = filtord (sos); + assert (n, 7, 1e-6) +12 tests, 12 passed, 0 known failure, 0 skipped +[inst/buttord.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/buttord.m +***** demo + fs = 44100; + Npts = fs / 2; + fpass = 4000; + fstop = 10987; + Rpass = 1; + Rstop = 26; + Wpass = 2 / fs * fpass; + Wstop = 2 / fs * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) + [b, a] = butter (n, Wn_p); + f = 8000:12000; + W = 2 * pi * f; + [H, f] = freqz (b, a, Npts, fs); + plot (f, 20 * log10 (abs (H))); + title ("Digital Butterworth low-pass : matching pass band"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; + outline_lp_pass_y = [-Rpass, -Rpass , -80]; + outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; + outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; + hold on; + plot (outline_lp_pass_x, outline_lp_pass_y, "m"); + plot (outline_lp_stop_x, outline_lp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fs = 44100; + Npts = fs / 2; + fpass = 4000; + fstop = 10987; + Rpass = 1; + Rstop = 26; + Wpass = 2 / fs * fpass; + Wstop = 2 / fs * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) + [b, a] = butter (n, Wn_s); + f = 8000:12000; + W = 2 * pi * f; + [H, f] = freqz (b, a, Npts, fs); + plot (f, 20 * log10 (abs (H))); + title ("Digital Butterworth low-pass : matching stop band"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; + outline_lp_pass_y = [-Rpass, -Rpass , -80]; + outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; + outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; + hold on; + plot (outline_lp_pass_x, outline_lp_pass_y, "m"); + plot (outline_lp_stop_x, outline_lp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fs = 44100; + Npts = fs / 2; + fstop = 4000; + fpass = 10987; + Rpass = 1; + Rstop = 26; + Wpass = 2 / fs * fpass; + Wstop = 2 / fs * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) + [b, a] = butter (n, Wn_p, "high"); + f = 8000:12000; + W = 2 * pi * f; + [H, f] = freqz (b, a, Npts, fs); + plot (f, 20 * log10 (abs (H))); + title ("Digital Butterworth high-pass : matching pass band"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; + outline_hp_pass_y = [-80 , -Rpass , -Rpass]; + outline_hp_stop_x = [min(f) , fstop(1), fstop(1), max(f)]; + outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; + hold on; + plot (outline_hp_pass_x, outline_hp_pass_y, "m"); + plot (outline_hp_stop_x, outline_hp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fs = 44100; + Npts = fs / 2; + fstop = 4000; + fpass = 10987; + Rpass = 1; + Rstop = 26; + Wpass = 2 / fs * fpass; + Wstop = 2 / fs * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) + [b, a] = butter (n, Wn_s, "high"); + f = 8000:12000; + W = 2 * pi * f; + [H, f] = freqz (b, a, Npts, fs); + plot (f, 20 * log10 (abs (H))) + title ("Digital Butterworth high-pass : matching stop band"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; + outline_hp_pass_y = [-80 , -Rpass , -Rpass]; + outline_hp_stop_x = [min(f) , fstop(1), fstop(1), max(f)]; + outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; + hold on; + plot (outline_hp_pass_x, outline_hp_pass_y, "m"); + plot (outline_hp_stop_x, outline_hp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fs = 44100; + fpass = [9500 9750]; + fstop = [8500 10051]; + Rpass = 1; + Rstop = 26; + Wpass = 2 / fs * fpass; + Wstop = 2 / fs * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) + [b, a] = butter (n, Wn_p); + f = (8000:12000)'; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Digital Butterworth band-pass : matching pass band, limit on upper freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... + -Rstop , -Rstop]; + hold on; + plot (outline_bp_pass_x, outline_bp_pass_y, "m"); + plot (outline_bp_stop_x, outline_bp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fs = 44100; + fpass = [9500 9750]; + fstop = [8500 10051]; + Rpass = 1; + Rstop = 26; + Wpass = 2 / fs * fpass; + Wstop = 2 / fs * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) + [b, a] = butter (n, Wn_s); + f = (8000:12000)'; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Digital Butterworth band-pass : matching stop band, limit on upper freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... + -Rstop , -Rstop]; + hold on; + plot (outline_bp_pass_x, outline_bp_pass_y, "m"); + plot (outline_bp_stop_x, outline_bp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fs = 44100; + fpass = [9500 9750]; + fstop = [9204 10700]; + Rpass = 1; + Rstop = 26; + Wpass = 2 / fs * fpass; + Wstop = 2 / fs * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) + [b, a] = butter (n, Wn_p); + f = (8000:12000)'; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Digital Butterworth band-pass : matching pass band, limit on lower freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... + -Rstop , -Rstop]; + hold on; + plot (outline_bp_pass_x, outline_bp_pass_y, "m"); + plot (outline_bp_stop_x, outline_bp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fs = 44100; + fpass = [9500 9750]; + fstop = [9204 10700]; + Rpass = 1; + Rstop = 26; + Wpass = 2 / fs * fpass; + Wstop = 2 / fs * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) + [b, a] = butter (n, Wn_s); + f = (8000:12000)'; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Digital Butterworth band-pass : matching stop band, limit on lower freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... + -Rstop , -Rstop]; + hold on; + plot (outline_bp_pass_x, outline_bp_pass_y, "m"); + plot (outline_bp_stop_x, outline_bp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fs = 44100; + fstop = [9875, 10126.5823]; + fpass = [8500 10833]; + Rpass = 0.5; + Rstop = 40; + Wpass = 2 / fs * fpass; + Wstop = 2 / fs * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) + [b, a] = butter (n, Wn_p, "stop"); + f = (8000:12000)'; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Digital Butterworth notch : matching pass band, limit on upper freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... + 0 , 0 ]; + hold on; + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); + plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); + plot (outline_notch_stop_x, outline_notch_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fs = 44100; + fstop = [9875, 10126.5823]; + fpass = [8500 10833]; + Rpass = 0.5; + Rstop = 40; + Wpass = 2 / fs * fpass; + Wstop = 2 / fs * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) + [b, a] = butter (n, Wn_s, "stop"); + f = (8000:12000)'; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Digital Butterworth notch : matching stop band, limit on upper freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... + 0 , 0 ]; + hold on; + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); + plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); + plot (outline_notch_stop_x, outline_notch_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fs = 44100; + fstop = [9875, 10126.5823]; + fpass = [9183 11000]; + Rpass = 0.5; + Rstop = 40; + Wpass = 2 / fs * fpass; + Wstop = 2 / fs * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) + [b, a] = butter (n, Wn_p, "stop"); + f = (8000:12000)'; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Digital Butterworth notch : matching pass band, limit on lower freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... + 0 , 0 ]; + hold on; + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); + plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); + plot (outline_notch_stop_x, outline_notch_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fs = 44100; + fstop = [9875, 10126.5823]; + fpass = [9183 11000]; + Rpass = 0.5; + Rstop = 40; + Wpass = 2 / fs * fpass; + Wstop = 2 / fs * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) + [b, a] = butter (n, Wn_s, "stop"); + f = (8000:12000)'; + W = f * (2 * pi / fs); + H = freqz (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Digital Butterworth notch : matching stop band, limit on lower freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... + 0 , 0 ]; + hold on; + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); + plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); + plot (outline_notch_stop_x, outline_notch_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fpass = 4000; + fstop = 13583; + Rpass = 1; + Rstop = 26; + Wpass = 2 * pi * fpass; + Wstop = 2 * pi * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = butter (n, Wn_p, "s"); + f = 1000:10:100000; + W = 2 * pi * f; + H = freqs (b, a, W); + semilogx (f, 20 * log10 (abs (H))) + title ("Analog Butterworth low-pass : matching pass band"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; + outline_lp_pass_y = [-Rpass, -Rpass , -80]; + outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; + outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; + hold on; + plot (outline_lp_pass_x, outline_lp_pass_y, "m"); + plot (outline_lp_stop_x, outline_lp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fpass = 4000; + fstop = 13583; + Rpass = 1; + Rstop = 26; + Wpass = 2 * pi * fpass; + Wstop = 2 * pi * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = butter (n, Wn_s, "s"); + f = 1000:10:100000; + W = 2 * pi * f; + H = freqs (b, a, W); + semilogx (f, 20 * log10 (abs (H))); + title ("Analog Butterworth low-pass : matching stop band"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; + outline_lp_pass_y = [-Rpass, -Rpass , -80]; + outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; + outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; + hold on; + plot (outline_lp_pass_x, outline_lp_pass_y, "m"); + plot (outline_lp_stop_x, outline_lp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fstop = 4000; + fpass = 13583; + Rpass = 1; + Rstop = 26; + Wpass = 2 * pi * fpass; + Wstop = 2 * pi * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = butter (n, Wn_p, "high", "s"); + f = 1000:10:100000; + W = 2 * pi * f; + H = freqs (b, a, W); + semilogx (f, 20 * log10 (abs (H))); + title ("Analog Butterworth high-pass : matching pass band"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; + outline_hp_pass_y = [-80 , -Rpass , -Rpass]; + outline_hp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; + outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; + hold on; + plot (outline_hp_pass_x, outline_hp_pass_y, "m"); + plot (outline_hp_stop_x, outline_hp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fstop = 4000; + fpass = 13583; + Rpass = 1; + Rstop = 26; + Wpass = 2 * pi * fpass; + Wstop = 2 * pi * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = butter (n, Wn_s, "high", "s"); + f = 1000:10:100000; + W = 2 * pi * f; + H = freqs (b, a, W); + semilogx (f, 20 * log10 (abs (H))); + title ("Analog Butterworth high-pass : matching stop band"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; + outline_hp_pass_y = [-80 , -Rpass , -Rpass]; + outline_hp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; + outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; + hold on; + plot (outline_hp_pass_x, outline_hp_pass_y, "m"); + plot (outline_hp_stop_x, outline_hp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fpass = [9875, 10126.5823]; + fstop = [9000, 10436]; + Rpass = 1; + Rstop = 26; + Wpass = 2 * pi * fpass; + Wstop = 2 * pi * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = butter (n, Wn_p, "s"); + f = 8000:12000; + W = 2 * pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Analog Butterworth band-pass : matching pass band, limit on upper freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... + -Rstop , -Rstop]; + hold on; + plot (outline_bp_pass_x, outline_bp_pass_y, "m"); + plot (outline_bp_stop_x, outline_bp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fpass = [9875, 10126.5823]; + fstop = [9000, 10436]; + Rpass = 1; + Rstop = 26; + Wpass = 2 * pi * fpass; + Wstop = 2 * pi * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = butter (n, Wn_s, "s"); + f = 8000:12000; + W = 2 * pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Analog Butterworth band-pass : matching stop band, limit on upper freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... + -Rstop , -Rstop]; + hold on; + plot (outline_bp_pass_x, outline_bp_pass_y, "m"); + plot (outline_bp_stop_x, outline_bp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fpass = [9875, 10126.5823]; + fstop = [9582, 11000]; + Rpass = 1; + Rstop = 26; + Wpass = 2 * pi * fpass; + Wstop = 2 * pi * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = butter (n, Wn_p, "s"); + f = 8000:12000; + W = 2 * pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Analog Butterworth band-pass : matching pass band, limit on lower freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... + -Rstop , -Rstop]; + hold on; + plot (outline_bp_pass_x, outline_bp_pass_y, "m"); + plot (outline_bp_stop_x, outline_bp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fpass = [9875, 10126.5823]; + fstop = [9582, 11000]; + Rpass = 1; + Rstop = 26; + Wpass = 2 * pi * fpass; + Wstop = 2 * pi * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = butter (n, Wn_s, "s"); + f = 8000:12000; + W = 2 * pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Analog Butterworth band-pass : matching stop band, limit on lower freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; + outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; + outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... + -Rstop , -Rstop]; + hold on; + plot (outline_bp_pass_x, outline_bp_pass_y, "m"); + plot (outline_bp_stop_x, outline_bp_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fstop = [9875 10126.5823]; + fpass = [9000 10436]; + Rpass = 1; + Rstop = 26; + Wpass = 2 * pi * fpass; + Wstop = 2 * pi * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = butter (n, Wn_p, "stop", "s"); + f = 8000:12000; + W = 2 * pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Analog Butterworth notch : matching pass band, limit on upper freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... + 0 , 0 ]; + hold on; + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); + plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); + plot (outline_notch_stop_x, outline_notch_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fstop = [9875 10126.5823]; + fpass = [9000 10436]; + Rpass = 1; + Rstop = 26; + Wpass = 2 * pi * fpass; + Wstop = 2 * pi * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = butter (n, Wn_s, "stop", "s"); + f = 8000:12000; + W = 2 * pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Analog Butterworth notch : matching stop band, limit on upper freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... + 0 , 0 ]; + hold on; + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); + plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); + plot (outline_notch_stop_x, outline_notch_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fstop = [9875 10126.5823]; + fpass = [9582 11000]; + Rpass = 1; + Rstop = 26; + Wpass = 2 * pi * fpass; + Wstop = 2 * pi * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = butter (n, Wn_p, "stop", "s"); + f = 8000:12000; + W = 2 * pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Analog Butterworth notch : matching pass band, limit on lower freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... + 0 , 0 ]; + hold on; + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); + plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); + plot (outline_notch_stop_x, outline_notch_stop_y, "m"); + ylim ([-80, 0]); +***** demo + fstop = [9875 10126.5823]; + fpass = [9582 11000]; + Rpass = 1; + Rstop = 26; + Wpass = 2 * pi * fpass; + Wstop = 2 * pi * fstop; + [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") + [b, a] = butter (n, Wn_s, "stop", "s"); + f = 8000:12000; + W = 2 * pi * f; + H = freqs (b, a, W); + plot (f, 20 * log10 (abs (H))); + title ("Analog Butterworth notch : matching stop band, limit on lower freq"); + xlabel ("Frequency (Hz)"); + ylabel ("Attenuation (dB)"); + grid on; + outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; + outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; + outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; + outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; + outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... + fstop(2), max(f)]; + outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... + 0 , 0 ]; + hold on; + plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); + plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); + plot (outline_notch_stop_x, outline_notch_stop_y, "m"); + ylim ([-80, 0]); ***** test - u = [-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7]; - y = udecode(u, 3, 2, "wrap"); - assert(y, [0.5 1 1.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 -2 -1.5 -1 -0.5]); -***** error udecode () -***** error udecode (1) -***** error udecode (1, 2, 3, 4, 5) -***** error udecode (1.5) -***** error udecode (1, 100) -***** error udecode (1, 4, 0) -***** error udecode (1, 4, -1) -***** error udecode (1, 4, 2, "invalid") -14 tests, 14 passed, 0 known failure, 0 skipped -[inst/vco.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/vco.m -***** error vco -***** error vco([1 2]) -2 tests, 2 passed, 0 known failure, 0 skipped -[inst/idst.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/idst.m + # Analog band-pass + [n, Wn_p, Wn_s] = buttord (2 * pi * [9875, 10126.5823], ... + 2 * pi * [9000, 10436], 1, 26, "s"); + assert (n, 4); + assert (round (Wn_p), [61903, 63775]); + assert (round (Wn_s), [61575, 64114]); ***** test - x = log(gausswin(32)); - assert(x, idst(dst(x)), 100*eps) -1 test, 1 passed, 0 known failure, 0 skipped -[inst/dst.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/dst.m + # Analog band-pass + [n, Wn_p, Wn_s] = buttord (2 * pi * [9875, 10126.5823], ... + 2 * pi * [9582, 11000], 1, 26, "s"); + assert (n, 4); + assert (round (Wn_p), [61903, 63775]); + assert (round (Wn_s), [61575, 64115]); ***** test - x = log(linspace(0.1,1,32)); - y = dst(x); - assert(y(3), sum(x.*sin(3*pi*[1:32]/33)), 100*eps) -1 test, 1 passed, 0 known failure, 0 skipped -[inst/fir2.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/fir2.m -***** xtest - f = [0 0.6 0.6 1]; m = [1 1 0 0]; - b9 = fir2 (30, f, m, 9); - b16 = fir2 (30, f, m, 16); - b17 = fir2 (30, f, m, 17); - b32 = fir2 (30, f, m, 32); - assert ( isequal (b9, b16)) - assert ( isequal (b17, b32)) - assert (~isequal (b16, b17)) + # Analog band-pass + [n, Wn_p, Wn_s] = buttord (2 * pi * [9875, 10126.5823], ... + 2 * pi * [9000, 10437], 1, 26, "s"); + assert (n, 3); + assert (round (Wn_p), [61850, 63830]); + assert (round (Wn_s), [61848, 63831]); ***** test - f = [0, 0.7, 0.7, 1]; m = [0, 0, 1, 1]; - b = fir2 (50, f, m); - h = abs (freqz (b, 1, [0, 0.7, 1], 2)); - assert (h(1) <= 3e-3) - assert (h(2) <= 1/sqrt (2)) - assert (h(3), 1, 2e-3) + # Analog band-pass + [n, Wn_p, Wn_s] = buttord (2 * pi * [9875, 10126.5823], ... + 2 * pi * [9581, 11000], 1, 26, "s"); + assert (n, 3); + assert (round (Wn_p), [61850, 63830]); + assert (round (Wn_s), [61847, 63832]); ***** test - f = [0, 0.25, 0.25, 0.75, 0.75, 1]; m = [0, 0, 1, 1, 0, 0]; - b = fir2 (50, f, m); - h = abs (freqz (b, 1, [0, 0.25, 0.5, 0.75, 1], 2)); - assert (h(1) <= 3e-3) - assert (h(2) <= 1/sqrt (2)) - assert (h(3), 1, 2e-3) - assert (h(4) <= 1/sqrt (2)) - assert (h(5) <= 3e-3) + # Analog high-pass + [n, Wn_p, Wn_s] = buttord (2 * pi * 13583, 2 * pi * 4000, 1, 26, "s"); + assert (n, 4); + assert (round (Wn_p), 72081); + assert (round (Wn_s), 53101); ***** test - f = [0, 0.45, 0.45, 0.55, 0.55, 1]; m = [1, 1, 0, 0, 1, 1]; - b = fir2 (50, f, m); - h = abs (freqz (b, 1, [0, 0.45, 0.5, 0.55, 1], 2)); - assert (h(1), 1, 2e-3) - assert (h(2) <= 1/sqrt (2)) - assert (h(3) <= 1e-1) - assert (h(4) <= 1/sqrt (2)) - assert (h(5), 1, 2e-3) -***** test #bug 59066 - f = [0, 0.45, 0.45, 0.55, 0.55, 1]; m = [1, 1, 0, 0, 1, 1]; - b = fir2 (int32(50), f, m); - assert(numel(b), 51) - - fail ("fir2 (50.1, f, m)", "fir2: n must be a non negative integer") - fail ("fir2 (-1, f, m)", "fir2: n must be a non negative integer") -***** demo - f=[0, 0.3, 0.3, 0.6, 0.6, 1]; m=[0, 0, 1, 1/2, 0, 0]; - [h, w] = freqz(fir2(100,f,m)); - subplot(121); - plot(f,m,';target response;',w/pi,abs(h),';filter response;'); - subplot(122); - plot(f,20*log10(m+1e-5),';target response (dB);',... - w/pi,20*log10(abs(h)),';filter response (dB);'); -***** demo - f=[0, 0.3, 0.3, 0.6, 0.6, 1]; m=[0, 0, 1, 1/2, 0, 0]; - plot(f,20*log10(m+1e-5),';target response;'); - hold on; - [h, w] = freqz(fir2(50,f,m,512,0)); - plot(w/pi,20*log10(abs(h)),';filter response (ramp=0);'); - [h, w] = freqz(fir2(50,f,m,512,25.6)); - plot(w/pi,20*log10(abs(h)),';filter response (ramp=pi/20 rad);'); - [h, w] = freqz(fir2(50,f,m,512,51.2)); - plot(w/pi,20*log10(abs(h)),';filter response (ramp=pi/10 rad);'); - hold off; -***** demo - % Classical Jakes spectrum - % X represents the normalized frequency from 0 - % to the maximum Doppler frequency - asymptote = 2/3; - X = linspace(0,asymptote-0.0001,200); - Y = (1 - (X./asymptote).^2).^(-1/4); - - % The target frequency response is 0 after the asymptote - X = [X, asymptote, 1]; - Y = [Y, 0, 0]; - - plot(X,Y,'b;Target spectrum;'); - hold on; - [H,F]=freqz(fir2(20, X, Y)); - plot(F/pi,abs(H),'c;Synthesized spectrum (n=20);'); - [H,F]=freqz(fir2(50, X, Y)); - plot(F/pi,abs(H),'r;Synthesized spectrum (n=50);'); - [H,F]=freqz(fir2(200, X, Y)); - plot(F/pi,abs(H),'g;Synthesized spectrum (n=200);'); - hold off; - title('Theoretical/Synthesized CLASS spectrum'); - xlabel('Normalized frequency (Fs=2)'); - ylabel('Magnitude'); -5 tests, 5 passed, 0 known failure, 0 skipped -[inst/peak2rms.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/peak2rms.m -***** assert (peak2rms (1), 1) -***** assert (peak2rms (-5), 1) -***** assert (peak2rms ([-2 3; 4 -2]), [4/sqrt(10), 3/sqrt((9+4)/2)]) -***** assert (peak2rms ([-2 3; 4 -2], 2), [3/sqrt((9+4)/2); 4/sqrt(10)]) -***** assert (peak2rms ([1 2 3], 3), [1 1 1]) -***** error peak2rms () -***** error peak2rms (1, 2, 3) -***** error peak2rms (1, 1.5) -***** error peak2rms (1, -1) -9 tests, 9 passed, 0 known failure, 0 skipped -[inst/pei_tseng_notch.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/pei_tseng_notch.m + # Analog high-pass + [n, Wn_p, Wn_s] = buttord (2 * pi * 13584, 2 * pi * 4000, 1, 26, "s"); + assert (n, 3); + assert (round (Wn_p), 68140); + assert (round (Wn_s), 68138); ***** test - ## 2Hz bandwidth - sf = 800; sf2 = sf/2; - data=[sinetone(49,sf,10,1),sinetone(50,sf,10,1),sinetone(51,sf,10,1)]; - [b, a] = pei_tseng_notch ( 50 / sf2, 2 / sf2 ); - filtered = filter ( b, a, data ); - damp_db = 20 * log10 ( max ( filtered ( end - 1000 : end, : ) ) ); - assert ( damp_db, [ -3 -251.9 -3 ], -0.1 ) + # Analog low-pass + [n, Wn_p, Wn_s] = buttord (2 * pi * 4000, 2 * pi * 13583, 1, 26, "s"); + assert (n, 4); + assert (round (Wn_p), 29757); + assert (round (Wn_s), 40394); ***** test - ## 1Hz bandwidth - sf = 800; sf2 = sf/2; - data=[sinetone(49.5,sf,10,1),sinetone(50,sf,10,1),sinetone(50.5,sf,10,1)]; - [b, a] = pei_tseng_notch ( 50 / sf2, 1 / sf2 ); - filtered = filter ( b, a, data ); - damp_db = 20 * log10 ( max ( filtered ( end - 1000 : end, : ) ) ); - assert ( damp_db, [ -3 -240.4 -3 ], -0.1 ) -***** demo - sf = 800; sf2 = sf/2; - data=[[1;zeros(sf-1,1)],sinetone(49,sf,1,1),sinetone(50,sf,1,1),sinetone(51,sf,1,1)]; - [b,a]=pei_tseng_notch ( 50 / sf2, 2/sf2 ); - filtered = filter(b,a,data); - - clf - subplot ( columns ( filtered ), 1, 1) - plot(filtered(:,1),";Impulse response;") - subplot ( columns ( filtered ), 1, 2 ) - plot(filtered(:,2),";49Hz response;") - subplot ( columns ( filtered ), 1, 3 ) - plot(filtered(:,3),";50Hz response;") - subplot ( columns ( filtered ), 1, 4 ) - plot(filtered(:,4),";51Hz response;") -2 tests, 2 passed, 0 known failure, 0 skipped -[inst/xcorr.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/xcorr.m -***** shared x, y - x = 0.5.^(0:15); - y = circshift(x,5); -***** error xcorr () -***** error xcorr (1) -***** error xcorr (x, 1, x) -***** error xcorr (x, 'none', x) -***** error xcorr (x, x, 'invalid') -***** error xcorr (x, 'invalid') + # Analog low-pass + [n, Wn_p, Wn_s] = buttord (2 * pi * 4000, 2 * pi * 13584, 1, 26, "s"); + assert (n, 3); + assert (round (Wn_p), 31481); + assert (round (Wn_s), 31482); ***** test - [c,lags] = xcorr(x); - # largest spike at 0 lag, where X matches itself - ie the center - [m, im] = max(c); - assert(m, 4/3, 1e-6) - assert(im, (numel(lags)+1)/2); - - [c1,lags1] = xcorr(x, x); - [m, im] = max(c1); - assert(m, 4/3, 1e-6) - assert(im, (numel(lags1)+1)/2); - assert(c1, c, 2*eps); - assert(lags1, lags); + # Analog notch (narrow band-stop) + [n, Wn_p, Wn_s] = buttord (2 * pi * [9000, 10436], ... + 2 * pi * [9875, 10126.5823], 1, 26, "s"); + assert (n, 4); + assert (round (Wn_p), [60607, 65138]); + assert (round (Wn_s), [61184, 64524]); ***** test - [c,lags] = xcorr(x,y); - # largest spike at 0 lag, where X matches Y - [m, im] = max(c); - assert(m, 4/3, 1e-6) - assert(lags(im), -5); + # Analog notch (narrow band-stop) + [n, Wn_p, Wn_s] = buttord (2 * pi * [9582, 11000], ... + 2 * pi * [9875, 10126.5823], 1, 26, "s"); + assert (n, 4); + assert (round (Wn_p), [60606, 65139]); + assert (round (Wn_s), [61184, 64524]); ***** test - [c0,lags0] = xcorr(x,y); - [c1,lags1] = xcorr(x,y, 'none'); - assert(c0, c1); - assert(lags0, lags1); + # Analog notch (narrow band-stop) + [n, Wn_p, Wn_s] = buttord (2 * pi * [9000, 10437], ... + 2 * pi * [9875, 10126.5823], 1, 26, "s"); + assert (n, 3); + assert (round (Wn_p), [60722, 65015]); + assert (round (Wn_s), [60726, 65011]); ***** test - [c0,lags0] = xcorr(x,y); - [c1,lags1] = xcorr(x,y, 'normalized'); - assert(lags0, lags1); - [m, im] = max(c1); - # at 0 lag, should be 1 - assert(m, 1, 1e-6); - [c2,lags2] = xcorr(x,y, 'coeff'); - assert(c1, c2); - assert(lags1, lags2); + # Analog notch (narrow band-stop) + [n, Wn_p, Wn_s] = buttord (2 * pi * [9581, 11000], ... + 2 * pi * [9875, 10126.5823], 1, 26, "s"); + assert (n, 3); + assert (round (Wn_p), [60721, 65016]); + assert (round (Wn_s), [60726, 65011]); ***** test - [c0,lags0] = xcorr(x,y); - [c1,lags1] = xcorr(x,y, 'biased'); - assert(lags0, lags1); - [m, im] = max(c1); - assert(m, 1/12, 1e-6); - - [c1,lags1] = xcorr(x, 'biased'); - assert(lags0, lags1); - [m, im] = max(c1); - assert(m, 1/12, 1e-6); + # Digital band-pass + fs = 44100; + [n, Wn_p, Wn_s] = buttord (2 / fs * [9500, 9750], ... + 2 / fs * [8500, 10051], 1, 26); + Wn_p = Wn_p * fs / 2; + Wn_s = Wn_s * fs / 2; + assert (n, 4); + assert (round (Wn_p), [9477, 9773]); + assert (round (Wn_s), [9425, 9826]); ***** test - [c0,lags0] = xcorr(x,y); - [c1,lags1] = xcorr(x,y, 'unbiased'); - assert(lags0, lags1); - [m, im] = max(c1); - assert(m, 1/8.25, 1e-6); + # Digital band-pass + fs = 44100; + [n, Wn_p, Wn_s] = buttord (2 / fs * [9500, 9750], ... + 2 / fs * [9204, 10700], 1, 26); + Wn_p = Wn_p * fs / 2; + Wn_s = Wn_s * fs / 2; + assert (n, 4); + assert (round (Wn_p), [9477, 9773]); + assert (round (Wn_s), [9425, 9826]); ***** test - [c,lags] = xcorr(x,y, 10); - [m, im] = max(c); - assert(lags(im), -5); - assert(lags(1), -10); - assert(lags(end), 10); + # Digital band-pass + fs = 44100; + [n, Wn_p, Wn_s] = buttord (2 / fs * [9500, 9750], ... + 2 / fs * [8500, 10052], 1, 26); + Wn_p = Wn_p * fs / 2; + Wn_s = Wn_s * fs / 2; + assert (n, 3); + assert (round (Wn_p), [9469, 9782]); + assert (round (Wn_s), [9468, 9782]); +***** test + # Digital band-pass + fs = 44100; + [n, Wn_p, Wn_s] = buttord (2 / fs * [9500, 9750], ... + 2 / fs * [9203, 10700], 1, 26); + Wn_p = Wn_p * fs / 2; + Wn_s = Wn_s * fs / 2; + assert (n, 3); + assert (round (Wn_p), [9469, 9782]); + assert (round (Wn_s), [9468, 9782]); +***** test + # Digital high-pass + fs = 44100; + [n, Wn_p, Wn_s] = buttord (2 / fs * 10987, 2 / fs * 4000, 1, 26); + Wn_p = Wn_p * fs / 2; + Wn_s = Wn_s * fs / 2; + assert (n, 4); + assert (round (Wn_p), 9808); + assert (round (Wn_s), 7780); +***** test + # Digital high-pass + fs = 44100; + [n, Wn_p, Wn_s] = buttord (2 / fs * 10988, 2 / fs * 4000, 1, 26); + Wn_p = Wn_p * fs / 2; + Wn_s = Wn_s * fs / 2; + assert (n, 3); + assert (round (Wn_p), 9421); + assert (round (Wn_s), 9421); +***** test + # Digital low-pass + fs = 44100; + [n, Wn_p, Wn_s] = buttord (2 / fs * 4000, 2 / fs * 10987, 1, 26); + Wn_p = Wn_p * fs / 2; + Wn_s = Wn_s * fs / 2; + assert (n, 4); + assert (round (Wn_p), 4686); + assert (round (Wn_s), 6176); +***** test + # Digital low-pass + fs = 44100; + [n, Wn_p, Wn_s] = buttord (2 / fs * 4000, 2 / fs * 10988, 1, 26); + Wn_p = Wn_p * fs / 2; + Wn_s = Wn_s * fs / 2; + assert (n, 3); + assert (round (Wn_p), 4936); + assert (round (Wn_s), 4936); +***** test + # Digital notch (narrow band-stop) + fs = 44100; + [n, Wn_p, Wn_s] = buttord (2 / fs * [8500, 10833], ... + 2 / fs * [9875, 10126.5823], 0.5, 40); + Wn_p = Wn_p * fs / 2; + Wn_s = Wn_s * fs / 2; + assert (n, 4); + assert (round (Wn_p), [9369, 10640]); + assert (round (Wn_s), [9605, 10400]); +***** test + # Digital notch (narrow band-stop) + fs = 44100; + [n, Wn_p, Wn_s] = buttord (2 / fs * [9183, 11000], ... + 2 / fs * [9875, 10126.5823], 0.5, 40); + Wn_p = Wn_p * fs / 2; + Wn_s = Wn_s * fs / 2; + assert (n, 4); + assert (round (Wn_p), [9370, 10640]); + assert (round (Wn_s), [9605, 10400]); +***** test + # Digital notch (narrow band-stop) + fs = 44100; + [n, Wn_p, Wn_s] = buttord (2 / fs * [8500, 10834], ... + 2 / fs * [9875, 10126.5823], 0.5, 40); + Wn_p = Wn_p * fs / 2; + Wn_s = Wn_s * fs / 2; + assert (n, 3); + assert (round (Wn_p), [9421, 10587]); + assert (round (Wn_s), [9422, 10587]); +***** test + # Digital notch (narrow band-stop) + fs = 44100; + [n, Wn_p, Wn_s] = buttord (2 / fs * [9182, 11000], ... + 2 / fs * [9875, 10126.5823], 0.5, 40); + Wn_p = Wn_p * fs / 2; + Wn_s = Wn_s * fs / 2; + assert (n, 3); + assert (round (Wn_p), [9421, 10587]); + assert (round (Wn_s), [9422, 10587]); +***** error buttord () +***** error buttord (.1) +***** error buttord (.1, .2) +***** error buttord (.1, .2, 3) +***** error buttord ([.1 .1], [.2 .2], 3, 4) +***** error buttord ([.1 .2], [.5 .6], 3, 4) +***** error buttord ([.1 .5], [.2 .6], 3, 4) +31 tests, 31 passed, 0 known failure, 0 skipped +[inst/digitrevorder.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/digitrevorder.m +***** assert (digitrevorder (0, 2), 0); +***** assert (digitrevorder (0, 36), 0); +***** assert (digitrevorder (0:3, 4), 0:3); +***** assert (digitrevorder ([0:3]', 4), [0:3]'); +***** assert (digitrevorder (0:7, 2), [0 4 2 6 1 5 3 7]); +***** assert (digitrevorder ([0:7]', 2), [0 4 2 6 1 5 3 7]'); +***** assert (digitrevorder ([0:7]*i, 2), [0 4 2 6 1 5 3 7]*i); +***** assert (digitrevorder ([0:7]'*i, 2), [0 4 2 6 1 5 3 7]'*i); +***** assert (digitrevorder (0:15, 2), [0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15]); +***** assert (digitrevorder (0:15, 4), [0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15]); +***** error digitrevorder (); +***** error digitrevorder (1); +***** error digitrevorder (1, 2, 3); +***** error digitrevorder ([], 1); +***** error digitrevorder ([], 37); +***** error digitrevorder (0:3, 8); +16 tests, 16 passed, 0 known failure, 0 skipped +[inst/buffer.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/buffer.m +***** error (buffer(1:10, 4.1)) +***** assert (buffer(1:10, 4), reshape([1:10,0,0],[4,3])) +***** assert (buffer(1:10, 4, 1), reshape([0:3,3:6,6:9,9,10,0,0],[4,4])) +***** assert (buffer(1:10, 4, 2), reshape ([0,0:2,1:4,3:6,5:8,7:10],[4,5])) +***** assert (buffer(1:10, 4, 3), [0,0,0:7;0,0:8;0:9;1:10]) +***** error (buffer(1:10, 4, 3.1)) +***** error (buffer(1:10, 4, 4)) +***** assert (buffer(1:10, 4, -1), reshape([1:4,6:9],[4,2])) +***** assert (buffer(1:10, 4, -2), reshape([1:4,7:10],[4,2])) +***** assert (buffer(1:10, 4, -3), reshape([1:4,8:10,0],[4,2])) +***** assert (buffer(1:10, 4, 1, 11), reshape([11,1:3,3:6,6:9,9,10,0,0],[4,4])) +***** error (buffer(1:10, 4, 1, [10,11])) +***** assert (buffer(1:10, 4, 1, 'nodelay'), reshape([1:4,4:7,7:10],[4,3])) +***** error (buffer(1:10, 4, 1, 'badstring')) +***** assert (buffer(1:10, 4, 2,'nodelay'), reshape ([1:4,3:6,5:8,7:10],[4,4])) +***** assert (buffer(1:10, 4, 3, [11,12,13]),[11,12,13,1:7;12,13,1:8;13,1:9;1:10]) +***** assert (buffer(1:10, 4, 3, 'nodelay'),[1:8;2:9;3:10;4:10,0]) +***** assert (buffer(1:11,4,-2,1),reshape([2:5,8:11],4,2)) +***** test + [y, z] = buffer(1:12,4); + assert (y, reshape(1:12,4,3)); + assert (z, zeros (1,0)); +***** test + [y, z] = buffer(1:11,4); + assert (y, reshape(1:8,4,2)); + assert (z, [9, 10, 11]); +***** test + [y, z] = buffer([1:12]',4); + assert (y, reshape(1:12,4,3)); + assert (z, zeros (0,1)); +***** test + [y, z] = buffer([1:11]',4); + assert (y, reshape(1:8,4,2)); + assert (z, [9; 10; 11]); +***** test + [y,z,opt] = buffer(1:15,4,-2,1); + assert (y, reshape([2:5,8:11],4,2)); + assert (z, [14, 15]); + assert (opt, 0); +***** test + [y,z,opt] = buffer(1:11,4,-2,1); + assert (y, reshape([2:5,8:11],4,2)); + assert (z, zeros (1,0)); + assert (opt, 2); +***** test + [y,z,opt] = buffer([1:15]',4,-2,1); + assert (y, reshape([2:5,8:11],4,2)); + assert (z, [14; 15]); + assert (opt, 0); +***** test + [y,z,opt] = buffer([1:11]',4,-2,1); + assert (y, reshape([2:5,8:11],4,2)); + assert (z, zeros (0, 1)); + assert (opt, 2); +***** test + [y,z,opt] = buffer([1:11],5,2,[-1,0]); + assert (y, reshape ([-1:3,2:6,5:9],[5,3])); + assert (z, [10, 11]); + assert (opt, [8; 9]); +***** test + [y,z,opt] = buffer([1:11]',5,2,[-1,0]); + assert (y, reshape ([-1:3,2:6,5:9],[5,3])); + assert (z, [10; 11]); + assert (opt, [8; 9]); +***** test + [y, z, opt] = buffer (1:10, 6, 4); + assert (y, [0 0 1:2:5; 0 0 2:2:6; 0 1:2:7; 0 2:2:8; 1:2:9; 2:2:10]) + assert (z, zeros (1, 0)) + assert (opt, [7; 8; 9; 10]) +29 tests, 29 passed, 0 known failure, 0 skipped +[inst/invimpinvar.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/invimpinvar.m +***** function err = ztoserr(bz,az,fs) + + # number of time steps + n=100; + + # make sure system is realizable (no delays) + bz=prepad(bz,length(az)-1,0,2); + + # inverse impulse invariant transform to s-domain + [bs as]=invimpinvar(bz,az,fs); + + # create sys object of transfer function + s=tf(bs,as); + + # calculate impulse response of continuous time system + # at discrete time intervals 1/fs + ys=impulse(s,(n-1)/fs,1/fs)'; + + # impulse response of discrete time system + yz=filter(bz,az,[1 zeros(1,n-1)]); + + # find rms error + err=sqrt(sum((yz*fs-ys).^2)/length(ys)); + endfunction + +***** assert(ztoserr([1],[1 -0.5],0.01),0,0.0001); +***** assert(ztoserr([1],[1 -1 0.25],0.01),0,0.0001); +***** assert(ztoserr([1 1],[1 -1 0.25],0.01),0,0.0001); +***** assert(ztoserr([1],[1 -1.5 0.75 -0.125],0.01),0,0.0001); +***** assert(ztoserr([1 1],[1 -1.5 0.75 -0.125],0.01),0,0.0001); +***** assert(ztoserr([1 1 1],[1 -1.5 0.75 -0.125],0.01),0,0.0001); +***** assert(ztoserr([1],[1 0 0.25],0.01),0,0.0001); +***** assert(ztoserr([1 1],[1 0 0.25],0.01),0,0.0001); +***** assert(ztoserr([1],[1 0 0.5 0 0.0625],0.01),0,0.0001); +***** assert(ztoserr([1 1],[1 0 0.5 0 0.0625],0.01),0,0.0001); +***** assert(ztoserr([1 1 1],[1 0 0.5 0 0.0625],0.01),0,0.0001); +***** assert(ztoserr([1 1 1 1],[1 0 0.5 0 0.0625],0.01),0,0.0001); +12 tests, 12 passed, 0 known failure, 0 skipped +[inst/impinvar.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/impinvar.m +***** function err = stozerr(bs,as,fs) + + # number of time steps + n=100; + + # impulse invariant transform to z-domain + [bz az]=impinvar(bs,as,fs); + + # create sys object of transfer function + s=tf(bs,as); + + # calculate impulse response of continuous time system + # at discrete time intervals 1/fs + ys=impulse(s,(n-1)/fs,1/fs)'; + + # impulse response of discrete time system + yz=filter(bz,az,[1 zeros(1,n-1)]); - [c,lags] = xcorr(x,10); - [m, im] = max(c); - assert(lags(1), -10); - assert(lags(end), 10); -***** test - [c0,lags0] = xcorr(x,y, 'normalized', 10); - [c1,lags1] = xcorr(x,y, 10, 'normalized'); - assert(c0, c1); - assert(lags0, lags1); -14 tests, 14 passed, 0 known failure, 0 skipped -[inst/uencode.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/uencode.m -***** test - u = [-3:0.5:3]; - y = uencode (u, 2); - assert (y, [0 0 0 0 0 1 2 3 3 3 3 3 3]); -***** test - u = [-4:0.5:4]; - y = uencode (u, 3, 4); - assert (y, [0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 7]); -***** test - u = [-8:0.5:8]; - y = uencode(u, 4, 8, "unsigned"); - assert (y, [0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 15]); -***** test - u = [-8:0.5:8]; - y = uencode(u, 4, 8, "signed"); - assert (y, [-8 -8 -7 -7 -6 -6 -5 -5 -4 -4 -3 -3 -2 -2 -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 7]); -***** error uencode () -***** error uencode (1) -***** error uencode (1, 2, 3, 4, 5) -***** error uencode (1, 100) -***** error uencode (1, 4, 0) -***** error uencode (1, 4, -1) -***** error uencode (1, 4, 2, "invalid") -11 tests, 11 passed, 0 known failure, 0 skipped -[inst/cheby1.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cheby1.m -***** error [a, b] = cheby1 () -***** error [a, b] = cheby1 (1) -***** error [a, b] = cheby1 (1, 2) -***** error [a, b] = cheby1 (1, 2, 3, 4, 5, 6) -***** error [a, b] = cheby1 (.5, 2, .2) -***** error [a, b] = cheby1 (3, 2, .2, "invalid") + # find rms error + err=sqrt(sum((yz*fs-ys).^2)/length(ys)); + endfunction + +***** assert(stozerr([1],[1 1],100),0,0.0001); +***** assert(stozerr([1],[1 2 1],100),0,0.0001); +***** assert(stozerr([1 1],[1 2 1],100),0,0.0002); +***** assert(stozerr([1],[1 3 3 1],100),0,0.0001); +***** assert(stozerr([1 1],[1 3 3 1],100),0,0.0001); +***** assert(stozerr([1 1 1],[1 3 3 1],100),0,0.0001); +***** assert(stozerr([1],[1 0 1],100),0,0.0001); +***** assert(stozerr([1 1],[1 0 1],100),0,0.0001); +***** assert(stozerr([1],[1 0 2 0 1],100),0,0.0001); +***** assert(stozerr([1 1],[1 0 2 0 1],100),0,0.0001); +***** assert(stozerr([1 1 1],[1 0 2 0 1],100),0,0.0001); +***** assert(stozerr([1 1 1 1],[1 0 2 0 1],100),0,0.0001); +12 tests, 12 passed, 0 known failure, 0 skipped +[inst/cheby2.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cheby2.m +***** error [a, b] = cheby2 () +***** error [a, b] = cheby2 (1) +***** error [a, b] = cheby2 (1, 2) +***** error [a, b] = cheby2 (1, 2, 3, 4, 5, 6) +***** error [a, b] = cheby2 (.5, 40, .2) +***** error [a, b] = cheby2 (3, 40, .2, "invalid") ***** test - cheby1 (3, 4, .5); + cheby2 (3, 4, .5); assert (isrow (ans)); ***** test - A = cheby1 (3, 4, .5); + A = cheby2 (3, 4, .5); assert (isrow (A)); ***** test - [A, B] = cheby1 (3, 4, .5); + [A, B] = cheby2 (3, 4, .5); assert (isrow (A)); assert (isrow (B)); ***** test - [z, p, g] = cheby1 (3, 4, .5); + [z, p, g] = cheby2 (3, 4, .5); assert (iscolumn (z)); assert (iscolumn (p)); assert (isscalar (g)); ***** test - [a, b, c, d] = cheby1 (3, 4, .5); + [a, b, c, d] = cheby2 (3, 4, .5); assert (ismatrix (a)); assert (iscolumn (b)); assert (isrow (c)); assert (isscalar (d)); 11 tests, 11 passed, 0 known failure, 0 skipped -[inst/residued.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/residued.m +[inst/findpeaks.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/findpeaks.m +***** demo + t = 2*pi*linspace(0,1,1024)'; + y = sin(3.14*t) + 0.5*cos(6.09*t) + 0.1*sin(10.11*t+1/6) + 0.1*sin(15.3*t+1/3); + + data1 = abs(y); # Positive values + [pks idx] = findpeaks(data1); + + data2 = y; # Double-sided + [pks2 idx2] = findpeaks(data2,"DoubleSided"); + [pks3 idx3] = findpeaks(data2,"DoubleSided","MinPeakHeight",0.5); + + subplot(1,2,1) + plot(t,data1,t(idx),data1(idx),'xm') + axis tight + subplot(1,2,2) + plot(t,data2,t(idx2),data2(idx2),"xm;>2*std;",t(idx3),data2(idx3),"or;>0.1;") + axis tight + legend("Location","NorthOutside","Orientation","horizontal") + + #---------------------------------------------------------------------------- + # Finding the peaks of smooth data is not a big deal! +***** demo + t = 2*pi*linspace(0,1,1024)'; + y = sin(3.14*t) + 0.5*cos(6.09*t) + 0.1*sin(10.11*t+1/6) + 0.1*sin(15.3*t+1/3); + + data = abs(y + 0.1*randn(length(y),1)); # Positive values + noise + [pks idx] = findpeaks(data,"MinPeakHeight",1); + + dt = t(2)-t(1); + [pks2 idx2] = findpeaks(data,"MinPeakHeight",1,... + "MinPeakDistance",round(0.5/dt)); + + subplot(1,2,1) + plot(t,data,t(idx),data(idx),'or') + subplot(1,2,2) + plot(t,data,t(idx2),data(idx2),'or') + + #---------------------------------------------------------------------------- + # Noisy data may need tuning of the parameters. In the 2nd example, + # MinPeakDistance is used as a smoother of the peaks. +***** assert (isempty (findpeaks ([1, 1, 1]))) +***** assert (isempty (findpeaks ([1; 1; 1]))) ***** test - B=1; A=[1 -1]; - [r,p,f,m] = residued(B,A); - assert({r,p,f,m},{1,1,[],1},100*eps); - [r2,p2,f2,m2] = residuez(B,A); - assert({r,p,f,m},{r2,p2,f2,m2},100*eps); + ## Test input vector is an oversampled sinusoid with clipped peaks + x = min (3, cos (2*pi*[0:8000] ./ 600) + 2.01); + assert (! isempty (findpeaks (x))) ***** test - B=[1 -2 1]; A=[1 -1]; - [r,p,f,m] = residued(B,A); - assert({r,p,f,m},{0,1,[1 -1],1},100*eps); + x = [1 10 2 2 1 9 1]; + [pks, loc] = findpeaks(x); + assert (loc, [2 6]) + assert (pks, [10 9]) +***** error findpeaks () +***** error findpeaks (1) +***** error findpeaks ([1, 2]) +***** test assert (findpeaks ([34 134 353 64 134 14 56 67 234 143 64 575 8657]), + [353 134 234]) +8 tests, 8 passed, 0 known failure, 0 skipped +[inst/barthannwin.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/barthannwin.m +***** assert (barthannwin (1), 1) +***** assert (barthannwin (2), zeros (2, 1)) +***** error barthannwin () +***** error barthannwin (0.5) +***** error barthannwin (-1) +***** error barthannwin (ones (1, 4)) +***** error barthannwin (1, 2) +7 tests, 7 passed, 0 known failure, 0 skipped +[inst/bitrevorder.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/bitrevorder.m +***** assert (bitrevorder (0), 0); +***** assert (bitrevorder (0:1), 0:1); +***** assert (bitrevorder ([0:1]'), [0:1]'); +***** assert (bitrevorder (0:7), [0 4 2 6 1 5 3 7]); +***** assert (bitrevorder ([0:7]'), [0 4 2 6 1 5 3 7]'); +***** assert (bitrevorder ([0:7]*i), [0 4 2 6 1 5 3 7]*i); +***** assert (bitrevorder ([0:7]'*i), [0 4 2 6 1 5 3 7]'*i); +***** assert (bitrevorder (0:15), [0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15]); +***** error bitrevorder (); +***** error bitrevorder (1, 2); +***** error bitrevorder ([]); +***** error bitrevorder (0:2); +12 tests, 12 passed, 0 known failure, 0 skipped +[inst/specgram.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/specgram.m +***** shared S,f,t,x + Fs=1000; + x = chirp([0:1/Fs:2],0,2,500); # freq. sweep from 0-500 over 2 sec. + step=ceil(20*Fs/1000); # one spectral slice every 20 ms + window=ceil(100*Fs/1000); # 100 ms data window + [S, f, t] = specgram(x); + ## test of returned shape +***** assert (rows(S), 128) +***** assert (columns(f), rows(S)) +***** assert (columns(t), columns(S)) +***** test [S, f, t] = specgram(x'); +***** assert (rows(S), 128) +***** assert (columns(f), rows(S)); +***** assert (columns(t), columns(S)); +***** error (isempty(specgram([]))); +***** error (isempty(specgram([1, 2 ; 3, 4]))); +***** error (specgram) +***** demo + Fs=1000; + x = chirp([0:1/Fs:2],0,2,500); # freq. sweep from 0-500 over 2 sec. + step=ceil(20*Fs/1000); # one spectral slice every 20 ms + window=ceil(100*Fs/1000); # 100 ms data window + + ## test of automatic plot + [S, f, t] = specgram(x); + specgram(x, 2^nextpow2(window), Fs, window, window-step); +***** #demo # FIXME: Enable once we have an audio file to demo + ## Speech spectrogram + [x, Fs] = auload(file_in_loadpath("sample.wav")); # audio file + step = fix(5*Fs/1000); # one spectral slice every 5 ms + window = fix(40*Fs/1000); # 40 ms data window + fftn = 2^nextpow2(window); # next highest power of 2 + [S, f, t] = specgram(x, fftn, Fs, window, window-step); + S = abs(S(2:fftn*4000/Fs,:)); # magnitude in range 0>>>> /build/reproducible-path/octave-signal-1.4.6/inst/downsample.m +***** assert(downsample([1,2,3,4,5],2),[1,3,5]); +***** assert(downsample([1;2;3;4;5],2),[1;3;5]); +***** assert(downsample([1,2;3,4;5,6;7,8;9,10],2),[1,2;5,6;9,10]); +***** assert(downsample([1,2,3,4,5],2,1),[2,4]); +***** assert(downsample([1,2;3,4;5,6;7,8;9,10],2,1),[3,4;7,8]); +5 tests, 5 passed, 0 known failure, 0 skipped +[inst/data2fun.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/data2fun.m +***** shared t, y + t = linspace (0, 1, 10); + y = t.^2 - 2*t + 1; ***** test - B=[1 -2 1]; A=[1 -0.5]; - [r,p,f,m] = residued(B,A); - assert({r,p,f,m},{0.25,0.5,[1 -1.5],1},100*eps); + fhandle = data2fun (t, y); + assert (y, fhandle (t)); ***** test - B=1; A=[1 -0.75 0.125]; - [r,p,f,m] = residued(B,A); - [r2,p2,f2,m2] = residuez(B,A); - assert({r,p,f,m},{r2,p2,f2,m2},100*eps); + unwind_protect + # Change to temporary folder in case tester cannot write current folder + olddir = pwd(); + cd(tempdir()); + + [fhandle fname] = data2fun (t, y, "file", "testdata2fun"); + yt = testdata2fun (t); + assert (y, yt); + assert (y, fhandle (t)); + unwind_protect_cleanup + unlink (fname); + unlink ([fname(1:end-2) ".mat"]); + cd(olddir) + end_unwind_protect ***** test - B=1; A=[1 -2 1]; - [r,p,f,m] = residued(B,A); - [r2,p2,f2,m2] = residuez(B,A); - assert({r,p,f,m},{r2,p2,f2,m2},100*eps); + unwind_protect + # Change to temporary folder in case tester cannot write current folder + olddir = pwd(); + cd(tempdir()); + + [fhandle fname] = data2fun (t, y, "file", ""); + # generate commmand to execute using random file name + cmd = sprintf ("yt = %s(t);", nthargout (2, @fileparts, fname)); + eval (cmd); + assert (y, yt); + assert (y, fhandle (t)); + unwind_protect_cleanup + unlink (fname); + unlink ([fname(1:end-2) ".mat"]); + cd(olddir) + end_unwind_protect ***** test - B=[6,2]; A=[1 -2 1]; - [r,p,f,m] = residued(B,A); - [r2,p2,f2,m2] = residuez(B,A); - assert({r,p,f,m},{r2,p2,f2,m2},100*eps); + unwind_protect + # Change to temporary folder in case tester cannot write current folder + olddir = pwd(); + cd(tempdir()); + [fhandle fname] = data2fun (t, y, "file", "testdata2fun", "interp", "linear"); + yt = testdata2fun (t); + assert (y, yt); + assert (y, fhandle (t)); + unwind_protect_cleanup + unlink (fname); + unlink ([fname(1:end-2) ".mat"]); + cd(olddir) + end_unwind_protect +***** error data2fun () +***** error data2fun (1) +***** error data2fun (1, 2, "file") +7 tests, 7 passed, 0 known failure, 0 skipped +[inst/sos2tf.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/sos2tf.m ***** test - B=[1 1 1]; A=[1 -2 1]; - [r,p,f,m] = residued(B,A); - assert(r,[0;3],1e-7); - assert(p,[1;1],1e-8); - assert(f,1,100*eps); - assert(m,[1;2],100*eps); + B = [1, 1]; + A = [1, 0.5]; + [sos, g] = tf2sos (B, A); + [Bh, Ah] = sos2tf (sos, g); + assert (g, 1); + assert (Bh, B, 10*eps); + assert (Ah, A, 10*eps); ***** test - B=[2 6 6 2]; A=[1 -2 1]; - [r,p,f,m] = residued(B,A); - assert(r,[8;16],3e-7); - assert(p,[1;1],1e-8); - assert(f,[2,10],100*eps); - assert(m,[1;2],100*eps); + B = [1, 0, 0, 0, 0, 1]; + A = [1, 0, 0, 0, 0, 0.9]; + [sos, g] = tf2sos (B, A); + [Bh, Ah] = sos2tf (sos, g); + assert (g, 1); + assert (Bh, B, 100*eps); + assert (Ah, A, 100*eps); ***** test - B=[1,6,2]; A=[1 -2 1]; - [r,p,f,m] = residued(B,A); - assert(r,[-1;9],3e-7); - assert(p,[1;1],1e-8); - assert(f,1,100*eps); - assert(m,[1;2],100*eps); + B = [1, 1]; + A = [1, 0.5]; + [sos, g] = tf2sos (B, A); + [Bh, Ah] = sos2tf (sos, 2); + assert (g, 1); + assert (Bh, 2 * B, 10*eps); + assert (Ah, A, 10*eps); ***** test - B=[1 0 0 0 1]; A=[1 0 0 0 -1]; - [r,p,f,m] = residued(B,A); - [~,is] = sort(angle(p)); - assert(r(is),[-1/2;-j/2;1/2;j/2],100*eps); - assert(p(is),[-1;-j;1;j],100*eps); - assert(f,1,100*eps); - assert(m,[1;1;1;1],100*eps); -10 tests, 10 passed, 0 known failure, 0 skipped + B = [1, 1]; + A = [1, 0.5]; + [sos, g] = tf2sos (B, A); + [Bh, Ah] = sos2tf (sos, [2, 2, 2]); + assert (g, 1); + assert (Bh, 8 * B, 10*eps); + assert (Ah, A, 10*eps); +***** test + sos = [1, 1, 0, 0, 1, 0.5]; + [Bh, Ah] = sos2tf (sos); + assert (Bh, sos(1,1:3) , 10*eps); + assert (Ah, sos(1,4:6), 10*eps); +***** test + sos = [0, 1, 1, 1, 0.5, 0]; + [Bh, Ah] = sos2tf (sos); + assert (Bh, sos(1,1:3) , 10*eps); + assert (Ah, sos(1,4:6), 10*eps); +***** test + sos = [1, 1, 0, 1, 0.5, 0]; + [Bh, Ah] = sos2tf (sos); + assert (Bh, [1, 1] , 10*eps); + assert (Ah, [1, 0.5], 10*eps); +***** test + sos = [0, 1, 1, 1, 1, 0.5]; + [Bh, Ah] = sos2tf (sos); + assert (Bh, sos(1,1:3) , 10*eps); + assert (Ah, sos(1,4:6), 10*eps); +***** test + sos = [1, 1, 0, 0, 1, 0.5]; + [Bh, Ah] = sos2tf (sos); + assert (Bh, sos(1,1:3) , 10*eps); + assert (Ah, sos(1,4:6), 10*eps); +***** test + sos = [0, 1, 1, 0, 1, 0.5]; + [Bh, Ah] = sos2tf (sos); + assert (Bh, [1, 1] , 10*eps); + assert (Ah, [1, 0.5], 10*eps); +***** test + sos = [1, 1, 0, 1, 0.5, 0; 1, 1, 0, 1, 0.5, 0; 1, 1, 0, 1, 0.5, 0]; + [Bh, Ah] = sos2tf (sos); + assert (Bh, [1, 3, 3, 1] , 10*eps); + assert (Ah, [1, 1.5 0.75 0.125], 10*eps); +***** test + sos = [0, 1, 1, 0, 1, 0.5; 0, 1, 1, 0, 1, 0.5;0, 1, 1, 0, 1, 0.5]; + [Bh, Ah] = sos2tf (sos); + assert (Bh, [1, 3, 3, 1] , 10*eps); + assert (Ah, [1, 1.5 0.75 0.125], 10*eps); +12 tests, 12 passed, 0 known failure, 0 skipped +[inst/boxcar.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/boxcar.m +***** assert (boxcar (1), 1) +***** assert (boxcar (2), ones (2, 1)) +***** assert (boxcar (100), ones (100, 1)) +***** error boxcar () +***** error boxcar (0.5) +***** error boxcar (-1) +***** error boxcar (ones (1, 4)) +***** error boxcar (1, 2) +8 tests, 8 passed, 0 known failure, 0 skipped [inst/cheb1ap.m] >>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cheb1ap.m ***** error cheb1ap (-1, 4) @@ -5523,6 +7877,243 @@ -0.10489 + 0.95795i], e-6) assert (k, 0.1634, e-6) 4 tests, 4 passed, 0 known failure, 0 skipped +[inst/zerocrossing.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/zerocrossing.m +***** test + x = linspace(0,1,100); + y = rand(1,100)-0.5; + x0= zerocrossing(x,y); + y0 = interp1(x,y,x0); + assert(norm(y0,inf), 0, 100*eps) +***** test + x = linspace(0,1,100); + y = rand(1,100)-0.5; + y(10:20) = 0; + x0= zerocrossing(x,y); + y0 = interp1(x,y,x0); + assert(norm(y0,inf), 0, 100*eps) +***** demo + x = linspace(0,1,100); + y = rand(1,100)-0.5; + x0= zerocrossing(x,y); + y0 = interp1(x,y,x0); + plot(x,y,x0,y0,'x') +***** demo + x = linspace(0,1,100); + y = rand(1,100)-0.5; + y(10:20) = 0; + x0= zerocrossing(x,y); + y0 = interp1(x,y,x0); + plot(x,y,x0,y0,'x') +2 tests, 2 passed, 0 known failure, 0 skipped +[inst/grpdelay.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/grpdelay.m +***** demo % 1 + %-------------------------------------------------------------- + % From Oppenheim and Schafer, a single zero of radius r=0.9 at + % angle pi should have a group delay of about -9 at 1 and 1/2 + % at zero and 2*pi. + %-------------------------------------------------------------- + grpdelay([1 0.9],[],512,'whole',1); + hold on; + xlabel('Normalized Frequency (cycles/sample)'); + stem([0, 0.5, 1],[0.5, -9, 0.5],'*b;target;'); + hold off; + title ('Zero at z = -0.9'); + +***** demo % 2 + %-------------------------------------------------------------- + % confirm the group delays approximately meet the targets + % don't worry that it is not exact, as I have not entered + % the exact targets. + %-------------------------------------------------------------- + b = poly([1/0.9*exp(1i*pi*0.2), 0.9*exp(1i*pi*0.6)]); + a = poly([0.9*exp(-1i*pi*0.6), 1/0.9*exp(-1i*pi*0.2)]); + grpdelay(b,a,512,'whole',1); + hold on; + xlabel('Normalized Frequency (cycles/sample)'); + stem([0.1, 0.3, 0.7, 0.9], [9, -9, 9, -9],'*b;target;'); + hold off; + title ('Two Zeros and Two Poles'); +***** demo % 3 + %-------------------------------------------------------------- + % fir lowpass order 40 with cutoff at w=0.3 and details of + % the transition band [.3, .5] + %-------------------------------------------------------------- + subplot(211); + Fs = 8000; % sampling rate + Fc = 0.3*Fs/2; % lowpass cut-off frequency + nb = 40; + b = fir1(nb,2*Fc/Fs); % matlab freq normalization: 1=Fs/2 + [H,f] = freqz(b,1,[],1); + [gd,f] = grpdelay(b,1,[],1); + plot(f,20*log10(abs(H))); + title(sprintf('b = fir1(%d,2*%d/%d);',nb,Fc,Fs)); + xlabel('Normalized Frequency (cycles/sample)'); + ylabel('Amplitude Response (dB)'); + grid('on'); + subplot(212); + del = nb/2; % should equal this + plot(f,gd); + title(sprintf('Group Delay in Pass-Band (Expect %d samples)',del)); + ylabel('Group Delay (samples)'); + axis([0, 0.2, del-1, del+1]); +***** demo % 4 + %-------------------------------------------------------------- + % IIR bandstop filter has delays at [1000, 3000] + %-------------------------------------------------------------- + Fs = 8000; + [b, a] = cheby1(3, 3, 2*[1000, 3000]/Fs, 'stop'); + [H,f] = freqz(b,a,[],Fs); + [gd,f] = grpdelay(b,a,[],Fs); + subplot(211); + plot(f,abs(H)); + title('[b,a] = cheby1(3, 3, 2*[1000, 3000]/Fs, "stop");'); + xlabel('Frequency (Hz)'); + ylabel('Amplitude Response'); + grid('on'); + subplot(212); + plot(f,gd); + title('[gd,f] = grpdelay(b,a,[],Fs);'); + ylabel('Group Delay (samples)'); +***** test % 00 + [gd1,w] = grpdelay([0,1]); + [gd2,w] = grpdelay([0,1],1); + assert(gd1,gd2,10*eps); +***** test % 0A + [gd,w] = grpdelay([0,1],1,4); + assert(gd,[1;1;1;1]); + assert(w,pi/4*[0:3]',10*eps); +***** test % 0B + [gd,w] = grpdelay([0,1],1,4,'whole'); + assert(gd,[1;1;1;1]); + assert(w,pi/2*[0:3]',10*eps); +***** test % 0C + [gd,f] = grpdelay([0,1],1,4,0.5); + assert(gd,[1;1;1;1]); + assert(f,1/16*[0:3]',10*eps); +***** test % 0D + [gd,w] = grpdelay([0,1],1,4,'whole',1); + assert(gd,[1;1;1;1]); + assert(w,1/4*[0:3]',10*eps); +***** test % 0E + [gd,f] = grpdelay([1 -0.9j],[],4,'whole',1); + gd0 = 0.447513812154696; gdm1 =0.473684210526316; + assert(gd,[gd0;-9;gd0;gdm1],20*eps); + assert(f,1/4*[0:3]',10*eps); +***** test % 1A: + gd= grpdelay(1,[1,.9],2*pi*[0,0.125,0.25,0.375]); + assert(gd, [-0.47368;-0.46918;-0.44751;-0.32316],1e-5); +***** test % 1B: + gd= grpdelay(1,[1,.9],[0,0.125,0.25,0.375],1); + assert(gd, [-0.47368;-0.46918;-0.44751;-0.32316],1e-5); +***** test % 2: + gd = grpdelay([1,2],[1,0.5,.9],4); + assert(gd,[-0.29167;-0.24218;0.53077;0.40658],1e-5); +***** test % 3 + b1=[1,2];a1f=[0.25,0.5,1];a1=fliplr(a1f); + % gd1=grpdelay(b1,a1,4); + gd=grpdelay(conv(b1,a1f),1,4)-2; + assert(gd, [0.095238;0.239175;0.953846;1.759360],1e-5); +***** test % 4 + warning ("off", "signal:grpdelay-singularity", "local"); + Fs = 8000; + [b, a] = cheby1(3, 3, 2*[1000, 3000]/Fs, 'stop'); + [h, w] = grpdelay(b, a, 256, 'half', Fs); + [h2, w2] = grpdelay(b, a, 512, 'whole', Fs); + assert (size(h), size(w)); + assert (length(h), 256); + assert (size(h2), size(w2)); + assert (length(h2), 512); + assert (h, h2(1:256)); + assert (w, w2(1:256)); +***** test % 5 + a = [1 0 0.9]; + b = [0.9 0 1]; + [dh, wf] = grpdelay(b, a, 512, 'whole'); + [da, wa] = grpdelay(1, a, 512, 'whole'); + [db, wb] = grpdelay(b, 1, 512, 'whole'); + assert(dh,db+da,1e-5); +***** test + DR= [1.00000 -0.00000 -3.37219 0.00000 ... + 5.45710 -0.00000 -5.24394 0.00000 ... + 3.12049 -0.00000 -1.08770 0.00000 0.17404]; + N = [-0.0139469 -0.0222376 0.0178631 0.0451737 ... + 0.0013962 -0.0259712 0.0016338 0.0165189 ... + 0.0115098 0.0095051 0.0043874]; + assert (nthargout (1:2, @grpdelay, N, DR, 1024), + nthargout (1:2, @grpdelay, N', DR', 1024)); +13 tests, 13 passed, 0 known failure, 0 skipped +[inst/upsample.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/upsample.m +***** assert(upsample([1,3,5],2),[1,0,3,0,5,0]); +***** assert(upsample([1;3;5],2),[1;0;3;0;5;0]); +***** assert(upsample([1,2;5,6;9,10],2),[1,2;0,0;5,6;0,0;9,10;0,0]); +***** assert(upsample([2,4],2,1),[0,2,0,4]); +***** assert(upsample([3,4;7,8],2,1),[0,0;3,4;0,0;7,8]); +5 tests, 5 passed, 0 known failure, 0 skipped +[inst/window.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/window.m +***** assert (window (@bartlett, 16), window ("bartlett", 16)) +***** assert (window (@hamming, 16), window ("hamming", 16)) +***** assert (window (@hanning, 16), window ("hanning", 16)) +***** assert (window (@triang, 16), window ("triang", 16)) +***** error window () +***** error window (1) +***** error window ("hanning") +7 tests, 7 passed, 0 known failure, 0 skipped +[inst/isallpass.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/isallpass.m +***** demo + # H(z) = (b1 - z^-1) * (b2 - z^-1) / ((1 - b1*z^-1) * (1 - b2*z^-1)) + b1 = 0.5 * (1 + i); + b2 = 0.7 * (cos (pi/6) + i*sin (pi/6)); + b = conv ([b1 -1], [b2 -1]); + a = conv ([1 (-1)*conj(b1)],[1 (-1)*conj(b2)]); + freqz (b, a); + f = isallpass (b, a) + ## test input validation +***** error n = isallpass () +***** error n = isallpass (1) +***** error n = isallpass (1, 1, 1) +***** error n = isallpass (1, 1, 1, 1) +***** error n = isallpass (1, 1, 1, 1, 1) +***** error n = isallpass ([1:10]', 1) +***** error n = isallpass (1, [1:10]') +***** error n = isallpass ([1:10]', [1:10]') +***** error n = isallpass (1:10, 1:10, 1:10) +***** error n = isallpass (ones (3), ones (3)) +***** test + b = [(1+i)/2 -1]; + a = [1 -(1-i)/2]; + f = isallpass (b, a); + assert (f, true) +***** test + b = [(1+i)/2 -1]; + a = [-1 (1-i)/2]; + f = isallpass (b, a); + assert (f, true) +***** test + [b, a] = butter (1, 0.5); + f = isallpass (b, a); + assert (f, false) +***** test + b1 = 0.5 * (1 + i); + b2 = 0.7 * (cos (pi/6) + i*sin (pi/6)); + b = conv ([b1 -1], [b2 -1]); + a = conv ([1 -conj(b1)],[1, -conj(b2)]); + f = isallpass (b, a); + assert (f, true) +14 tests, 14 passed, 0 known failure, 0 skipped +[inst/upsamplefill.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/upsamplefill.m +***** assert(upsamplefill([1,3,5],2),[1,2,3,2,5,2]); +***** assert(upsamplefill([1;3;5],2),[1;2;3;2;5;2]); +***** assert(upsamplefill([1,2,5],[2 -2]),[1,2,-2,2,2,-2,5,2,-2]); +***** assert(upsamplefill(eye(2),2,true),[1,0;1,0;1,0;0,1;0,1;0,1]); +***** assert(upsamplefill([1,3,5],2,true),[1,1,1,3,3,3,5,5,5]); +***** assert(upsamplefill([1;3;5],2,true),[1;1;1;3;3;3;;5;5;5]); +6 tests, 6 passed, 0 known failure, 0 skipped [inst/bohmanwin.m] >>>>> /build/reproducible-path/octave-signal-1.4.6/inst/bohmanwin.m ***** assert (bohmanwin (1), 1) @@ -5533,98 +8124,69 @@ ***** error bohmanwin (ones (1, 4)) ***** error bohmanwin (1, 2) 7 tests, 7 passed, 0 known failure, 0 skipped -[inst/statelevels.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/statelevels.m -***** error l = statelevels() -***** error l = statelevels("test") -***** error l = statelevels(1) -***** error l = statelevels([1 2 3], 'test') -***** error l = statelevels([1 2 3], 3, 'test') -***** error l = statelevels([1 2 3], 3, 'mode', 1) -***** error l = statelevels([1 2 3], 3, 'mode', [1 -1]) -***** shared X - t = linspace(0,2*pi*10,100); - X = square(t) + cos(t); +[inst/sos2zp.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/sos2zp.m ***** test - l = statelevels(X); - assert(l, [-1.9795 1.9800], 1e5) + b1t=[1 2 3]; a1t=[1 .2 .3]; + b2t=[4 5 6]; a2t=[1 .4 .5]; + sos=[b1t a1t; b2t a2t]; + z = [-1-1.41421356237310i;-1+1.41421356237310i;... + -0.625-1.05326872164704i;-0.625+1.05326872164704i]; + p = [-0.2-0.678232998312527i;-0.2+0.678232998312527i;... + -0.1-0.538516480713450i;-0.1+0.538516480713450i]; + k = 4; + [z2,p2,k2] = sos2zp(sos,1); + assert({cplxpair(z2),cplxpair(p2),k2},{z,p,k},100*eps); ***** test - [l, h] = statelevels(X); - assert(l, [-1.9795 1.9800], 1e5) - assert(sum(h), 100) - assert(length(h), 100) + sos = [1, 1, 0, 1, 1, 0.5]; + [Z, P] = sos2zp (sos); + assert (Z, roots (sos(1,1:3)), 10*eps); + assert (P, roots (sos(1,4:6)), 10*eps); ***** test - [l, h, b] = statelevels(X); - assert(l, [-1.9795 1.9800], 1e5) - assert(sum(h), 100) - assert(length(h), 100) - assert(h(1), 4) - assert(h(2), 2) - assert(h(4), 1) - assert(h(11), 0) - assert(b(1), -1.9795, 1e5) - assert(b(2), -1.9395, 1e5) + sos = [0, 1, 1, 1, 0.5, 0]; + [Z, P] = sos2zp (sos); + assert (Z, roots (sos(1,1:3)), 10*eps); + assert (P, roots (sos(1,4:6)), 10*eps); ***** test - [l, h, b] = statelevels(X, 100); - assert(l, [-1.9795 1.9800], 1e5) - assert(sum(h), 100) - assert(length(h), 100) - assert(h(1), 4) - assert(h(2), 2) - assert(h(4), 1) - assert(h(11), 0) - assert(b(1), -1.9795, 1e5) - assert(b(2), -1.9395, 1e5) + sos = [1, 1, 0, 1, 0.5, 0]; + [Z, P] = sos2zp (sos); + assert (Z, roots (sos(1,1:3)), 10*eps); + assert (P, roots (sos(1,4:6)), 10*eps); ***** test - [l, h, b] = statelevels(X, 50); - assert(l, [-1.9595 1.9600], 1e5) - assert(sum(h), 100) - assert(length(h), 50) - assert(h(1), 6) - assert(h(2), 3) - assert(h(4), 2) - assert(h(11), 1) - assert(b(1), -1.9595, 1e5) - assert(b(2), -1.8795, 1e5) + sos = [0, 1, 1, 1, 1, 0.5]; + [Z, P] = sos2zp (sos); + assert (Z, roots (sos(1,1:3)), 10*eps); + assert (P, roots (sos(1,4:6)), 10*eps); ***** test - [l, h, b] = statelevels(X, 100, 'mode'); - assert(l, [-1.9795 1.9800], 1e5) - assert(sum(h), 100) - assert(length(h), 100) - assert(h(1), 4) - assert(h(2), 2) - assert(h(4), 1) - assert(h(11), 0) - assert(b(1), -1.9795, 1e5) - assert(b(2), -1.9395, 1e5) + sos = [1, 1, 0, 0, 1, 0.5]; + [Z, P] = sos2zp (sos); + assert (Z, roots (sos(1,1:3)), 10*eps); + assert (P, roots (sos(1,4:6)), 10*eps); ***** test - [l, h, b] = statelevels(X, 100, 'mean'); - assert(l, [-1.0090 0.9532], 1e5) - assert(sum(h), 100) - assert(length(h), 100) - assert(h(1), 4) - assert(h(2), 2) - assert(h(4), 1) - assert(h(11), 0) - assert(b(1), -1.9795, 1e5) - assert(b(2), -1.9395, 1e5) + sos = [0, 1, 1, 0, 1, 0.5]; + [Z, P] = sos2zp (sos); + assert (Z, roots (sos(1,1:3)), 10*eps); + assert (P, roots (sos(1,4:6)), 10*eps); +7 tests, 7 passed, 0 known failure, 0 skipped +[inst/cceps.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cceps.m ***** test - [l, h, b] = statelevels(X, 100, 'mode', [-1.8 1.0]); - assert(l, [-1.7860 0.0060], 1e5) - assert(sum(h), 64) - assert(length(h), 100) - assert(h(1), 1) - assert(h(2), 1) - assert(h(3), 0) - assert(b(1), -1.7860, 1e5) - assert(b(2), -1.7580, 1e5) -***** demo - # Generate test signal - t = linspace(0,2*pi*10,100); - X = square(t) + cos(t); - # plot the waveform and provide the levels - statelevels(X) -15 tests, 15 passed, 0 known failure, 0 skipped + x = randn (256, 1); + c = cceps (x); + assert (size (c), size (x)) +***** error cceps () +***** error cceps (1, 2, 3) +***** error cceps (ones (4)) +***** error cceps (0) +***** error cceps (zeros (10, 1)) +6 tests, 6 passed, 0 known failure, 0 skipped +[inst/dst.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/dst.m +***** test + x = log(linspace(0.1,1,32)); + y = dst(x); + assert(y(3), sum(x.*sin(3*pi*[1:32]/33)), 100*eps) +1 test, 1 passed, 0 known failure, 0 skipped [inst/marcumq.m] >>>>> /build/reproducible-path/octave-signal-1.4.6/inst/marcumq.m ***** error marcumq (1) @@ -5869,118 +8431,183 @@ q = marcumq (a, b, M); assert (q, Q, 1e-6); 14 tests, 14 passed, 0 known failure, 0 skipped -[inst/xcorr2.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/xcorr2.m -***** test # basic usage - a = magic (5); - b = [6 13 22; 10 18 23; 8 15 23]; - c = [391 807 519 391 473 289 120 - 920 1318 1045 909 1133 702 278 - 995 1476 1338 1534 2040 1161 426 - 828 1045 1501 2047 2108 1101 340 - 571 1219 2074 2155 1896 821 234 - 473 1006 1643 1457 946 347 108 - 242 539 850 477 374 129 54]; - assert (xcorr2 (a, b), c); -***** shared a, b, c, row_shift, col_shift - row_shift = 18; - col_shift = 20; - a = randi (255, 30, 30); - b = a(row_shift-10:row_shift, col_shift-7:col_shift); - c = xcorr2 (a, b, "coeff"); -***** assert (nthargout ([1 2], @find, c == max (c(:))), {row_shift, col_shift}); # should return exact coordinates - m = rand (size (b)) > 0.5; - b(m) = b(m) * 0.95; - b(!m) = b(!m) * 1.05; - c = xcorr2 (a, b, "coeff"); -***** assert (nthargout ([1 2], @find, c == max (c(:))), {row_shift, col_shift}); # even with some small noise, should return exact coordinates -***** test # coeff of autocorrelation must be same as negative of correlation by additive inverse - a = 10 * randn (100, 100); - auto = xcorr2 (a, "coeff"); - add_in = xcorr2 (a, -a, "coeff"); - assert ([min(auto(:)), max(auto(:))], -[max(add_in(:)), min(add_in(:))]); -4 tests, 4 passed, 0 known failure, 0 skipped -[inst/specgram.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/specgram.m -***** shared S,f,t,x - Fs=1000; - x = chirp([0:1/Fs:2],0,2,500); # freq. sweep from 0-500 over 2 sec. - step=ceil(20*Fs/1000); # one spectral slice every 20 ms - window=ceil(100*Fs/1000); # 100 ms data window - [S, f, t] = specgram(x); - ## test of returned shape -***** assert (rows(S), 128) -***** assert (columns(f), rows(S)) -***** assert (columns(t), columns(S)) -***** test [S, f, t] = specgram(x'); -***** assert (rows(S), 128) -***** assert (columns(f), rows(S)); -***** assert (columns(t), columns(S)); -***** error (isempty(specgram([]))); -***** error (isempty(specgram([1, 2 ; 3, 4]))); -***** error (specgram) +[inst/ifht.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/ifht.m +***** assert(ifht(fht(1:4)),[1 2 3 4]) +1 test, 1 passed, 0 known failure, 0 skipped +[inst/convmtx.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/convmtx.m +***** assert(convmtx([3,4,5],3),[3,4,5,0,0;0,3,4,5,0;0,0,3,4,5]) +***** assert(convmtx([3;4;5],3),[3,0,0;4,3,0;5,4,3;0,5,4;0,0,5]) +2 tests, 2 passed, 0 known failure, 0 skipped +[inst/chebwin.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/chebwin.m +***** assert (chebwin (1), 1) +***** assert (chebwin (2), ones (2, 1)) +***** error chebwin () +***** error chebwin (0.5) +***** error chebwin (-1) +***** error chebwin (ones (1, 4)) +***** error chebwin (1, 2, 3) +7 tests, 7 passed, 0 known failure, 0 skipped +[inst/besself.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/besself.m +***** error [a, b] = besself () +***** error [a, b] = besself (1) +***** error [a, b] = besself (1, 2, 3, 4, 5) +***** error [a, b] = besself (.5, .2) +***** error [a, b] = besself (3, .2, "invalid") +5 tests, 5 passed, 0 known failure, 0 skipped +[inst/nuttallwin.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/nuttallwin.m +***** assert (nuttallwin (1), 1) +***** assert (nuttallwin (2), zeros (2, 1), eps) +***** assert (nuttallwin (15), flipud (nuttallwin (15)), 10*eps); +***** assert (nuttallwin (16), flipud (nuttallwin (16)), 10*eps); +***** assert (nuttallwin (15), nuttallwin (15, "symmetric")); +***** assert (nuttallwin (16)(1:15), nuttallwin (15, "periodic")); +***** error nuttallwin () +***** error nuttallwin (0.5) +***** error nuttallwin (-1) +***** error nuttallwin (ones (1, 4)) +***** error nuttallwin (1, 2) +***** error nuttallwin (1, "invalid") +12 tests, 12 passed, 0 known failure, 0 skipped +[inst/cheb2ap.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cheb2ap.m +***** error cheb2ap (-1, 3) +***** error cheb2ap (3, -1) ***** demo - Fs=1000; - x = chirp([0:1/Fs:2],0,2,500); # freq. sweep from 0-500 over 2 sec. - step=ceil(20*Fs/1000); # one spectral slice every 20 ms - window=ceil(100*Fs/1000); # 100 ms data window - - ## test of automatic plot - [S, f, t] = specgram(x); - specgram(x, 2^nextpow2(window), Fs, window, window-step); -***** #demo # FIXME: Enable once we have an audio file to demo - ## Speech spectrogram - [x, Fs] = auload(file_in_loadpath("sample.wav")); # audio file - step = fix(5*Fs/1000); # one spectral slice every 5 ms - window = fix(40*Fs/1000); # 40 ms data window - fftn = 2^nextpow2(window); # next highest power of 2 - [S, f, t] = specgram(x, fftn, Fs, window, window-step); - S = abs(S(2:fftn*4000/Fs,:)); # magnitude in range 0>>>> /build/reproducible-path/octave-signal-1.4.6/inst/xcov.m -***** error xcov () + w=0:0.01:1000; + [z, p, k] = cheb2ap (3, 3); + [b, a] = zp2tf (z, p, k); + Gs = freqs (b, a, w); + semilogx (w, abs (Gs)); + xlabel('Frequency in rad/sec') + ylabel('Magnitude of G(s)'); + title('Type 2 Chebyshev Low-Pass Filter, k=3, 3 dB ripple in stop band') + grid; +2 tests, 2 passed, 0 known failure, 0 skipped +[inst/hann.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/hann.m +***** assert (hann (1), 1); +***** assert (hann (2), zeros (2, 1)); +***** assert (hann (16), flipud (hann (16)), 10*eps); +***** assert (hann (15), flipud (hann (15)), 10*eps); ***** test - x = 1:5; - [c, l] = xcov(x); - assert(c, [-4.0 -4.0 -1.0 4.0 10.0 4.0 -1.0 -4.0 -4.0], 2*eps) - assert(l, [-4 -3 -2 -1 0 1 2 3 4]) + N = 15; + A = hann (N); + assert (A(ceil (N/2)), 1); +***** assert (hann (15), hann (15, "symmetric")); +***** assert (hann (16)(1:15), hann (15, "periodic")); ***** test - x = 1:5; - y = 1:5; - [c, l] = xcov(x,y); - assert(c, [-4.0 -4.0 -1.0 4.0 10.0 4.0 -1.0 -4.0 -4.0], 2*eps) - assert(l, [-4 -3 -2 -1 0 1 2 3 4]) - - y = 1; - [c, l] = xcov(x,y); - assert(c, [4.0 10.0 4.0], 2*eps) - assert(l, [-1 0 1]) + N = 16; + A = hann (N, "periodic"); + assert (A (N/2 + 1), 1); +***** error hann () +***** error hann (0.5) +***** error hann (-1) +***** error hann (1, "invalid") +12 tests, 12 passed, 0 known failure, 0 skipped +[inst/pei_tseng_notch.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/pei_tseng_notch.m ***** test - x = 1:5; - y = 1:5; - # maxlag - [c, l] = xcov(x,y, 2); - assert(c, [-1.0 4.0 10.0 4.0 -1.0], 2*eps) - assert(l, [-2 -1 0 1 2]) + ## 2Hz bandwidth + sf = 800; sf2 = sf/2; + data=[sinetone(49,sf,10,1),sinetone(50,sf,10,1),sinetone(51,sf,10,1)]; + [b, a] = pei_tseng_notch ( 50 / sf2, 2 / sf2 ); + filtered = filter ( b, a, data ); + damp_db = 20 * log10 ( max ( filtered ( end - 1000 : end, : ) ) ); + assert ( damp_db, [ -3 -251.9 -3 ], -0.1 ) ***** test - x = 1:5; - y = 1:5; - # scale - [c, l] = xcov(x,y, 'none'); - assert(c, [-4.0 -4.0 -1.0 4.0 10.0 4.0 -1.0 -4.0 -4.0], 2*eps) - assert(l, [-4 -3 -2 -1 0 1 2 3 4]) + ## 1Hz bandwidth + sf = 800; sf2 = sf/2; + data=[sinetone(49.5,sf,10,1),sinetone(50,sf,10,1),sinetone(50.5,sf,10,1)]; + [b, a] = pei_tseng_notch ( 50 / sf2, 1 / sf2 ); + filtered = filter ( b, a, data ); + damp_db = 20 * log10 ( max ( filtered ( end - 1000 : end, : ) ) ); + assert ( damp_db, [ -3 -240.4 -3 ], -0.1 ) +***** demo + sf = 800; sf2 = sf/2; + data=[[1;zeros(sf-1,1)],sinetone(49,sf,1,1),sinetone(50,sf,1,1),sinetone(51,sf,1,1)]; + [b,a]=pei_tseng_notch ( 50 / sf2, 2/sf2 ); + filtered = filter(b,a,data); - [c, l] = xcov(x,y, 'biased'); - assert(c, [-0.8 -0.8 -0.2 0.8 2.0 0.8 -0.2 -0.8 -0.8], 2*eps) - assert(l, [-4 -3 -2 -1 0 1 2 3 4]) + clf + subplot ( columns ( filtered ), 1, 1) + plot(filtered(:,1),";Impulse response;") + subplot ( columns ( filtered ), 1, 2 ) + plot(filtered(:,2),";49Hz response;") + subplot ( columns ( filtered ), 1, 3 ) + plot(filtered(:,3),";50Hz response;") + subplot ( columns ( filtered ), 1, 4 ) + plot(filtered(:,4),";51Hz response;") +2 tests, 2 passed, 0 known failure, 0 skipped +[inst/decimate.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/decimate.m +***** demo + t=0:0.01:2; x=chirp(t,2,.5,10,'quadratic')+sin(2*pi*t*0.4); + y = decimate(x,4); # factor of 4 decimation + stem(t(1:121)*1000,x(1:121),"-g;Original;"); hold on; # plot original + stem(t(1:4:121)*1000,y(1:31),"-r;Decimated;"); hold off; # decimated + %------------------------------------------------------------------ + % The signal to decimate starts away from zero, is slowly varying + % at the start and quickly varying at the end, decimate and plot. + % Since it starts away from zero, you will see the boundary + % effects of the antialiasing filter clearly. You will also see + % how it follows the curve nicely in the slowly varying early + % part of the signal, but averages the curve in the quickly + % varying late part of the signal. +***** error decimate () +***** error decimate (1) +***** error decimate (1, 2, 3, 4, 5) +***** error decimate (1, -1) +***** test + s = decimate(1:100, 2, 'fir'); + assert(s, 1:2:100, 1e3*eps); 5 tests, 5 passed, 0 known failure, 0 skipped +[inst/vco.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/vco.m +***** error vco +***** error vco([1 2]) +2 tests, 2 passed, 0 known failure, 0 skipped +[inst/rms.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/rms.m +***** assert (rms (0), 0) +***** assert (rms (1), 1) +***** assert (rms ([1 2 -1]), sqrt (2)) +***** assert (rms ([1 2 -1]'), sqrt (2)) +***** assert (rms ([1 2], 3), [1 2]) +***** error rms () +***** error rms (1, 2, 3) +***** error rms (1, 1.5) +***** error rms (1, -1) +9 tests, 9 passed, 0 known failure, 0 skipped +[inst/expwin.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/expwin.m +***** test % even M; odd alpha: + w=[0.0321 0.09385 0.184 0.3011 0.4386 0.5858 0.7289 0.8532 0.945 0.9938]; + assert (expwin (20, 5), [w flip(w)]', 51e-6); +***** test % odd M; even alpha: + w=[0.06202 0.1437 0.2443 0.3611 0.488 0.6172 0.7396 0.8464 0.9294 0.982]; + assert (expwin (21, 4), [w 1 flip(w)]', 51e-6); +***** test % even M; odd alpha; canonical: + w=[0.006738 0.06285 0.145 0.2583 0.3973 0.5507 0.7035 0.8384 0.9392 0.9931]; + assert (expwin (20, 5, 'canonical'), [w flip(w)]', 51e-6); +***** test % odd M; even alpha; canonical: + w=[0.01832 0.1047 0.2019 0.3187 0.4493 0.5851 0.7161 0.8317 0.9224 0.9801]; + assert (expwin (21, 4, 'canonical'), [w 1 flip(w)]', 51e-6); +***** error expwin +***** error expwin (21.5,1) +***** error expwin (21i,1) +***** error expwin (21:22,1) +***** error expwin ({21},1) +***** error expwin (21, 4i) +***** error expwin (21, 2:3) +***** error expwin (21, {4}) +***** error expwin (21, 4, 1) +***** error expwin (21, 4, 'canonical', 1) +14 tests, 14 passed, 0 known failure, 0 skipped [inst/cheb1ord.m] >>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cheb1ord.m ***** demo @@ -6763,187 +9390,191 @@ ***** error cheb1ord ([.1 .2], [.5 .6], 3, 4) ***** error cheb1ord ([.1 .5], [.2 .6], 3, 4) 19 tests, 19 passed, 0 known failure, 0 skipped -[inst/gauspuls.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/gauspuls.m -***** demo - fs = 11025; # arbitrary sample rate - f0 = 100; # pulse train sample rate - x = pulstran (0:1/fs:4/f0, 0:1/f0:4/f0, "gauspuls"); - plot ([0:length(x)-1]*1000/fs, x); - xlabel ("Time (ms)"); - ylabel ("Amplitude"); - title ("Gaussian pulse train at 10 ms intervals"); -***** assert (gauspuls ([]), []) -***** assert (gauspuls (zeros (10, 1)), ones (10, 1)) -***** assert (gauspuls (-1:1), [0, 1, 0]) -***** assert (gauspuls (0:1/100:0.3, 0.1), gauspuls ([0:1/100:0.3]', 0.1)') -***** error gauspuls () -***** error gauspuls (1, 2, 3, 4) -***** error gauspuls (1, -1) -***** error gauspuls (1, 2j) -***** error gauspuls (1, 1e3, 0) -9 tests, 9 passed, 0 known failure, 0 skipped -[inst/kaiser.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/kaiser.m -***** demo - % use demo("kaiserord"); -***** assert (kaiser (1), 1) -***** error kaiser () -***** error kaiser (0.5) -***** error kaiser (-1) -***** error kaiser (ones (1, 4)) -***** error kaiser (1, 2, 3) -6 tests, 6 passed, 0 known failure, 0 skipped -[inst/findpeaks.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/findpeaks.m -***** demo - t = 2*pi*linspace(0,1,1024)'; - y = sin(3.14*t) + 0.5*cos(6.09*t) + 0.1*sin(10.11*t+1/6) + 0.1*sin(15.3*t+1/3); - - data1 = abs(y); # Positive values - [pks idx] = findpeaks(data1); - - data2 = y; # Double-sided - [pks2 idx2] = findpeaks(data2,"DoubleSided"); - [pks3 idx3] = findpeaks(data2,"DoubleSided","MinPeakHeight",0.5); - - subplot(1,2,1) - plot(t,data1,t(idx),data1(idx),'xm') - axis tight - subplot(1,2,2) - plot(t,data2,t(idx2),data2(idx2),"xm;>2*std;",t(idx3),data2(idx3),"or;>0.1;") - axis tight - legend("Location","NorthOutside","Orientation","horizontal") - - #---------------------------------------------------------------------------- - # Finding the peaks of smooth data is not a big deal! -***** demo - t = 2*pi*linspace(0,1,1024)'; - y = sin(3.14*t) + 0.5*cos(6.09*t) + 0.1*sin(10.11*t+1/6) + 0.1*sin(15.3*t+1/3); - - data = abs(y + 0.1*randn(length(y),1)); # Positive values + noise - [pks idx] = findpeaks(data,"MinPeakHeight",1); - - dt = t(2)-t(1); - [pks2 idx2] = findpeaks(data,"MinPeakHeight",1,... - "MinPeakDistance",round(0.5/dt)); +[inst/gausswin.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/gausswin.m +***** assert (gausswin (1), 1) +***** assert (gausswin (2), [exp(-3.125); exp(-3.125)]) +***** assert (gausswin (3), [exp(-3.125); 1; exp(-3.125)]) +***** error gausswin () +***** error gausswin (0.5) +***** error gausswin (-1) +***** error gausswin (ones (1, 4)) +***** error gausswin (1, 2, 3) +8 tests, 8 passed, 0 known failure, 0 skipped +[inst/fwhm.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/fwhm.m +***** test + x=-pi:0.001:pi; y=cos(x); + assert( abs(fwhm(x, y) - 2*pi/3) < 0.01 ); - subplot(1,2,1) - plot(t,data,t(idx),data(idx),'or') - subplot(1,2,2) - plot(t,data,t(idx2),data(idx2),'or') +***** test + assert( fwhm(-10:10) == 0 && fwhm(ones(1,50)) == 0 ); - #---------------------------------------------------------------------------- - # Noisy data may need tuning of the parameters. In the 2nd example, - # MinPeakDistance is used as a smoother of the peaks. -***** assert (isempty (findpeaks ([1, 1, 1]))) -***** assert (isempty (findpeaks ([1; 1; 1]))) ***** test - ## Test input vector is an oversampled sinusoid with clipped peaks - x = min (3, cos (2*pi*[0:8000] ./ 600) + 2.01); - assert (! isempty (findpeaks (x))) + x=-20:1:20; + y1=-4+zeros(size(x)); y1(4:10)=8; + y2=-2+zeros(size(x)); y2(4:11)=2; + y3= 2+zeros(size(x)); y3(5:13)=10; + assert( max(abs(fwhm(x, [y1;y2;y3]') - [20.0/3,7.5,9.25])) < 0.01 ); + ***** test - x = [1 10 2 2 1 9 1]; - [pks, loc] = findpeaks(x); - assert (loc, [2 6]) - assert (pks, [10 9]) -***** error findpeaks () -***** error findpeaks (1) -***** error findpeaks ([1, 2]) -***** test assert (findpeaks ([34 134 353 64 134 14 56 67 234 143 64 575 8657]), - [353 134 234]) -8 tests, 8 passed, 0 known failure, 0 skipped -[inst/ellip.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/ellip.m -***** demo - [n, Ws] = ellipord ([.1 .2], [.01 .4], 1, 90); - [b, a] = ellip (5, 1, 90, [.1 .2]); - [h, w] = freqz (b, a); + x=1:3; y=[-1,3,-1]; assert(abs(fwhm(x,y)-0.75)<0.001 && abs(fwhm(x,y,'zero')-0.75)<0.001 && abs(fwhm(x,y,'min')-1.0)<0.001); - plot (w./pi, 20*log10 (abs (h)), ";;") - xlabel ("Frequency"); - ylabel ("abs(H[w])[dB]"); - axis ([0, 1, -100, 0]); +***** test + x=1:3; y=[-1,3,-1]; assert(abs(fwhm(x,y, 'rlevel', 0.1)-1.35)<0.001 && abs(fwhm(x,y,'zero', 'rlevel', 0.1)-1.35)<0.001 && abs(fwhm(x,y,'min', 'rlevel', 0.1)-1.40)<0.001); - hold ("on"); - x=ones (1, length (h)); - plot (w./pi, x.*-1, ";-1 dB;") - plot (w./pi, x.*-90, ";-90 dB;") - hold ("off"); -***** error [a, b] = ellip () -***** error [a, b] = ellip (1) -***** error [a, b] = ellip (1, 2) -***** error [a, b] = ellip (1, 2, 3) -***** error [a, b] = ellip (1, 2, 3, 4, 5, 6, 7) -***** error [a, b] = ellip (.5, 2, 40, .2) -***** error [a, b] = ellip (3, 2, 40, .2, "invalid") ***** test - ellip (6, 3, 50, .6); - assert (isrow (ans)); + x=1:3; y=[-1,3,-1]; assert(abs(fwhm(x,y, 'alevel', 2.5)-0.25)<0.001 && abs(fwhm(x,y,'alevel', -0.5)-1.75)<0.001); + ***** test - A = ellip (6, 3, 50, .6); - assert (isrow (A)); + x=-10:10; assert( fwhm(x.*x) == 0 ); + ***** test - [A, B] = ellip (6, 3, 50, .6); - assert (isrow (A)); - assert (isrow (B)); + x=-5:5; y=18-x.*x; assert( abs(fwhm(y)-6.0) < 0.001 && abs(fwhm(x,y,'zero')-6.0) < 0.001 && abs(fwhm(x,y,'min')-7.0 ) < 0.001); +8 tests, 8 passed, 0 known failure, 0 skipped +[inst/blackmanharris.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/blackmanharris.m +***** assert (blackmanharris (1), 1); +***** assert (blackmanharris (2), 0.00006 * ones (2, 1), eps); +***** assert (blackmanharris (15), flipud (blackmanharris (15)), 10*eps); +***** assert (blackmanharris (16), flipud (blackmanharris (16)), 10*eps); +***** assert (blackmanharris (15), blackmanharris (15, "symmetric")); +***** assert (blackmanharris (16)(1:15), blackmanharris (15, "periodic")); +***** error blackmanharris () +***** error blackmanharris (0.5) +***** error blackmanharris (-1) +***** error blackmanharris (ones (1, 4)) +***** error blackmanharris (1, 2) +***** error blackmanharris (1, "invalid") +12 tests, 12 passed, 0 known failure, 0 skipped +[inst/parzenwin.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/parzenwin.m +***** assert (parzenwin (1), 1) +***** assert (parzenwin (2), 0.25 * ones (2, 1)) +***** error parzenwin () +***** error parzenwin (0.5) +***** error parzenwin (-1) +***** error parzenwin (ones (1, 4)) +***** error parzenwin (1, 2) +7 tests, 7 passed, 0 known failure, 0 skipped +[inst/cconv.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cconv.m +***** shared x + x = [1, 2, 3, 4, 5]; +***** assert (cconv (x, 1), [1, 2, 3, 4, 5], 2*eps) +***** assert (cconv (x', 1), [1; 2; 3; 4; 5], 2*eps) +***** assert (real (cconv (x, [1 1])), [1, 3, 5, 7, 9, 5], 2*eps) +***** assert (cconv (x, [1 1], 3), [8, 12, 10]) +***** assert (cconv ([2 1 2 1], [1 2 3 4]), [2 5 10 16 12 11 4], 1e-14) +***** assert (cconv ([2 1 2 1], [1 2 3 4], 4), [14 16 14 16]) +***** assert (cconv ([2 1 2 1], [1 2 3 4], 3), [22 17 21]) +***** assert (cconv ([2 1 2 1], [1 2 3 4], 2), [28 32]) +***** assert (cconv ([2 1 2 1], [1 2 3 4], 1), 60) +***** assert (cconv (x*j, 1), [1j, 2j, 3j, 4j, 5j]) +***** assert (cconv (x'*j, 1), [1j; 2j; 3j; 4j; 5j]) +***** error cconv () +***** error cconv (1) +***** error cconv (1, 1, [1 1]) +***** error cconv (ones (2, 2), 1) +***** error cconv (1, ones (2, 2)) +***** error cconv (1, 1, 3.5) +17 tests, 17 passed, 0 known failure, 0 skipped +[inst/peak2peak.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/peak2peak.m ***** test - [z, p, g] = ellip (6, 3, 50, .6); - assert (iscolumn (z)); - assert (iscolumn (p)); - assert (isscalar (g)); + X = [23 42 85; 62 46 65; 18 40 28]; + Y = peak2peak (X); + assert (Y, [44 6 57]); + Y = peak2peak (X, 1); + assert (Y, [44 6 57]); + Y = peak2peak (X, 2); + assert (Y, [62; 19; 22]); ***** test - [a, b, c, d] = ellip (6, 3, 50, .6); - assert (ismatrix (a)); - assert (iscolumn (b)); - assert (isrow (c)); - assert (isscalar (d)); -12 tests, 12 passed, 0 known failure, 0 skipped -[inst/filtord.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/filtord.m -***** demo - b = [1 0]; - a = [1 1]; - n = filtord (b, a) -***** demo - b = [1 0 0 0 0 0 0 1]; - a = [1 0 0 0 0 0 0 .5]; - [sos, g] = tf2sos (b, a); - n = filtord (sos) - ## test input validation -***** error n = filtord () -***** error n = filtord (1, 1, 1) -***** error n = filtord ([1:10]', 1) -***** error n = filtord (1, [1:10]') -***** error n = filtord ([1:10]', [1:10]') -***** error n = filtord (1:10, 1:10, 1:10) -***** error n = filtord (ones(3), ones(3)) + X = [71 62 33]; + X(:, :, 2) = [88 36 21]; + X(:, :, 3) = [83 46 85]; + Y = peak2peak (X); + T = [38]; + T(:, :, 2) = [67]; + T(:, :, 3) = [39]; + assert (Y, T); ***** test - b = [1 0 0]; - a = [1 0 0 0]; - n = filtord (b, a); - assert (n, 3, 1e-6) + X = [71 72 22; 16 22 50; 29 44 14]; + X(:, :, 2) = [10 15 62; 1 94 30; 72 43 53]; + X(:, :, 3) = [57 98 32; 84 95 51; 25 24 0]; + Y = peak2peak (X); + T = [55 50 36]; + T(:, :, 2) = [71 79 32]; + T(:, :, 3) = [59 74 51]; + assert (Y, T); + Y = peak2peak (X, 2); + T = [50; 34; 30]; + T(:, :, 2) = [52; 93; 29]; + T(:, :, 3) = [66; 44; 25]; + assert (Y, T); + Y = peak2peak (X, 3); + T = [61 83 40; 83 73 21; 47 20 53]; + assert (Y, T); ***** test - [b, a] = butter (5, .5); - n = filtord (b, a); - assert (n, 5, 1e-6) + X = [60 61; 77 77]; + X(:, :, 2) = [24 24; 22 74]; + temp = [81 87; 88 62]; + temp(:, :, 2) = [20 83; 81 18]; + X(:, :, :, 2) = temp; + Y = peak2peak (X); + T = [17 16]; + T(:, :, 2) = [2 50]; + T2 = [7 25]; + T2(:, :, 2) = [61 65]; + T(:, :, :, 2) = T2; + assert (Y, T); +***** error peak2peak () +***** error peak2peak (1, 2, 3) +***** error peak2peak (1, 1.5) +***** error peak2peak (1, 0) +8 tests, 8 passed, 0 known failure, 0 skipped +[inst/filtfilt.m] +>>>>> /build/reproducible-path/octave-signal-1.4.6/inst/filtfilt.m +***** error filtfilt (); +***** error filtfilt (1, 2, 3, 4); +***** error filtfilt ([0.28, 0.71, 0.28], 1, rand ()) +***** error filtfilt ([0.28, 0.71, 0.28], 1, rand (6, 1)) ***** test - [b, a] = butter (6, .5); - n = filtord (b, a); - assert (n, 6, 1e-6) + randn('state',0); + r = randn(1,200); + [b,a] = butter(10, [.2, .25]); + yfb = filtfilt(b, a, r); + assert (size(r), size(yfb)); + assert (mean(abs(yfb)) < 1e3); + assert (mean(abs(yfb)) < mean(abs(r))); + ybf = fliplr(filtfilt(b, a, fliplr(r))); + assert (mean(abs(ybf)) < 1e3); + assert (mean(abs(ybf)) < mean(abs(r))); ***** test - b = [1 0 0 0 0 0 1]; - a = [1 0 0 0 0 0 .5]; - [sos, g] = tf2sos (b, a); - n = filtord (sos); - assert (n, 6, 1e-6) + randn('state',0); + r = randn(1,1000); + s = 10 * sin(pi * 4e-2 * (1:length(r))); + [b,a] = cheby1(2, .5, [4e-4 8e-2]); + y = filtfilt(b, a, r+s); + assert (size(r), size(y)); + assert (mean(abs(y)) < 1e3); + assert (corr(s(250:750)(:), y(250:750)(:)) > .95) + [b,a] = butter(2, [4e-4 8e-2]); + yb = filtfilt(b, a, r+s); + assert (mean(abs(yb)) < 1e3); + assert (corr(y(:), yb(:)) > .99) ***** test - b = [1 0 0 0 0 0 0 1]; - a = [1 0 0 0 0 0 0 .5]; - [sos, g] = tf2sos (b, a); - n = filtord (sos); - assert (n, 7, 1e-6) -12 tests, 12 passed, 0 known failure, 0 skipped + randn('state',0); + r = randn(1,1000); + s = 10 * sin(pi * 4e-2 * (1:length(r))); + [b,a] = butter(2, [4e-4 8e-2]); + y = filtfilt(b, a, [r.' s.']); + yr = filtfilt(b, a, r); + ys = filtfilt(b, a, s); + assert (y, [yr.' ys.']); + y2 = filtfilt(b.', a.', [r.' s.']); + assert (y, y2); +7 tests, 7 passed, 0 known failure, 0 skipped [inst/cheb2ord.m] >>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cheb2ord.m ***** demo @@ -7726,945 +10357,6 @@ ***** error cheb2ord ([.1 .2], [.5 .6], 3, 4) ***** error cheb2ord ([.1 .5], [.2 .6], 3, 4) 19 tests, 19 passed, 0 known failure, 0 skipped -[inst/decimate.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/decimate.m -***** demo - t=0:0.01:2; x=chirp(t,2,.5,10,'quadratic')+sin(2*pi*t*0.4); - y = decimate(x,4); # factor of 4 decimation - stem(t(1:121)*1000,x(1:121),"-g;Original;"); hold on; # plot original - stem(t(1:4:121)*1000,y(1:31),"-r;Decimated;"); hold off; # decimated - %------------------------------------------------------------------ - % The signal to decimate starts away from zero, is slowly varying - % at the start and quickly varying at the end, decimate and plot. - % Since it starts away from zero, you will see the boundary - % effects of the antialiasing filter clearly. You will also see - % how it follows the curve nicely in the slowly varying early - % part of the signal, but averages the curve in the quickly - % varying late part of the signal. -***** error decimate () -***** error decimate (1) -***** error decimate (1, 2, 3, 4, 5) -***** error decimate (1, -1) -***** test - s = decimate(1:100, 2, 'fir'); - assert(s, 1:2:100, 1e3*eps); -5 tests, 5 passed, 0 known failure, 0 skipped -[inst/isstable.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/isstable.m -***** test - b = [1 2 3 4 5 5 1 2]; - a = []; - assert (isstable (b,a), true) -***** test - b = [1 2 3 4 5 5 1 2]; - a = [4 5 6 7 9 10 4 6]; - assert (isstable (b,a), false) -***** test - b = [1 2 3 4 5 5 1 2]; - a = [4 5 6 7 9 10 4 6]; - a = polystab(a); - assert (isstable (b,a), true) -***** test - [z,p,g] = butter(6,0.7,'high'); - sos = zp2sos(z,p,g); - assert (isstable(sos) , true) -4 tests, 4 passed, 0 known failure, 0 skipped -[inst/tukeywin.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/tukeywin.m -***** demo - m = 100; - r = 1/3; - w = tukeywin (m, r); - title(sprintf("%d-point Tukey window, R = %d/%d", m, [p, q] = rat(r), q)); - plot(w); -***** assert (tukeywin (1), 1) -***** assert (tukeywin (2), zeros (2, 1)) -***** assert (tukeywin (3), [0; 1; 0]) -***** assert (tukeywin (16, 0), rectwin (16)) -***** assert (tukeywin (16, 1), hanning (16)) -***** error tukeywin () -***** error tukeywin (0.5) -***** error tukeywin (-1) -***** error tukeywin (ones (1, 4)) -***** error tukeywin (1, 2, 3) -10 tests, 10 passed, 0 known failure, 0 skipped -[inst/fwht.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/fwht.m -***** assert (isempty (fwht ([]))); -***** assert (fwht (zeros (16)), zeros (16)); -***** assert (fwht (ones (16, 1)), [1; (zeros (15, 1))]); -***** assert (fwht (zeros (17, 1)), zeros (32, 1)); -***** assert (fwht ([1 -1 1 -1 1 -1 1 -1]), [0 0 0 0 0 0 0 1]); -***** test - x = randi (16, 16); - assert (ifwht (fwht (x)), x); -***** test - x = randi (16, 16); - assert (ifwht (fwht (x, [], "sequency"), [], "sequency"), x); -***** test - x = randi (16, 16); - assert (ifwht (fwht (x, [], "hadamard"), [], "hadamard"), x); -***** test - x = randi (16, 16); - assert (ifwht (fwht (x, [], "dyadic"), [], "dyadic"), x); -***** error fwht (); -***** error fwht (1, 2, 3, 4); -***** error fwht (0, 0); -***** error fwht (0, 5); -***** error fwht (0, [], "invalid"); -14 tests, 14 passed, 0 known failure, 0 skipped -[inst/sos2ss.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/sos2ss.m -***** test - sos = [1, 1, 0, 1, 0.5, 0]; - g = 1; - [a, b, c, d] = sos2ss (sos, g); - assert ({a, b, c, d}, {-0.5, 0.5, 1, 1}); -1 test, 1 passed, 0 known failure, 0 skipped -[inst/ifwht.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/ifwht.m -***** assert (isempty (ifwht ([]))); -***** assert (ifwht (zeros (16)), zeros (16)); -***** assert (ifwht ([1; (zeros (15, 1))]), ones (16, 1)); -***** assert (ifwht (zeros (17, 1)), zeros (32, 1)); -***** assert (ifwht ([0 0 0 0 0 0 0 1]), [1 -1 1 -1 1 -1 1 -1]); -***** error ifwht (); -***** error ifwht (1, 2, 3, 4); -***** error ifwht (0, 0); -***** error ifwht (0, 5); -***** error ifwht (0, [], "invalid"); -10 tests, 10 passed, 0 known failure, 0 skipped -[inst/unshiftdata.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/unshiftdata.m -***** test - x = 1:5; - [y, perm, shifts] = shiftdata (x); - x2 = unshiftdata (y, perm, shifts); - assert (x, x2); -***** test - X = fix (rand (3, 3) * 100); - [Y, perm, shifts] = shiftdata (X, 2); - X2 = unshiftdata (Y, perm, shifts); - assert (X, X2); -***** test - X = fix (rand (4, 4, 4, 4) * 100); - [Y, perm, shifts] = shiftdata (X, 3); - X2 = unshiftdata (Y, perm, shifts); - assert (X, X2); -***** test - X = fix (rand (1, 1, 3, 4) * 100); - [Y, perm, shifts] = shiftdata (X); - X2 = unshiftdata (Y, perm, shifts); - assert (X, X2); -***** error unshiftdata () -***** error unshiftdata (1, 2) -***** error unshiftdata (1, 2, 3, 4) -***** error unshiftdata (1, 2.5) -***** error unshiftdata (1, [], 2.5) -***** error unshiftdata (1, [], []) -10 tests, 10 passed, 0 known failure, 0 skipped -[inst/ellipord.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/ellipord.m -***** demo - fs = 44100; - Npts = fs; - fpass = 4000; - fstop = 13713; - Rpass = 3; - Rstop = 40; - Wpass = 2/fs * fpass; - Wstop = 2/fs * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) - [b, a] = ellip (n, Rpass, Rstop, Wn); - f = 0:fs/2; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))); - outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; - outline_lp_pass_y = [-Rpass, -Rpass , -80]; - outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; - outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; - hold on - plot (outline_lp_pass_x, outline_lp_pass_y, "m", outline_lp_stop_x, outline_lp_stop_y, "m"); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("2nd order digital elliptical low-pass (without margin)"); -***** demo - fs = 44100; - Npts = fs; - fpass = 4000; - fstop = 13712; - Rpass = 3; - Rstop = 40; - Wpass = 2/fs * fpass; - Wstop = 2/fs * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) - [b, a] = ellip (n, Rpass, Rstop, Wn); - f = 0:fs/2; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))); - outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; - outline_lp_pass_y = [-Rpass, -Rpass , -80]; - outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; - outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; - hold on - plot (outline_lp_pass_x, outline_lp_pass_y, "m", outline_lp_stop_x, outline_lp_stop_y, "m"); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("3rd order digital elliptical low-pass (just exceeds 2nd order i.e. large margin)"); -***** demo - fs = 44100; - Npts = fs; - fstop = 4000; - fpass = 13713; - Rpass = 3; - Rstop = 40; - Wpass = 2/fs * fpass; - Wstop = 2/fs * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) - [b, a] = ellip (n, Rpass, Rstop, Wn, "high"); - f = 0:fs/2; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))); - outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; - outline_hp_pass_y = [-80 , -Rpass , -Rpass]; - outline_hp_stop_x = [min(f) , fstop(1), fstop(1), max(f)]; - outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; - hold on - plot (outline_hp_pass_x, outline_hp_pass_y, "m", outline_hp_stop_x, outline_hp_stop_y, "m"); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("2nd order digital elliptical high-pass (without margin)"); -***** demo - fs = 44100; - Npts = fs; - fstop = 4000; - fpass = 13712; - Rpass = 3; - Rstop = 40; - Wpass = 2/fs * fpass; - Wstop = 2/fs * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) - [b, a] = ellip (n, Rpass, Rstop, Wn, "high"); - f = 0:fs/2; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))); - outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; - outline_hp_pass_y = [-80 , -Rpass , -Rpass]; - outline_hp_stop_x = [min(f) , fstop(1), fstop(1), max(f)]; - outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; - hold on - plot (outline_hp_pass_x, outline_hp_pass_y, "m", outline_hp_stop_x, outline_hp_stop_y, "m"); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("3rd order digital elliptical high-pass (just exceeds 2nd order i.e. large margin)"); -***** demo - fs = 44100; - Npts = fs; - fpass = [9500 9750]; - fstop = [8500 10261]; - Rpass = 3; - Rstop = 40; - Wpass = 2/fs * fpass; - Wstop = 2/fs * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) - [b, a] = ellip (n, Rpass, Rstop, Wn); - f = 5000:15000; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; - hold on - plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("4th order digital elliptical band-pass (without margin) limitation on upper freq"); -***** demo - fs = 44100; - Npts = fs; - fpass = [9500 9750]; - fstop = [9000 10700]; - Rpass = 3; - Rstop = 40; - Wpass = 2/fs * fpass; - Wstop = 2/fs * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) - [b, a] = ellip (n, Rpass, Rstop, Wn); - f = 5000:15000; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; - hold on - plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("4th order digital elliptical band-pass (without margin) limitation on lower freq"); -***** demo - fs = 44100; - Npts = fs; - fpass = [9500 9750]; - fstop = [8500 10260]; - Rpass = 3; - Rstop = 40; - Wpass = 2/fs * fpass; - Wstop = 2/fs * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) - [b, a] = ellip (n, Rpass, Rstop, Wn); - f = 5000:15000; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; - hold on - plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("6th order digital elliptical band-pass (just exceeds 4th order i.e. large margin) limitation on upper freq"); -***** demo - fs = 44100; - Npts = fs; - fpass = [9500 9750]; - fstop = [9001 10700]; - Rpass = 3; - Rstop = 40; - Wpass = 2/fs * fpass; - Wstop = 2/fs * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) - [b, a] = ellip (n, Rpass, Rstop, Wn); - f = 5000:15000; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; - hold on - plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("6th order digital elliptical band-pass (just exceeds 4th order i.e. large margin) limitation on lower freq"); -***** demo - fs = 44100; - Npts = fs; - fstop = [9875 10126.5823]; - fpass = [8500 11073]; - Rpass = 0.5; - Rstop = 40; - Wpass = 2/fs * fpass; - Wstop = 2/fs * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) - [b, a] = ellip (n, Rpass, Rstop, Wn, "stop"); - f = 5000:15000; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; - hold on - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("4th order digital elliptical notch (without margin) limit on upper freq"); -***** demo - fs = 44100; - Npts = fs; - fstop = [9875 10126.5823]; - fpass = [8952 12000]; - Rpass = 0.5; - Rstop = 40; - Wpass = 2/fs * fpass; - Wstop = 2/fs * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) - [b, a] = ellip (n, Rpass, Rstop, Wn, "stop"); - f = 5000:15000; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; - hold on - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("4th order digital elliptical notch (without margin) limit on lower freq"); -***** demo - fs = 44100; - Npts = fs; - fstop = [9875 10126.5823]; - fpass = [8500 11072]; - Rpass = 0.5; - Rstop = 40; - Wpass = 2/fs * fpass; - Wstop = 2/fs * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) - [b, a] = ellip (n, Rpass, Rstop, Wn, "stop"); - f = 5000:15000; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; - hold on - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("6th order digital elliptical notch (just exceeds 4th order) limit on upper freq"); -***** demo - fs = 44100; - Npts = fs; - fstop = [9875 10126.5823]; - fpass = [8953 12000]; - Rpass = 0.5; - Rstop = 40; - Wpass = 2/fs * fpass; - Wstop = 2/fs * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop) - [b, a] = ellip (n, Rpass, Rstop, Wn, "stop"); - f = 5000:15000; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; - hold on - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("6th order digital elliptical notch (just exceeds 4th order) limit on lower freq"); -***** demo - fpass = 4000; - fstop = 20224; - Rpass = 3; - Rstop = 40; - Wpass = 2*pi * fpass; - Wstop = 2*pi * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = ellip (n, Rpass, Rstop, Wn, "s"); - f = 1000:10:100000; - W = 2*pi * f; - H = freqs (b, a, W); - semilogx(f, 20 * log10 (abs (H))) - outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; - outline_lp_pass_y = [-Rpass, -Rpass , -80]; - outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; - outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; - hold on - plot (outline_lp_pass_x, outline_lp_pass_y, "m", outline_lp_stop_x, outline_lp_stop_y, "m") - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("2nd order analog elliptical low-pass (without margin)"); -***** demo - fpass = 4000; - fstop = 20223; - Rpass = 3; - Rstop = 40; - Wpass = 2*pi * fpass; - Wstop = 2*pi * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = ellip (n, Rpass, Rstop, Wn, "s"); - f = 1000:10:100000; - W = 2*pi * f; - H = freqs (b, a, W); - semilogx (f, 20 * log10 (abs (H))) - outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; - outline_lp_pass_y = [-Rpass, -Rpass , -80]; - outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; - outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; - hold on - plot (outline_lp_pass_x, outline_lp_pass_y, "m", outline_lp_stop_x, outline_lp_stop_y, "m") - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("3rd order analog elliptical low-pass (just exceeds 2nd order i.e. large margin)"); -***** demo - fstop = 4000; - fpass = 20224; - Rpass = 3; - Rstop = 40; - Wpass = 2*pi * fpass; - Wstop = 2*pi * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = ellip (n, Rpass, Rstop, Wn, "high", "s"); - f = 1000:10:100000; - W = 2*pi * f; - H = freqs (b, a, W); - semilogx (f, 20 * log10 (abs (H))) - outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; - outline_hp_pass_y = [-80 , -Rpass , -Rpass]; - outline_hp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; - outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; - hold on - plot (outline_hp_pass_x, outline_hp_pass_y, "m", outline_hp_stop_x, outline_hp_stop_y, "m") - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("2nd order analog elliptical high-pass (without margin)"); -***** demo - fstop = 4000; - fpass = 20223; - Rpass = 3; - Rstop = 40; - Wpass = 2*pi * fpass; - Wstop = 2*pi * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = ellip (n, Rpass, Rstop, Wn, "high", "s"); - f = 1000:10:100000; - W = 2*pi * f; - H = freqs (b, a, W); - semilogx (f, 20 * log10 (abs (H))) - outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; - outline_hp_pass_y = [-80 , -Rpass , -Rpass]; - outline_hp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; - outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; - hold on - plot (outline_hp_pass_x, outline_hp_pass_y, "m", outline_hp_stop_x, outline_hp_stop_y, "m") - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("3rd order analog elliptical high-pass (just exceeds 2nd order i.e. large margin)"); -***** demo - fpass = [9875 10126.5823]; - fstop = [9000 10657]; - Rpass = 3; - Rstop = 40; - fcenter = sqrt (fpass(1) * fpass(2)); - Wpass = 2*pi * fpass; - Wstop = 2*pi * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = ellip (n, Rpass, Rstop, Wn, "s"); - f = 5000:15000; - W = 2*pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; - hold on - plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("4th order analog elliptical band-pass (without margin) limitation on upper freq"); -***** demo - fpass = [9875 10126.5823]; - fstop = [9384 12000]; - Rpass = 3; - Rstop = 40; - fcenter = sqrt (fpass(1) * fpass(2)); - Wpass = 2*pi * fpass; - Wstop = 2*pi * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = ellip (n, Rpass, Rstop, Wn, "s"); - f = 5000:15000; - W = 2*pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; - hold on - plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("4th order analog elliptical band-pass (without margin) limitation on lower freq"); -***** demo - fpass = [9875 10126.5823]; - fstop = [9000 10656]; - Rpass = 3; - Rstop = 40; - fcenter = sqrt (fpass(1) * fpass(2)); - Wpass = 2*pi * fpass; - Wstop = 2*pi * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = ellip (n, Rpass, Rstop, Wn, "s"); - f = 5000:15000; - W = 2*pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; - hold on - plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("6th order analog elliptical band-pass (just exceeds 4th order i.e. large margin) limitation on upper freq"); -***** demo - fpass = [9875 10126.5823]; - fstop = [9385 12000]; - Rpass = 3; - Rstop = 40; - fcenter = sqrt (fpass(1) * fpass(2)); - Wpass = 2*pi * fpass; - Wstop = 2*pi * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = ellip (n, Rpass, Rstop, Wn, "s"); - f = 5000:15000; - W = 2*pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , -Rstop , -Rstop]; - hold on - plot (outline_bp_pass_x, outline_bp_pass_y, "m", outline_bp_stop_x, outline_bp_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("6th order analog elliptical band-pass (just exceeds 4th order i.e. large margin) limitation on lower freq"); -***** demo - fstop = [9875 10126.5823]; - fpass = [9000 10657]; - Rpass = 3; - Rstop = 40; - fcenter = sqrt (fpass(1) * fpass(2)); - Wpass = 2*pi * fpass; - Wstop = 2*pi * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = ellip (n, Rpass, Rstop, Wn, "stop", "s"); - f = 5000:15000; - W = 2*pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; - hold on - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("4th order analog elliptical notch (without margin) limit on upper freq"); -***** demo - fstop = [9875 10126.5823]; - fpass = [9384 12000]; - Rpass = 3; - Rstop = 40; - fcenter = sqrt (fpass(1) * fpass(2)); - Wpass = 2*pi * fpass; - Wstop = 2*pi * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = ellip (n, Rpass, Rstop, Wn, "stop", "s"); - f = 5000:15000; - W = 2*pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; - hold on - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("4th order analog elliptical notch (without margin) limit on lower freq"); -***** demo - fstop = [9875 10126.5823]; - fpass = [9000 10656]; - Rpass = 3; - Rstop = 40; - fcenter = sqrt (fpass(1) * fpass(2)); - Wpass = 2*pi * fpass; - Wstop = 2*pi * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = ellip (n, Rpass, Rstop, Wn, "stop", "s"); - f = 5000:15000; - W = 2*pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; - hold on - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("6th order analog elliptical notch (just exceeds 4th order) limit on upper freq"); -***** demo - fstop = [9875 10126.5823]; - fpass = [9385 12000]; - Rpass = 3; - Rstop = 40; - fcenter = sqrt (fpass(1) * fpass(2)); - Wpass = 2*pi * fpass; - Wstop = 2*pi * fstop; - [n, Wn] = ellipord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = ellip (n, Rpass, Rstop, Wn, "stop", "s"); - f = 5000:15000; - W = 2*pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))) - outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , 0 , 0 ]; - hold on - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m", outline_notch_pass_x_b, outline_notch_pass_y_b, "m", outline_notch_stop_x, outline_notch_stop_y, "m") - xlim ([f(1), f(end)]); - ylim ([-80, 0]); - grid on - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - title ("6th order analog elliptical notch (just exceeds 4th order) limit on lower freq"); -***** test - # Analog band-pass - [n, Wn] = ellipord (2 * pi * [9875, 10126.5823], ... - 2 * pi * [9000, 10657], 3, 40, "s"); - assert (n, 2); - assert (round (Wn), [62046, 63627]); -***** test - # Analog band-pass - [n, Wn] = ellipord (2 * pi * [9875, 10126.5823], ... - 2 * pi * [9384, 12000], 3, 40, "s"); - assert (n, 2); - assert (round (Wn), [62046, 63627]); -***** test - # Analog band-pass - [n, Wn] = ellipord (2 * pi * [9875, 10126.5823], ... - 2 * pi * [9000, 10656], 3, 40, "s"); - assert (n, 3); - assert (round (Wn), [62046, 63627]); -***** test - # Analog band-pass - [n, Wn] = ellipord (2 * pi * [9875, 10126.5823], ... - 2 * pi * [9385, 12000], 3, 40, "s"); - assert (n, 3); - assert (round (Wn), [62046, 63627]); -***** test - # Analog high-pass - [n, Wn] = ellipord (2 * pi * 20224, 2 * pi * 4000, 3, 40, "s"); - assert (n, 2); - assert (round (Wn), 127071); -***** test - # Analog high-pass - [n, Wn] = ellipord (2 * pi * 20223, 2 * pi * 4000, 3, 40, "s"); - assert (n, 3); - assert (round (Wn), 127065); -***** test - # Analog low-pass - [n, Wn] = ellipord (2 * pi * 4000, 2 * pi * 20224, 3, 40, "s"); - assert (n, 2); - assert (round (Wn), 25133); -***** test - # Analog low-pass - [n, Wn] = ellipord (2 * pi * 4000, 2 * pi * 20223, 3, 40, "s"); - assert (n, 3); - assert (round (Wn), 25133); -***** test - # Analog notch (narrow band-stop) - [n, Wn] = ellipord (2 * pi * [9000, 10657], ... - 2 * pi * [9875, 10126.5823], 3, 40, "s"); - assert (n, 2); - assert (round (Wn), [58958, 66960]); -***** test - # Analog notch (narrow band-stop) - [n, Wn] = ellipord (2 * pi * [9384, 12000], ... - 2 * pi * [9875, 10126.5823], 3, 40, "s"); - assert (n, 2); - assert (round (Wn), [58961 , 66956]); -***** test - # Analog notch (narrow band-stop) - [n, Wn] = ellipord (2 * pi * [9000, 10656], ... - 2 * pi * [9875, 10126.5823], 3, 40, "s"); - assert (n, 3); - assert (round (Wn), [58964, 66954]); -***** test - # Analog notch (narrow band-stop) - [n, Wn] = ellipord (2 * pi * [9385, 12000], ... - 2 * pi * [9875, 10126.5823], 3, 40, "s"); - assert (n, 3); - assert (round (Wn), [58968, 66949]); -***** test - # Digital band-pass - fs = 44100; - [n, Wn] = ellipord (2 / fs * [9500, 9750], 2 / fs * [8500, 10261], 3, 40); - Wn = Wn * fs / 2; - assert (n, 2); - assert (round (Wn), [9500, 9750]); -***** test - # Digital band-pass - fs = 44100; - [n, Wn] = ellipord (2 / fs * [9500, 9750], 2 / fs * [9000, 10700], 3, 40); - Wn = Wn * fs / 2; - assert (n, 2); - assert (round (Wn), [9500, 9750]); -***** test - # Digital band-pass - fs = 44100; - [n, Wn] = ellipord (2 / fs * [9500, 9750], 2 / fs * [8500, 10260], 3, 40); - Wn = Wn * fs / 2; - assert (n, 3); - assert (round (Wn), [9500, 9750]); -***** test - # Digital band-pass - fs = 44100; - [n, Wn] = ellipord (2 / fs * [9500, 9750], 2 / fs * [9001, 10700], 3, 40); - Wn = Wn * fs / 2; - assert (n, 3); - assert (round (Wn), [9500, 9750]); -***** test - # Digital high-pass - fs = 44100; - [n, Wn] = ellipord (2 / fs * 13713, 2 / fs * 4000, 3, 40); - Wn = Wn * fs / 2; - assert (n, 2); - assert (round (Wn), 13713); -***** test - # Digital high-pass - fs = 44100; - [n, Wn] = ellipord (2 / fs * 13712, 2 / fs * 4000, 3, 40); - Wn = Wn * fs / 2; - assert (n, 3); - assert (round (Wn), 13712); -***** test - # Digital low-pass - fs = 44100; - [n, Wn] = ellipord (2 / fs * 4000, 2 / fs * 13713, 3, 40); - Wn = Wn * fs / 2; - assert (n, 2); - assert (round (Wn), 4000); -***** test - # Digital low-pass - fs = 44100; - [n, Wn] = ellipord (2 / fs * 4000, 2 / fs * 13712, 3, 40); - Wn = Wn * fs / 2; - assert (n, 3); - assert (round (Wn), 4000); -***** test - # Digital notch (narrow band-stop) - fs = 44100; - [n, Wn] = ellipord (2 / fs * [8500, 11073], 2 / fs * [9875, 10126.5823], 0.5, 40); - Wn = Wn * fs / 2; - assert (n, 2); - assert (round (Wn), [8952, 11073]); -***** test - # Digital notch (narrow band-stop) - fs = 44100; - [n, Wn] = ellipord (2 / fs * [8952, 12000], 2 / fs * [9875, 10126.5823], 0.5, 40); - Wn = Wn * fs / 2; - assert (n, 2); - assert (round (Wn), [8952, 11073]); -***** test - # Digital notch (narrow band-stop) - fs = 44100; - [n, Wn] = ellipord (2 / fs * [8500, 11072], 2 / fs * [9875, 10126.5823], 0.5, 40); - Wn = Wn * fs / 2; - assert (n, 3); - assert (round (Wn), [8953, 11072]); -***** test - # Digital notch (narrow band-stop) - fs = 44100; - [n, Wn] = ellipord (2 / fs * [8953, 12000], 2 / fs * [9875, 10126.5823], 0.5, 40); - Wn = Wn * fs / 2; - assert (n, 3); - assert (round (Wn), [8953, 11072]); -***** error ellipord () -***** error ellipord (.1) -***** error ellipord (.1, .2) -***** error ellipord (.1, .2, 3) -***** error ellipord ([.1 .1], [.2 .2], 3, 4) -***** error ellipord ([.1 .2], [.5 .6], 3, 4) -***** error ellipord ([.1 .5], [.2 .6], 3, 4) -31 tests, 31 passed, 0 known failure, 0 skipped [inst/sgolay.m] >>>>> /build/reproducible-path/octave-signal-1.4.6/inst/sgolay.m ***** test @@ -8696,1693 +10388,10 @@ y = sgolayfilt(x,sgolay(8,41,3,dt)); assert(norm(y-d3x)/norm(d3x),0,1e-4); 1 test, 1 passed, 0 known failure, 0 skipped -[inst/filternorm.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/filternorm.m -***** demo - b = [1 0]; - a = [1 1]; - L = filternorm (b, a) -***** demo - [b, a] = butter(5, .5); - L = filternorm (b, a) - ## test input validation -***** error n = filternorm () -***** error n = filternorm (1) -***** error n = filternorm (1, 1, 1) -***** error n = filternorm (1, 1, 1, 1) -***** error n = filternorm (1, 1, 1, 1, 1) -***** error n = filternorm ([1:10]', 1) -***** error n = filternorm (1, [1:10]') -***** error n = filternorm ([1:10]', [1:10]') -***** error n = filternorm (1:10, 1:10, 1:10) -***** error n = filternorm (ones(3), ones(3)) -***** test - [b, a] = butter (5, .5); - L = filternorm (b, a); - assert (L, sqrt(2)/2, 1e-8) -***** test - [b, a] = butter (5, .5); - Linf = filternorm (b, a, Inf); - assert (Linf, 1, 1e-8); -12 tests, 12 passed, 0 known failure, 0 skipped -[inst/chirp.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/chirp.m -***** demo - t = 0:0.001:5; - y = chirp (t); - specgram (y, 256, 1000); - %------------------------------------------------------------ - % Shows linear sweep of 100 Hz/sec starting at zero for 5 sec - % since the sample rate is 1000 Hz, this should be a diagonal - % from bottom left to top right. -***** demo - t = -2:0.001:15; - y = chirp (t, 400, 10, 100, "quadratic"); - [S, f, t] = specgram (y, 256, 1000); - t = t - 2; - imagesc(t, f, 20 * log10 (abs (S))); - set (gca (), "ydir", "normal"); - xlabel ("Time"); - ylabel ("Frequency"); - %------------------------------------------------------------ - % Shows a quadratic chirp of 400 Hz at t=0 and 100 Hz at t=10 - % Time goes from -2 to 15 seconds. -***** demo - t = 0:1/8000:5; - y = chirp (t, 200, 2, 500, "logarithmic"); - specgram (y, 256, 8000); - %------------------------------------------------------------- - % Shows a logarithmic chirp of 200 Hz at t=0 and 500 Hz at t=2 - % Time goes from 0 to 5 seconds at 8000 Hz. -***** shared t - t = (0:5000) ./ 1000; -***** test - y1 = chirp (t); - y2 = chirp (t, 0, 1, 100, "linear", 0); - assert (y2, y1) -***** test - y1 = chirp (t, [], [], [], "li"); - y2 = chirp (t, 0, 1, 100, "linear", 0); - assert (y2, y1) -***** test - y1 = chirp (t, [], [], [], "q"); - y2 = chirp (t, 0, 1, 100, "quadratic", 0); - assert (y2, y1) -***** test - y1 = chirp (t, [], [], [], "lo"); - y2 = chirp (t, 1e-6, 1, 100, "logarithmic", 0); - assert (y2, y1) -***** error chirp () -***** error chirp (1, 2, 3, 4, 5, 6, 7) -***** error chirp (0, [], [], [], "l") -***** error chirp (0, [], [], [], "foo") -8 tests, 8 passed, 0 known failure, 0 skipped -[inst/cplxreal.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cplxreal.m -***** test - [zc, zr] = cplxreal ([]); - assert (isempty (zc)) - assert (isempty (zr)) -***** test - [zc, zr] = cplxreal (1); - assert (isempty (zc)) - assert (zr, 1) -***** test - [zc, zr] = cplxreal ([1+1i, 1-1i]); - assert (zc, 1+1i) - assert (isempty (zr)) -***** test - [zc, zr] = cplxreal (roots ([1, 0, 0, 1])); - assert (zc, complex (0.5, sin (pi/3)), 10*eps) - assert (zr, -1, 2*eps) -***** test - [zc, zr] = cplxreal (roots ([1, 0, 0, 1, 0])); - assert (zc, complex (0.5, sin (pi/3)), 10*eps) - assert (zr, [-1; 0], 2*eps) -***** test - [zc, zr] = cplxreal (roots ([1, 0, 0, 1, 0, 0])); - assert (zc, complex (0.5, sin (pi/3)), 10*eps) - assert (zr, [-1; 0; 0], 2*eps) -***** error cplxreal () -***** error cplxreal (1, 2, 3, 4) -***** error cplxreal (1, ones (2, 3)) -***** error cplxreal (1, -1) -***** error cplxreal (1, [], 3) -11 tests, 11 passed, 0 known failure, 0 skipped -[inst/fracshift.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/fracshift.m -***** test - d = [1.5 7/6]; - N = 1024; - t = ((0:N-1)-N/2).'; - tt = bsxfun (@minus, t, d); - err1= err2 = zeros(N/2,1); - for n = 0:N/2-1, - phi0 = 2*pi*rand; - f0 = n/N; - sigma = N/4; - x = exp(-t.^2/(2*sigma)).*sin(2*pi*f0*t + phi0); - xx = exp(-tt.^2/(2*sigma)).*sin(2*pi*f0*tt + phi0); - [y,h] = fracshift(x, d(1)); - err1(n+1) = max (abs (y - xx(:,1))); - [y,h] = fracshift(x, d(2)); - err2(n+1) = max (abs (y - xx(:,2))); - endfor - rolloff = .1; - rejection = 10^-3; - idx_inband = 1:ceil((1-rolloff)*N/2)-1; - assert (max (err1(idx_inband)) < rejection); - assert (max (err2(idx_inband)) < rejection); -***** test - N = 1024; - p = 6; - q = 7; - d1 = 64; - d2 = d1*p/q; - t = 128; - - [b a] = butter (10,.25); - n = zeros (N, 1); - n(N/2+(-t:t)) = randn(2*t+1,1); - n = filter(b,a,n); - n1 = fracshift(n,d1); - n1 = resample(n1,p,q); - n2 = resample(n,p,q); - n2 = fracshift(n2,d2); - err = abs (n2 - n1); - rejection = 10^-3; - assert(max (err) < rejection); -***** test #integer shift similar similar to non-integer - N = 1024; - t = linspace(0, 1, N).'; - x = exp(-t.^2/2/0.25^2).*sin(2*pi*10*t); - d = 10; - y = fracshift(x, d); - yh = fracshift(x, d+1e-8); - assert(y, yh, 1e-8) -***** warning fracshift([1 2 3 2 1], 3, h=0.5); #integer shift and filter provided -***** test #bug 52758 - x = [0 1 0 0 0 0 0 0]; - y = fracshift(x, 1); - assert (size(x) == size(y)) -***** test #bug 47387 - N = 1024; - t = linspace(0, 1, N).'; - x = exp(-t.^2/2/0.25^2).*sin(2*pi*10*t); - dt = 0.25; - d = dt / (t(2) - t(1)); - y = fracshift(x, d); - L = 37; - _t = (-L:L).'; - ideal_filter = sinc (_t - (d - fix (d))); - m = 2 * L; - _t = (0:m).' - (d - fix (d)); - beta = 5.6533; - _t = 2 * beta / m * sqrt (_t .* (m - _t)); - w = besseli (0, _t) / besseli (0, beta); - h = w .* ideal_filter; - yh = fracshift(x, d, h); - assert(y, yh, 1e-8) -***** demo - N = 1024; - t = linspace (0, 1, N).'; - x = exp(-t.^2/2/0.25^2).*sin(2*pi*10*t); - - dt = 0.25; - d = dt / (t(2) - t(1)); - y = fracshift(x, d); - - plot(t,y,'r-;shifted;', t, x, 'k-;original;') - axis tight - xlabel ('time') - ylabel ('signal') -6 tests, 6 passed, 0 known failure, 0 skipped -[inst/lpc.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/lpc.m -***** demo - noise = randn (10000, 1); - x = filter (1, [1 1/2 1/4 1/8], noise); - x = x(end-4096:end); - [a, g] = lpc (x, 3); - xe = filter ([0 -a(2:end)], 1, x); - e = x - xe; - [ac, k] = xcorr (e, "coeff"); - subplot (2,1,1); plot (x(1:100), "b-", xe(1:100), "r--"); - xlabel ("sample"); ylabel ("amplitude"); legend ("original","LPC estimate"); - subplot (2,1,2); plot (k,ac,"b-"); xlabel ("lag"); - title ("autocorrelation of prediction error"); -***** demo - if !isempty ( pkg ("list", "ltfat") ) - pkg load ltfat - [sig, fs] = linus; - x = sig(13628:14428); - [a, g] = lpc (x, 8); - F = round (sort (unique (abs (angle (roots (a))))) * fs / (2 * pi) ); - [h, w] = freqz (1, a, 512, "whole"); - subplot (2, 1, 1); - plot ( 1E3 * [0:1/fs:(length (x)-1)*1/fs], x); - xlabel ("time (ms)"); ylabel ("Amplitude"); - title ( "'linus' test signal" ); - subplot (2, 1, 2); - plot (w(1:256)/pi, 20*log10 (abs (h(1:256)))); - xlabel ("Normalized Frequency ({\\times \\pi} rad/sample)") - ylabel ("Magnitude (dB)") - txt = sprintf (['Signal sampling rate = %d kHz\nFormant frequencies: ' ... - '\nF1 = %d Hz\nF2 = %d Hz\nF3 = %d Hz\nF4 = %d Hz'], fs/1E3, ... - F(1), F(2), F(3), F(4)); - text (0.6, 20, txt); - endif - ## test input validation -***** error [a, g] = lpc () -***** error [a, g] = lpc (1) -***** error [a, g] = lpc (1, 1) -***** error [a, g] = lpc (1, 1, 1) -***** error [a, g] = lpc (1:10, 0) -***** error [a, g] = lpc (1:10, 10) -***** error [a, g] = lpc (1:10, 0.5) -***** error [a, g] = lpc (1:10, 1, [1 2]) -***** test - x = [1:4 4:-1:1]; - [a, g] = lpc (x, 5); - assert (a, [1.0 -1.823903 1.101798 -0.405738 0.521153 -0.340032], 1e-6) - assert (g, 0.272194, 1e-6) -9 tests, 9 passed, 0 known failure, 0 skipped -[inst/butter.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/butter.m -***** shared sf, sf2, off_db - off_db = 0.5; - ## Sampling frequency must be that high to make the low pass filters pass. - sf = 6000; sf2 = sf/2; - data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)]; -***** test - ## Test low pass order 1 with 3dB @ 50Hz - data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)]; - [b, a] = butter ( 1, 50 / sf2 ); - filtered = filter ( b, a, data ); - damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) ); - assert ( [ damp_db( 4 ) - damp_db( 5 ), damp_db( 1 : 3 ) ], [ 6 0 0 -3 ], off_db ) -***** test - ## Test low pass order 4 with 3dB @ 50Hz - data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)]; - [b, a] = butter ( 4, 50 / sf2 ); - filtered = filter ( b, a, data ); - damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) ); - assert ( [ damp_db( 4 ) - damp_db( 5 ), damp_db( 1 : 3 ) ], [ 24 0 0 -3 ], off_db ) -***** test - ## Test high pass order 1 with 3dB @ 50Hz - data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)]; - [b, a] = butter ( 1, 50 / sf2, "high" ); - filtered = filter ( b, a, data ); - damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) ); - assert ( [ damp_db( 2 ) - damp_db( 1 ), damp_db( 3 : end ) ], [ 6 -3 0 0 ], off_db ) -***** test - ## Test high pass order 4 with 3dB @ 50Hz - data=[sinetone(5,sf,10,1),sinetone(10,sf,10,1),sinetone(50,sf,10,1),sinetone(200,sf,10,1),sinetone(400,sf,10,1)]; - [b, a] = butter ( 4, 50 / sf2, "high" ); - filtered = filter ( b, a, data ); - damp_db = 20 * log10 ( max ( filtered ( end - sf : end, : ) ) ); - assert ( [ damp_db( 2 ) - damp_db( 1 ), damp_db( 3 : end ) ], [ 24 -3 0 0 ], off_db ) -***** error [a, b] = butter () -***** error [a, b] = butter (1) -***** error [a, b] = butter (1, 2, 3, 4, 5) -***** error [a, b] = butter (.5, .2) -***** error [a, b] = butter (3, .2, "invalid") -***** error [a, b] = butter (9, .6, "stop") -***** error [a, b] = butter (9, .6, "bandpass") -***** error [a, b] = butter (9, .6, "s", "high") -***** test - butter (9, .6); - assert (isrow (ans)); -***** test - A = butter (9, .6); - assert (isrow (A)); -***** test - [A, B] = butter (9, .6); - assert (isrow (A)); - assert (isrow (B)); -***** test - [z, p, g] = butter (9, .6); - assert (iscolumn (z)); - assert (iscolumn (p)); - assert (isscalar (g)); -***** test - [a, b, c, d] = butter (9, .6); - assert (ismatrix (a)); - assert (iscolumn (b)); - assert (isrow (c)); - assert (isscalar (d)); -***** demo - sf = 800; sf2 = sf/2; - data=[[1;zeros(sf-1,1)],sinetone(25,sf,1,1),sinetone(50,sf,1,1),sinetone(100,sf,1,1)]; - [b,a]=butter ( 1, 50 / sf2 ); - filtered = filter(b,a,data); - - clf - subplot ( columns ( filtered ), 1, 1) - plot(filtered(:,1),";Impulse response;") - subplot ( columns ( filtered ), 1, 2 ) - plot(filtered(:,2),";25Hz response;") - subplot ( columns ( filtered ), 1, 3 ) - plot(filtered(:,3),";50Hz response;") - subplot ( columns ( filtered ), 1, 4 ) - plot(filtered(:,4),";100Hz response;") -17 tests, 17 passed, 0 known failure, 0 skipped -[inst/poisswin.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/poisswin.m -***** test % even M; odd alpha: - w=[0.3878 0.4308 0.4786 0.5318 0.5908 0.6564 0.7292 0.8102 0.9001 1]; - assert (poisswin (20, 1), [w flip(w)]', 51e-6); -***** test % odd M; even alpha: - w=[0.1353 0.1653 0.2019 0.2466 0.3012 0.3679 0.4493 0.5488 0.6703 0.8187]; - assert (poisswin (21, 2), [w 1 flip(w)]', 51e-6); -***** error poisswin -***** error poisswin (21.5,1) -***** error poisswin (21i,1) -***** error poisswin (21:22,1) -***** error poisswin ({21},1) -***** error poisswin (21, 4i) -***** error poisswin (21, 2:3) -***** error poisswin (21, {4}) -***** error poisswin (21, 4, 1) -11 tests, 11 passed, 0 known failure, 0 skipped -[inst/flattopwin.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/flattopwin.m -***** assert (flattopwin (1), 1); -***** assert (flattopwin (2), 0.0042 / 4.6402 * ones (2, 1), eps); -***** assert (flattopwin (15), flipud (flattopwin (15)), 10*eps); -***** assert (flattopwin (16), flipud (flattopwin (16)), 10*eps); -***** assert (flattopwin (15), flattopwin (15, "symmetric")); -***** assert (flattopwin (16)(1:15), flattopwin (15, "periodic")); -***** error flattopwin () -***** error flattopwin (0.5) -***** error flattopwin (-1) -***** error flattopwin (ones (1, 4)) -***** error flattopwin (1, 2) -***** error flattopwin (1, 2, 3) -***** error flattopwin (1, "invalid") -13 tests, 13 passed, 0 known failure, 0 skipped -[inst/blackmannuttall.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/blackmannuttall.m -***** assert (blackmannuttall (1), 1) -***** assert (blackmannuttall (2), 0.0003628 * ones (2, 1), eps) -***** assert (blackmannuttall (15), flipud (blackmannuttall (15)), 10*eps); -***** assert (blackmannuttall (16), flipud (blackmannuttall (16)), 10*eps); -***** assert (blackmannuttall (15), blackmannuttall (15, "symmetric")); -***** assert (blackmannuttall (16)(1:15), blackmannuttall (15, "periodic")); -***** error blackmannuttall () -***** error blackmannuttall (0.5) -***** error blackmannuttall (-1) -***** error blackmannuttall (ones (1, 4)) -***** error blackmannuttall (1, 2) -***** error blackmannuttall (1, "invalid") -12 tests, 12 passed, 0 known failure, 0 skipped -[inst/rms.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/rms.m -***** assert (rms (0), 0) -***** assert (rms (1), 1) -***** assert (rms ([1 2 -1]), sqrt (2)) -***** assert (rms ([1 2 -1]'), sqrt (2)) -***** assert (rms ([1 2], 3), [1 2]) -***** error rms () -***** error rms (1, 2, 3) -***** error rms (1, 1.5) -***** error rms (1, -1) -9 tests, 9 passed, 0 known failure, 0 skipped -[inst/besself.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/besself.m -***** error [a, b] = besself () -***** error [a, b] = besself (1) -***** error [a, b] = besself (1, 2, 3, 4, 5) -***** error [a, b] = besself (.5, .2) -***** error [a, b] = besself (3, .2, "invalid") -5 tests, 5 passed, 0 known failure, 0 skipped -[inst/buttord.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/buttord.m -***** demo - fs = 44100; - Npts = fs / 2; - fpass = 4000; - fstop = 10987; - Rpass = 1; - Rstop = 26; - Wpass = 2 / fs * fpass; - Wstop = 2 / fs * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) - [b, a] = butter (n, Wn_p); - f = 8000:12000; - W = 2 * pi * f; - [H, f] = freqz (b, a, Npts, fs); - plot (f, 20 * log10 (abs (H))); - title ("Digital Butterworth low-pass : matching pass band"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; - outline_lp_pass_y = [-Rpass, -Rpass , -80]; - outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; - outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; - hold on; - plot (outline_lp_pass_x, outline_lp_pass_y, "m"); - plot (outline_lp_stop_x, outline_lp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fs = 44100; - Npts = fs / 2; - fpass = 4000; - fstop = 10987; - Rpass = 1; - Rstop = 26; - Wpass = 2 / fs * fpass; - Wstop = 2 / fs * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) - [b, a] = butter (n, Wn_s); - f = 8000:12000; - W = 2 * pi * f; - [H, f] = freqz (b, a, Npts, fs); - plot (f, 20 * log10 (abs (H))); - title ("Digital Butterworth low-pass : matching stop band"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; - outline_lp_pass_y = [-Rpass, -Rpass , -80]; - outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; - outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; - hold on; - plot (outline_lp_pass_x, outline_lp_pass_y, "m"); - plot (outline_lp_stop_x, outline_lp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fs = 44100; - Npts = fs / 2; - fstop = 4000; - fpass = 10987; - Rpass = 1; - Rstop = 26; - Wpass = 2 / fs * fpass; - Wstop = 2 / fs * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) - [b, a] = butter (n, Wn_p, "high"); - f = 8000:12000; - W = 2 * pi * f; - [H, f] = freqz (b, a, Npts, fs); - plot (f, 20 * log10 (abs (H))); - title ("Digital Butterworth high-pass : matching pass band"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; - outline_hp_pass_y = [-80 , -Rpass , -Rpass]; - outline_hp_stop_x = [min(f) , fstop(1), fstop(1), max(f)]; - outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; - hold on; - plot (outline_hp_pass_x, outline_hp_pass_y, "m"); - plot (outline_hp_stop_x, outline_hp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fs = 44100; - Npts = fs / 2; - fstop = 4000; - fpass = 10987; - Rpass = 1; - Rstop = 26; - Wpass = 2 / fs * fpass; - Wstop = 2 / fs * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) - [b, a] = butter (n, Wn_s, "high"); - f = 8000:12000; - W = 2 * pi * f; - [H, f] = freqz (b, a, Npts, fs); - plot (f, 20 * log10 (abs (H))) - title ("Digital Butterworth high-pass : matching stop band"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; - outline_hp_pass_y = [-80 , -Rpass , -Rpass]; - outline_hp_stop_x = [min(f) , fstop(1), fstop(1), max(f)]; - outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; - hold on; - plot (outline_hp_pass_x, outline_hp_pass_y, "m"); - plot (outline_hp_stop_x, outline_hp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fs = 44100; - fpass = [9500 9750]; - fstop = [8500 10051]; - Rpass = 1; - Rstop = 26; - Wpass = 2 / fs * fpass; - Wstop = 2 / fs * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) - [b, a] = butter (n, Wn_p); - f = (8000:12000)'; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Digital Butterworth band-pass : matching pass band, limit on upper freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... - -Rstop , -Rstop]; - hold on; - plot (outline_bp_pass_x, outline_bp_pass_y, "m"); - plot (outline_bp_stop_x, outline_bp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fs = 44100; - fpass = [9500 9750]; - fstop = [8500 10051]; - Rpass = 1; - Rstop = 26; - Wpass = 2 / fs * fpass; - Wstop = 2 / fs * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) - [b, a] = butter (n, Wn_s); - f = (8000:12000)'; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Digital Butterworth band-pass : matching stop band, limit on upper freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... - -Rstop , -Rstop]; - hold on; - plot (outline_bp_pass_x, outline_bp_pass_y, "m"); - plot (outline_bp_stop_x, outline_bp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fs = 44100; - fpass = [9500 9750]; - fstop = [9204 10700]; - Rpass = 1; - Rstop = 26; - Wpass = 2 / fs * fpass; - Wstop = 2 / fs * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) - [b, a] = butter (n, Wn_p); - f = (8000:12000)'; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Digital Butterworth band-pass : matching pass band, limit on lower freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... - -Rstop , -Rstop]; - hold on; - plot (outline_bp_pass_x, outline_bp_pass_y, "m"); - plot (outline_bp_stop_x, outline_bp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fs = 44100; - fpass = [9500 9750]; - fstop = [9204 10700]; - Rpass = 1; - Rstop = 26; - Wpass = 2 / fs * fpass; - Wstop = 2 / fs * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) - [b, a] = butter (n, Wn_s); - f = (8000:12000)'; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Digital Butterworth band-pass : matching stop band, limit on lower freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... - -Rstop , -Rstop]; - hold on; - plot (outline_bp_pass_x, outline_bp_pass_y, "m"); - plot (outline_bp_stop_x, outline_bp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fs = 44100; - fstop = [9875, 10126.5823]; - fpass = [8500 10833]; - Rpass = 0.5; - Rstop = 40; - Wpass = 2 / fs * fpass; - Wstop = 2 / fs * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) - [b, a] = butter (n, Wn_p, "stop"); - f = (8000:12000)'; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Digital Butterworth notch : matching pass band, limit on upper freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... - 0 , 0 ]; - hold on; - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); - plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); - plot (outline_notch_stop_x, outline_notch_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fs = 44100; - fstop = [9875, 10126.5823]; - fpass = [8500 10833]; - Rpass = 0.5; - Rstop = 40; - Wpass = 2 / fs * fpass; - Wstop = 2 / fs * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) - [b, a] = butter (n, Wn_s, "stop"); - f = (8000:12000)'; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Digital Butterworth notch : matching stop band, limit on upper freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... - 0 , 0 ]; - hold on; - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); - plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); - plot (outline_notch_stop_x, outline_notch_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fs = 44100; - fstop = [9875, 10126.5823]; - fpass = [9183 11000]; - Rpass = 0.5; - Rstop = 40; - Wpass = 2 / fs * fpass; - Wstop = 2 / fs * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) - [b, a] = butter (n, Wn_p, "stop"); - f = (8000:12000)'; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Digital Butterworth notch : matching pass band, limit on lower freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... - 0 , 0 ]; - hold on; - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); - plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); - plot (outline_notch_stop_x, outline_notch_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fs = 44100; - fstop = [9875, 10126.5823]; - fpass = [9183 11000]; - Rpass = 0.5; - Rstop = 40; - Wpass = 2 / fs * fpass; - Wstop = 2 / fs * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop) - [b, a] = butter (n, Wn_s, "stop"); - f = (8000:12000)'; - W = f * (2 * pi / fs); - H = freqz (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Digital Butterworth notch : matching stop band, limit on lower freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_notch_pass_x_a = [min(f) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [min(f) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... - 0 , 0 ]; - hold on; - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); - plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); - plot (outline_notch_stop_x, outline_notch_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fpass = 4000; - fstop = 13583; - Rpass = 1; - Rstop = 26; - Wpass = 2 * pi * fpass; - Wstop = 2 * pi * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = butter (n, Wn_p, "s"); - f = 1000:10:100000; - W = 2 * pi * f; - H = freqs (b, a, W); - semilogx (f, 20 * log10 (abs (H))) - title ("Analog Butterworth low-pass : matching pass band"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; - outline_lp_pass_y = [-Rpass, -Rpass , -80]; - outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; - outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; - hold on; - plot (outline_lp_pass_x, outline_lp_pass_y, "m"); - plot (outline_lp_stop_x, outline_lp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fpass = 4000; - fstop = 13583; - Rpass = 1; - Rstop = 26; - Wpass = 2 * pi * fpass; - Wstop = 2 * pi * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = butter (n, Wn_s, "s"); - f = 1000:10:100000; - W = 2 * pi * f; - H = freqs (b, a, W); - semilogx (f, 20 * log10 (abs (H))); - title ("Analog Butterworth low-pass : matching stop band"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_lp_pass_x = [f(2) , fpass(1), fpass(1)]; - outline_lp_pass_y = [-Rpass, -Rpass , -80]; - outline_lp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; - outline_lp_stop_y = [0 , 0 , -Rstop , -Rstop]; - hold on; - plot (outline_lp_pass_x, outline_lp_pass_y, "m"); - plot (outline_lp_stop_x, outline_lp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fstop = 4000; - fpass = 13583; - Rpass = 1; - Rstop = 26; - Wpass = 2 * pi * fpass; - Wstop = 2 * pi * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = butter (n, Wn_p, "high", "s"); - f = 1000:10:100000; - W = 2 * pi * f; - H = freqs (b, a, W); - semilogx (f, 20 * log10 (abs (H))); - title ("Analog Butterworth high-pass : matching pass band"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; - outline_hp_pass_y = [-80 , -Rpass , -Rpass]; - outline_hp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; - outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; - hold on; - plot (outline_hp_pass_x, outline_hp_pass_y, "m"); - plot (outline_hp_stop_x, outline_hp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fstop = 4000; - fpass = 13583; - Rpass = 1; - Rstop = 26; - Wpass = 2 * pi * fpass; - Wstop = 2 * pi * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = butter (n, Wn_s, "high", "s"); - f = 1000:10:100000; - W = 2 * pi * f; - H = freqs (b, a, W); - semilogx (f, 20 * log10 (abs (H))); - title ("Analog Butterworth high-pass : matching stop band"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_hp_pass_x = [fpass(1), fpass(1), max(f)]; - outline_hp_pass_y = [-80 , -Rpass , -Rpass]; - outline_hp_stop_x = [f(2) , fstop(1), fstop(1), max(f)]; - outline_hp_stop_y = [-Rstop , -Rstop , 0 , 0 ]; - hold on; - plot (outline_hp_pass_x, outline_hp_pass_y, "m"); - plot (outline_hp_stop_x, outline_hp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fpass = [9875, 10126.5823]; - fstop = [9000, 10436]; - Rpass = 1; - Rstop = 26; - Wpass = 2 * pi * fpass; - Wstop = 2 * pi * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = butter (n, Wn_p, "s"); - f = 8000:12000; - W = 2 * pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Analog Butterworth band-pass : matching pass band, limit on upper freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... - -Rstop , -Rstop]; - hold on; - plot (outline_bp_pass_x, outline_bp_pass_y, "m"); - plot (outline_bp_stop_x, outline_bp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fpass = [9875, 10126.5823]; - fstop = [9000, 10436]; - Rpass = 1; - Rstop = 26; - Wpass = 2 * pi * fpass; - Wstop = 2 * pi * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = butter (n, Wn_s, "s"); - f = 8000:12000; - W = 2 * pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Analog Butterworth band-pass : matching stop band, limit on upper freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... - -Rstop , -Rstop]; - hold on; - plot (outline_bp_pass_x, outline_bp_pass_y, "m"); - plot (outline_bp_stop_x, outline_bp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fpass = [9875, 10126.5823]; - fstop = [9582, 11000]; - Rpass = 1; - Rstop = 26; - Wpass = 2 * pi * fpass; - Wstop = 2 * pi * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = butter (n, Wn_p, "s"); - f = 8000:12000; - W = 2 * pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Analog Butterworth band-pass : matching pass band, limit on lower freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... - -Rstop , -Rstop]; - hold on; - plot (outline_bp_pass_x, outline_bp_pass_y, "m"); - plot (outline_bp_stop_x, outline_bp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fpass = [9875, 10126.5823]; - fstop = [9582, 11000]; - Rpass = 1; - Rstop = 26; - Wpass = 2 * pi * fpass; - Wstop = 2 * pi * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = butter (n, Wn_s, "s"); - f = 8000:12000; - W = 2 * pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Analog Butterworth band-pass : matching stop band, limit on lower freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_bp_pass_x = [fpass(1), fpass(1), fpass(2), fpass(2)]; - outline_bp_pass_y = [-80 , -Rpass , -Rpass , -80]; - outline_bp_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_bp_stop_y = [-Rstop , -Rstop , 0 , 0 , ... - -Rstop , -Rstop]; - hold on; - plot (outline_bp_pass_x, outline_bp_pass_y, "m"); - plot (outline_bp_stop_x, outline_bp_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fstop = [9875 10126.5823]; - fpass = [9000 10436]; - Rpass = 1; - Rstop = 26; - Wpass = 2 * pi * fpass; - Wstop = 2 * pi * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = butter (n, Wn_p, "stop", "s"); - f = 8000:12000; - W = 2 * pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Analog Butterworth notch : matching pass band, limit on upper freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... - 0 , 0 ]; - hold on; - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); - plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); - plot (outline_notch_stop_x, outline_notch_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fstop = [9875 10126.5823]; - fpass = [9000 10436]; - Rpass = 1; - Rstop = 26; - Wpass = 2 * pi * fpass; - Wstop = 2 * pi * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = butter (n, Wn_s, "stop", "s"); - f = 8000:12000; - W = 2 * pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Analog Butterworth notch : matching stop band, limit on upper freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... - 0 , 0 ]; - hold on; - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); - plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); - plot (outline_notch_stop_x, outline_notch_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fstop = [9875 10126.5823]; - fpass = [9582 11000]; - Rpass = 1; - Rstop = 26; - Wpass = 2 * pi * fpass; - Wstop = 2 * pi * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = butter (n, Wn_p, "stop", "s"); - f = 8000:12000; - W = 2 * pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Analog Butterworth notch : matching pass band, limit on lower freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... - 0 , 0 ]; - hold on; - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); - plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); - plot (outline_notch_stop_x, outline_notch_stop_y, "m"); - ylim ([-80, 0]); -***** demo - fstop = [9875 10126.5823]; - fpass = [9582 11000]; - Rpass = 1; - Rstop = 26; - Wpass = 2 * pi * fpass; - Wstop = 2 * pi * fstop; - [n, Wn_p, Wn_s] = buttord (Wpass, Wstop, Rpass, Rstop, "s") - [b, a] = butter (n, Wn_s, "stop", "s"); - f = 8000:12000; - W = 2 * pi * f; - H = freqs (b, a, W); - plot (f, 20 * log10 (abs (H))); - title ("Analog Butterworth notch : matching stop band, limit on lower freq"); - xlabel ("Frequency (Hz)"); - ylabel ("Attenuation (dB)"); - grid on; - outline_notch_pass_x_a = [f(2) , fpass(1), fpass(1)]; - outline_notch_pass_x_b = [fpass(2), fpass(2), max(f)]; - outline_notch_pass_y_a = [-Rpass , -Rpass , -80]; - outline_notch_pass_y_b = [-80 , -Rpass , -Rpass]; - outline_notch_stop_x = [f(2) , fstop(1), fstop(1), fstop(2), ... - fstop(2), max(f)]; - outline_notch_stop_y = [0 , 0 , -Rstop , -Rstop , ... - 0 , 0 ]; - hold on; - plot (outline_notch_pass_x_a, outline_notch_pass_y_a, "m"); - plot (outline_notch_pass_x_b, outline_notch_pass_y_b, "m"); - plot (outline_notch_stop_x, outline_notch_stop_y, "m"); - ylim ([-80, 0]); -***** test - # Analog band-pass - [n, Wn_p, Wn_s] = buttord (2 * pi * [9875, 10126.5823], ... - 2 * pi * [9000, 10436], 1, 26, "s"); - assert (n, 4); - assert (round (Wn_p), [61903, 63775]); - assert (round (Wn_s), [61575, 64114]); -***** test - # Analog band-pass - [n, Wn_p, Wn_s] = buttord (2 * pi * [9875, 10126.5823], ... - 2 * pi * [9582, 11000], 1, 26, "s"); - assert (n, 4); - assert (round (Wn_p), [61903, 63775]); - assert (round (Wn_s), [61575, 64115]); -***** test - # Analog band-pass - [n, Wn_p, Wn_s] = buttord (2 * pi * [9875, 10126.5823], ... - 2 * pi * [9000, 10437], 1, 26, "s"); - assert (n, 3); - assert (round (Wn_p), [61850, 63830]); - assert (round (Wn_s), [61848, 63831]); -***** test - # Analog band-pass - [n, Wn_p, Wn_s] = buttord (2 * pi * [9875, 10126.5823], ... - 2 * pi * [9581, 11000], 1, 26, "s"); - assert (n, 3); - assert (round (Wn_p), [61850, 63830]); - assert (round (Wn_s), [61847, 63832]); -***** test - # Analog high-pass - [n, Wn_p, Wn_s] = buttord (2 * pi * 13583, 2 * pi * 4000, 1, 26, "s"); - assert (n, 4); - assert (round (Wn_p), 72081); - assert (round (Wn_s), 53101); -***** test - # Analog high-pass - [n, Wn_p, Wn_s] = buttord (2 * pi * 13584, 2 * pi * 4000, 1, 26, "s"); - assert (n, 3); - assert (round (Wn_p), 68140); - assert (round (Wn_s), 68138); -***** test - # Analog low-pass - [n, Wn_p, Wn_s] = buttord (2 * pi * 4000, 2 * pi * 13583, 1, 26, "s"); - assert (n, 4); - assert (round (Wn_p), 29757); - assert (round (Wn_s), 40394); -***** test - # Analog low-pass - [n, Wn_p, Wn_s] = buttord (2 * pi * 4000, 2 * pi * 13584, 1, 26, "s"); - assert (n, 3); - assert (round (Wn_p), 31481); - assert (round (Wn_s), 31482); -***** test - # Analog notch (narrow band-stop) - [n, Wn_p, Wn_s] = buttord (2 * pi * [9000, 10436], ... - 2 * pi * [9875, 10126.5823], 1, 26, "s"); - assert (n, 4); - assert (round (Wn_p), [60607, 65138]); - assert (round (Wn_s), [61184, 64524]); -***** test - # Analog notch (narrow band-stop) - [n, Wn_p, Wn_s] = buttord (2 * pi * [9582, 11000], ... - 2 * pi * [9875, 10126.5823], 1, 26, "s"); - assert (n, 4); - assert (round (Wn_p), [60606, 65139]); - assert (round (Wn_s), [61184, 64524]); -***** test - # Analog notch (narrow band-stop) - [n, Wn_p, Wn_s] = buttord (2 * pi * [9000, 10437], ... - 2 * pi * [9875, 10126.5823], 1, 26, "s"); - assert (n, 3); - assert (round (Wn_p), [60722, 65015]); - assert (round (Wn_s), [60726, 65011]); -***** test - # Analog notch (narrow band-stop) - [n, Wn_p, Wn_s] = buttord (2 * pi * [9581, 11000], ... - 2 * pi * [9875, 10126.5823], 1, 26, "s"); - assert (n, 3); - assert (round (Wn_p), [60721, 65016]); - assert (round (Wn_s), [60726, 65011]); -***** test - # Digital band-pass - fs = 44100; - [n, Wn_p, Wn_s] = buttord (2 / fs * [9500, 9750], ... - 2 / fs * [8500, 10051], 1, 26); - Wn_p = Wn_p * fs / 2; - Wn_s = Wn_s * fs / 2; - assert (n, 4); - assert (round (Wn_p), [9477, 9773]); - assert (round (Wn_s), [9425, 9826]); -***** test - # Digital band-pass - fs = 44100; - [n, Wn_p, Wn_s] = buttord (2 / fs * [9500, 9750], ... - 2 / fs * [9204, 10700], 1, 26); - Wn_p = Wn_p * fs / 2; - Wn_s = Wn_s * fs / 2; - assert (n, 4); - assert (round (Wn_p), [9477, 9773]); - assert (round (Wn_s), [9425, 9826]); -***** test - # Digital band-pass - fs = 44100; - [n, Wn_p, Wn_s] = buttord (2 / fs * [9500, 9750], ... - 2 / fs * [8500, 10052], 1, 26); - Wn_p = Wn_p * fs / 2; - Wn_s = Wn_s * fs / 2; - assert (n, 3); - assert (round (Wn_p), [9469, 9782]); - assert (round (Wn_s), [9468, 9782]); -***** test - # Digital band-pass - fs = 44100; - [n, Wn_p, Wn_s] = buttord (2 / fs * [9500, 9750], ... - 2 / fs * [9203, 10700], 1, 26); - Wn_p = Wn_p * fs / 2; - Wn_s = Wn_s * fs / 2; - assert (n, 3); - assert (round (Wn_p), [9469, 9782]); - assert (round (Wn_s), [9468, 9782]); -***** test - # Digital high-pass - fs = 44100; - [n, Wn_p, Wn_s] = buttord (2 / fs * 10987, 2 / fs * 4000, 1, 26); - Wn_p = Wn_p * fs / 2; - Wn_s = Wn_s * fs / 2; - assert (n, 4); - assert (round (Wn_p), 9808); - assert (round (Wn_s), 7780); -***** test - # Digital high-pass - fs = 44100; - [n, Wn_p, Wn_s] = buttord (2 / fs * 10988, 2 / fs * 4000, 1, 26); - Wn_p = Wn_p * fs / 2; - Wn_s = Wn_s * fs / 2; - assert (n, 3); - assert (round (Wn_p), 9421); - assert (round (Wn_s), 9421); -***** test - # Digital low-pass - fs = 44100; - [n, Wn_p, Wn_s] = buttord (2 / fs * 4000, 2 / fs * 10987, 1, 26); - Wn_p = Wn_p * fs / 2; - Wn_s = Wn_s * fs / 2; - assert (n, 4); - assert (round (Wn_p), 4686); - assert (round (Wn_s), 6176); -***** test - # Digital low-pass - fs = 44100; - [n, Wn_p, Wn_s] = buttord (2 / fs * 4000, 2 / fs * 10988, 1, 26); - Wn_p = Wn_p * fs / 2; - Wn_s = Wn_s * fs / 2; - assert (n, 3); - assert (round (Wn_p), 4936); - assert (round (Wn_s), 4936); -***** test - # Digital notch (narrow band-stop) - fs = 44100; - [n, Wn_p, Wn_s] = buttord (2 / fs * [8500, 10833], ... - 2 / fs * [9875, 10126.5823], 0.5, 40); - Wn_p = Wn_p * fs / 2; - Wn_s = Wn_s * fs / 2; - assert (n, 4); - assert (round (Wn_p), [9369, 10640]); - assert (round (Wn_s), [9605, 10400]); -***** test - # Digital notch (narrow band-stop) - fs = 44100; - [n, Wn_p, Wn_s] = buttord (2 / fs * [9183, 11000], ... - 2 / fs * [9875, 10126.5823], 0.5, 40); - Wn_p = Wn_p * fs / 2; - Wn_s = Wn_s * fs / 2; - assert (n, 4); - assert (round (Wn_p), [9370, 10640]); - assert (round (Wn_s), [9605, 10400]); -***** test - # Digital notch (narrow band-stop) - fs = 44100; - [n, Wn_p, Wn_s] = buttord (2 / fs * [8500, 10834], ... - 2 / fs * [9875, 10126.5823], 0.5, 40); - Wn_p = Wn_p * fs / 2; - Wn_s = Wn_s * fs / 2; - assert (n, 3); - assert (round (Wn_p), [9421, 10587]); - assert (round (Wn_s), [9422, 10587]); -***** test - # Digital notch (narrow band-stop) - fs = 44100; - [n, Wn_p, Wn_s] = buttord (2 / fs * [9182, 11000], ... - 2 / fs * [9875, 10126.5823], 0.5, 40); - Wn_p = Wn_p * fs / 2; - Wn_s = Wn_s * fs / 2; - assert (n, 3); - assert (round (Wn_p), [9421, 10587]); - assert (round (Wn_s), [9422, 10587]); -***** error buttord () -***** error buttord (.1) -***** error buttord (.1, .2) -***** error buttord (.1, .2, 3) -***** error buttord ([.1 .1], [.2 .2], 3, 4) -***** error buttord ([.1 .2], [.5 .6], 3, 4) -***** error buttord ([.1 .5], [.2 .6], 3, 4) -31 tests, 31 passed, 0 known failure, 0 skipped -[inst/db2pow.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/db2pow.m -***** shared db - db = [-10, 0, 10, 20, 25]; -***** assert (db2pow (db), [0.10000, 1.00000, 10.00000, 100.00000, 316.22777], 0.00001) -***** assert (db2pow (db'), [0.10000; 1.00000; 10.00000; 100.00000; 316.22777], 0.00001) -***** error db2pow () -***** error db2pow (1, 2) -4 tests, 4 passed, 0 known failure, 0 skipped -[inst/gaussian.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/gaussian.m -***** assert (gaussian (1), 1) -***** error gaussian () -***** error gaussian (0.5) -***** error gaussian (-1) -***** error gaussian (ones (1, 4)) -***** error gaussian (1, 2, 3) -6 tests, 6 passed, 0 known failure, 0 skipped -[inst/filtfilt.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/filtfilt.m -***** error filtfilt (); -***** error filtfilt (1, 2, 3, 4); -***** error filtfilt ([0.28, 0.71, 0.28], 1, rand ()) -***** error filtfilt ([0.28, 0.71, 0.28], 1, rand (6, 1)) -***** test - randn('state',0); - r = randn(1,200); - [b,a] = butter(10, [.2, .25]); - yfb = filtfilt(b, a, r); - assert (size(r), size(yfb)); - assert (mean(abs(yfb)) < 1e3); - assert (mean(abs(yfb)) < mean(abs(r))); - ybf = fliplr(filtfilt(b, a, fliplr(r))); - assert (mean(abs(ybf)) < 1e3); - assert (mean(abs(ybf)) < mean(abs(r))); -***** test - randn('state',0); - r = randn(1,1000); - s = 10 * sin(pi * 4e-2 * (1:length(r))); - [b,a] = cheby1(2, .5, [4e-4 8e-2]); - y = filtfilt(b, a, r+s); - assert (size(r), size(y)); - assert (mean(abs(y)) < 1e3); - assert (corr(s(250:750)(:), y(250:750)(:)) > .95) - [b,a] = butter(2, [4e-4 8e-2]); - yb = filtfilt(b, a, r+s); - assert (mean(abs(yb)) < 1e3); - assert (corr(y(:), yb(:)) > .99) -***** test - randn('state',0); - r = randn(1,1000); - s = 10 * sin(pi * 4e-2 * (1:length(r))); - [b,a] = butter(2, [4e-4 8e-2]); - y = filtfilt(b, a, [r.' s.']); - yr = filtfilt(b, a, r); - ys = filtfilt(b, a, s); - assert (y, [yr.' ys.']); - y2 = filtfilt(b.', a.', [r.' s.']); - assert (y, y2); -7 tests, 7 passed, 0 known failure, 0 skipped -[inst/isallpass.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/isallpass.m -***** demo - # H(z) = (b1 - z^-1) * (b2 - z^-1) / ((1 - b1*z^-1) * (1 - b2*z^-1)) - b1 = 0.5 * (1 + i); - b2 = 0.7 * (cos (pi/6) + i*sin (pi/6)); - b = conv ([b1 -1], [b2 -1]); - a = conv ([1 (-1)*conj(b1)],[1 (-1)*conj(b2)]); - freqz (b, a); - f = isallpass (b, a) - ## test input validation -***** error n = isallpass () -***** error n = isallpass (1) -***** error n = isallpass (1, 1, 1) -***** error n = isallpass (1, 1, 1, 1) -***** error n = isallpass (1, 1, 1, 1, 1) -***** error n = isallpass ([1:10]', 1) -***** error n = isallpass (1, [1:10]') -***** error n = isallpass ([1:10]', [1:10]') -***** error n = isallpass (1:10, 1:10, 1:10) -***** error n = isallpass (ones (3), ones (3)) -***** test - b = [(1+i)/2 -1]; - a = [1 -(1-i)/2]; - f = isallpass (b, a); - assert (f, true) -***** test - b = [(1+i)/2 -1]; - a = [-1 (1-i)/2]; - f = isallpass (b, a); - assert (f, true) -***** test - [b, a] = butter (1, 0.5); - f = isallpass (b, a); - assert (f, false) -***** test - b1 = 0.5 * (1 + i); - b2 = 0.7 * (cos (pi/6) + i*sin (pi/6)); - b = conv ([b1 -1], [b2 -1]); - a = conv ([1 -conj(b1)],[1, -conj(b2)]); - f = isallpass (b, a); - assert (f, true) -14 tests, 14 passed, 0 known failure, 0 skipped -[inst/invimpinvar.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/invimpinvar.m -***** function err = ztoserr(bz,az,fs) - - # number of time steps - n=100; - - # make sure system is realizable (no delays) - bz=prepad(bz,length(az)-1,0,2); - - # inverse impulse invariant transform to s-domain - [bs as]=invimpinvar(bz,az,fs); - - # create sys object of transfer function - s=tf(bs,as); - - # calculate impulse response of continuous time system - # at discrete time intervals 1/fs - ys=impulse(s,(n-1)/fs,1/fs)'; - - # impulse response of discrete time system - yz=filter(bz,az,[1 zeros(1,n-1)]); - - # find rms error - err=sqrt(sum((yz*fs-ys).^2)/length(ys)); - endfunction - -***** assert(ztoserr([1],[1 -0.5],0.01),0,0.0001); -***** assert(ztoserr([1],[1 -1 0.25],0.01),0,0.0001); -***** assert(ztoserr([1 1],[1 -1 0.25],0.01),0,0.0001); -***** assert(ztoserr([1],[1 -1.5 0.75 -0.125],0.01),0,0.0001); -***** assert(ztoserr([1 1],[1 -1.5 0.75 -0.125],0.01),0,0.0001); -***** assert(ztoserr([1 1 1],[1 -1.5 0.75 -0.125],0.01),0,0.0001); -***** assert(ztoserr([1],[1 0 0.25],0.01),0,0.0001); -***** assert(ztoserr([1 1],[1 0 0.25],0.01),0,0.0001); -***** assert(ztoserr([1],[1 0 0.5 0 0.0625],0.01),0,0.0001); -***** assert(ztoserr([1 1],[1 0 0.5 0 0.0625],0.01),0,0.0001); -***** assert(ztoserr([1 1 1],[1 0 0.5 0 0.0625],0.01),0,0.0001); -***** assert(ztoserr([1 1 1 1],[1 0 0.5 0 0.0625],0.01),0,0.0001); -12 tests, 12 passed, 0 known failure, 0 skipped -[inst/digitrevorder.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/digitrevorder.m -***** assert (digitrevorder (0, 2), 0); -***** assert (digitrevorder (0, 36), 0); -***** assert (digitrevorder (0:3, 4), 0:3); -***** assert (digitrevorder ([0:3]', 4), [0:3]'); -***** assert (digitrevorder (0:7, 2), [0 4 2 6 1 5 3 7]); -***** assert (digitrevorder ([0:7]', 2), [0 4 2 6 1 5 3 7]'); -***** assert (digitrevorder ([0:7]*i, 2), [0 4 2 6 1 5 3 7]*i); -***** assert (digitrevorder ([0:7]'*i, 2), [0 4 2 6 1 5 3 7]'*i); -***** assert (digitrevorder (0:15, 2), [0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15]); -***** assert (digitrevorder (0:15, 4), [0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15]); -***** error digitrevorder (); -***** error digitrevorder (1); -***** error digitrevorder (1, 2, 3); -***** error digitrevorder ([], 1); -***** error digitrevorder ([], 37); -***** error digitrevorder (0:3, 8); -16 tests, 16 passed, 0 known failure, 0 skipped -[inst/cheby2.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/cheby2.m -***** error [a, b] = cheby2 () -***** error [a, b] = cheby2 (1) -***** error [a, b] = cheby2 (1, 2) -***** error [a, b] = cheby2 (1, 2, 3, 4, 5, 6) -***** error [a, b] = cheby2 (.5, 40, .2) -***** error [a, b] = cheby2 (3, 40, .2, "invalid") -***** test - cheby2 (3, 4, .5); - assert (isrow (ans)); -***** test - A = cheby2 (3, 4, .5); - assert (isrow (A)); -***** test - [A, B] = cheby2 (3, 4, .5); - assert (isrow (A)); - assert (isrow (B)); -***** test - [z, p, g] = cheby2 (3, 4, .5); - assert (iscolumn (z)); - assert (iscolumn (p)); - assert (isscalar (g)); -***** test - [a, b, c, d] = cheby2 (3, 4, .5); - assert (ismatrix (a)); - assert (iscolumn (b)); - assert (isrow (c)); - assert (isscalar (d)); -11 tests, 11 passed, 0 known failure, 0 skipped -[inst/grpdelay.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/grpdelay.m -***** demo % 1 - %-------------------------------------------------------------- - % From Oppenheim and Schafer, a single zero of radius r=0.9 at - % angle pi should have a group delay of about -9 at 1 and 1/2 - % at zero and 2*pi. - %-------------------------------------------------------------- - grpdelay([1 0.9],[],512,'whole',1); - hold on; - xlabel('Normalized Frequency (cycles/sample)'); - stem([0, 0.5, 1],[0.5, -9, 0.5],'*b;target;'); - hold off; - title ('Zero at z = -0.9'); - -***** demo % 2 - %-------------------------------------------------------------- - % confirm the group delays approximately meet the targets - % don't worry that it is not exact, as I have not entered - % the exact targets. - %-------------------------------------------------------------- - b = poly([1/0.9*exp(1i*pi*0.2), 0.9*exp(1i*pi*0.6)]); - a = poly([0.9*exp(-1i*pi*0.6), 1/0.9*exp(-1i*pi*0.2)]); - grpdelay(b,a,512,'whole',1); - hold on; - xlabel('Normalized Frequency (cycles/sample)'); - stem([0.1, 0.3, 0.7, 0.9], [9, -9, 9, -9],'*b;target;'); - hold off; - title ('Two Zeros and Two Poles'); -***** demo % 3 - %-------------------------------------------------------------- - % fir lowpass order 40 with cutoff at w=0.3 and details of - % the transition band [.3, .5] - %-------------------------------------------------------------- - subplot(211); - Fs = 8000; % sampling rate - Fc = 0.3*Fs/2; % lowpass cut-off frequency - nb = 40; - b = fir1(nb,2*Fc/Fs); % matlab freq normalization: 1=Fs/2 - [H,f] = freqz(b,1,[],1); - [gd,f] = grpdelay(b,1,[],1); - plot(f,20*log10(abs(H))); - title(sprintf('b = fir1(%d,2*%d/%d);',nb,Fc,Fs)); - xlabel('Normalized Frequency (cycles/sample)'); - ylabel('Amplitude Response (dB)'); - grid('on'); - subplot(212); - del = nb/2; % should equal this - plot(f,gd); - title(sprintf('Group Delay in Pass-Band (Expect %d samples)',del)); - ylabel('Group Delay (samples)'); - axis([0, 0.2, del-1, del+1]); -***** demo % 4 - %-------------------------------------------------------------- - % IIR bandstop filter has delays at [1000, 3000] - %-------------------------------------------------------------- - Fs = 8000; - [b, a] = cheby1(3, 3, 2*[1000, 3000]/Fs, 'stop'); - [H,f] = freqz(b,a,[],Fs); - [gd,f] = grpdelay(b,a,[],Fs); - subplot(211); - plot(f,abs(H)); - title('[b,a] = cheby1(3, 3, 2*[1000, 3000]/Fs, "stop");'); - xlabel('Frequency (Hz)'); - ylabel('Amplitude Response'); - grid('on'); - subplot(212); - plot(f,gd); - title('[gd,f] = grpdelay(b,a,[],Fs);'); - ylabel('Group Delay (samples)'); -***** test % 00 - [gd1,w] = grpdelay([0,1]); - [gd2,w] = grpdelay([0,1],1); - assert(gd1,gd2,10*eps); -***** test % 0A - [gd,w] = grpdelay([0,1],1,4); - assert(gd,[1;1;1;1]); - assert(w,pi/4*[0:3]',10*eps); -***** test % 0B - [gd,w] = grpdelay([0,1],1,4,'whole'); - assert(gd,[1;1;1;1]); - assert(w,pi/2*[0:3]',10*eps); -***** test % 0C - [gd,f] = grpdelay([0,1],1,4,0.5); - assert(gd,[1;1;1;1]); - assert(f,1/16*[0:3]',10*eps); -***** test % 0D - [gd,w] = grpdelay([0,1],1,4,'whole',1); - assert(gd,[1;1;1;1]); - assert(w,1/4*[0:3]',10*eps); -***** test % 0E - [gd,f] = grpdelay([1 -0.9j],[],4,'whole',1); - gd0 = 0.447513812154696; gdm1 =0.473684210526316; - assert(gd,[gd0;-9;gd0;gdm1],20*eps); - assert(f,1/4*[0:3]',10*eps); -***** test % 1A: - gd= grpdelay(1,[1,.9],2*pi*[0,0.125,0.25,0.375]); - assert(gd, [-0.47368;-0.46918;-0.44751;-0.32316],1e-5); -***** test % 1B: - gd= grpdelay(1,[1,.9],[0,0.125,0.25,0.375],1); - assert(gd, [-0.47368;-0.46918;-0.44751;-0.32316],1e-5); -***** test % 2: - gd = grpdelay([1,2],[1,0.5,.9],4); - assert(gd,[-0.29167;-0.24218;0.53077;0.40658],1e-5); -***** test % 3 - b1=[1,2];a1f=[0.25,0.5,1];a1=fliplr(a1f); - % gd1=grpdelay(b1,a1,4); - gd=grpdelay(conv(b1,a1f),1,4)-2; - assert(gd, [0.095238;0.239175;0.953846;1.759360],1e-5); -***** test % 4 - warning ("off", "signal:grpdelay-singularity", "local"); - Fs = 8000; - [b, a] = cheby1(3, 3, 2*[1000, 3000]/Fs, 'stop'); - [h, w] = grpdelay(b, a, 256, 'half', Fs); - [h2, w2] = grpdelay(b, a, 512, 'whole', Fs); - assert (size(h), size(w)); - assert (length(h), 256); - assert (size(h2), size(w2)); - assert (length(h2), 512); - assert (h, h2(1:256)); - assert (w, w2(1:256)); -***** test % 5 - a = [1 0 0.9]; - b = [0.9 0 1]; - [dh, wf] = grpdelay(b, a, 512, 'whole'); - [da, wa] = grpdelay(1, a, 512, 'whole'); - [db, wb] = grpdelay(b, 1, 512, 'whole'); - assert(dh,db+da,1e-5); -***** test - DR= [1.00000 -0.00000 -3.37219 0.00000 ... - 5.45710 -0.00000 -5.24394 0.00000 ... - 3.12049 -0.00000 -1.08770 0.00000 0.17404]; - N = [-0.0139469 -0.0222376 0.0178631 0.0451737 ... - 0.0013962 -0.0259712 0.0016338 0.0165189 ... - 0.0115098 0.0095051 0.0043874]; - assert (nthargout (1:2, @grpdelay, N, DR, 1024), - nthargout (1:2, @grpdelay, N', DR', 1024)); -13 tests, 13 passed, 0 known failure, 0 skipped -[inst/welchwin.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/welchwin.m -***** demo - m = 32; - t = [0:m-1]; - printf ("Graph: single period of "); - printf ("%d-point periodic (blue) and symmetric (red) windows\n", m); - xp = welchwin (m, "periodic"); - xs = welchwin (m, "symmetric"); - plot (t, xp, "b", t, xs, "r") -***** demo - m = 32; - t = [0:4*m-1]; - printf ("Graph: 4 periods of "); - printf ("%d-point periodic (blue) and symmetric (red) windows\n", m); - xp = welchwin (m, "periodic"); - xs = welchwin (m, "symmetric"); - xp2 = repmat (xp, 4, 1); - xs2 = repmat (xs, 4, 1); - plot (t, xp2, "b", t, xs2, "r") -***** demo - m = 32; - n = 512; - xp = welchwin (m, "periodic"); - s = fftshift (max (1e-2, abs (fft (postpad (xp, n))))); - f = [-0.5:1/n:0.5-1/n]; - printf ("%dx null-padded, power spectrum of %d-point window\n", n/m, m); - semilogy (f, s) -***** assert (welchwin (3), [0; 1; 0]); -***** assert (welchwin (15), flipud (welchwin (15))); -***** assert (welchwin (16), flipud (welchwin (16))); -***** assert (welchwin (15), welchwin (15, "symmetric")); -***** assert (welchwin (16)(1:15), welchwin (15, "periodic")); -***** error welchwin () -***** error welchwin (0.5) -***** error welchwin (-1) -***** error welchwin (ones (1, 4)) -***** error welchwin (1, 2, 3) -***** error welchwin (1, "invalid") -11 tests, 11 passed, 0 known failure, 0 skipped -[inst/tf2sos.m] ->>>>> /build/reproducible-path/octave-signal-1.4.6/inst/tf2sos.m -***** test - B=[1 0 0 0 0 1]; A=[1 0 0 0 0 .9]; - [sos,g] = tf2sos(B,A); - [Bh,Ah] = sos2tf(sos,g); - assert({Bh,Ah},{B,A},100*eps); -1 test, 1 passed, 0 known failure, 0 skipped Checking C++ files ... -[src/upfirdn.cc] ->>>>> /build/reproducible-path/octave-signal-1.4.6/src/upfirdn.cc -***** assert (isequal (upfirdn (1:100, 1, 1, 1), 1:100)) -***** assert (isequal (upfirdn (1:100, 1, 1, 2), 1:2:100)) -***** error upfirdn () -***** error upfirdn (1,2) -***** error upfirdn (1,2,3) -***** error upfirdn (1,2,3,4,5) -6 tests, 6 passed, 0 known failure, 0 skipped -[src/cl2bp.cc] ->>>>> /build/reproducible-path/octave-signal-1.4.6/src/cl2bp.cc -***** test - b = [ - 0.0000000000000000 - 0.0563980420304213 - -0.0000000000000000 - -0.0119990278695041 - -0.0000000000000001 - -0.3016146759510104 - 0.0000000000000001 - 0.5244313235801866 - 0.0000000000000001 - -0.3016146759510104 - -0.0000000000000001 - -0.0119990278695041 - -0.0000000000000000 - 0.0563980420304213 - 0.0000000000000000]; - assert(cl2bp(7, 0.25*pi, 0.75*pi, [0.01, 1.04, 0.01], [-0.01, 0.96, -0.01], 2^11), b, 1e-14); - assert(cl2bp(7, 0.25*pi, 0.75*pi, [0.01, 1.04, 0.01], [-0.01, 0.96, -0.01]), b, 1e-14); +[src/__ultrwin__.cc] +>>>>> /build/reproducible-path/octave-signal-1.4.6/src/__ultrwin__.cc +***** assert (1) 1 test, 1 passed, 0 known failure, 0 skipped [src/firpm.cc] >>>>> /build/reproducible-path/octave-signal-1.4.6/src/firpm.cc @@ -10827,6 +10836,32 @@ % Figure shows delay response of (non-linear-phase) % filter designs with progressive fractional-delay. 52 tests, 52 passed, 0 known failure, 0 skipped +[src/remez.cc] +>>>>> /build/reproducible-path/octave-signal-1.4.6/src/remez.cc +***** test + b = [ + 0.0415131831103279 + 0.0581639884202646 + -0.0281579212691008 + -0.0535575358002337 + -0.0617245915143180 + 0.0507753178978075 + 0.2079018331396460 + 0.3327160895375440 + 0.3327160895375440 + 0.2079018331396460 + 0.0507753178978075 + -0.0617245915143180 + -0.0535575358002337 + -0.0281579212691008 + 0.0581639884202646 + 0.0415131831103279]; + assert(remez(15,[0,0.3,0.4,1],[1,1,0,0]),b,1e-14); +1 test, 1 passed, 0 known failure, 0 skipped +[src/__fwht__.cc] +>>>>> /build/reproducible-path/octave-signal-1.4.6/src/__fwht__.cc +***** assert (1) +1 test, 1 passed, 0 known failure, 0 skipped [src/medfilt1.cc] >>>>> /build/reproducible-path/octave-signal-1.4.6/src/medfilt1.cc ***** assert (medfilt1 ([1 2 3 4 3 2 1]), [1 2 3 3 3 2 1]); @@ -10885,36 +10920,37 @@ ***** error (medfilt1 ([1 2 3], 1, [], "omitnan", false)); ***** error (medfilt1 ({1 2 3})); 20 tests, 20 passed, 0 known failure, 0 skipped -[src/__ultrwin__.cc] ->>>>> /build/reproducible-path/octave-signal-1.4.6/src/__ultrwin__.cc -***** assert (1) -1 test, 1 passed, 0 known failure, 0 skipped -[src/__fwht__.cc] ->>>>> /build/reproducible-path/octave-signal-1.4.6/src/__fwht__.cc -***** assert (1) -1 test, 1 passed, 0 known failure, 0 skipped -[src/remez.cc] ->>>>> /build/reproducible-path/octave-signal-1.4.6/src/remez.cc +[src/cl2bp.cc] +>>>>> /build/reproducible-path/octave-signal-1.4.6/src/cl2bp.cc ***** test b = [ - 0.0415131831103279 - 0.0581639884202646 - -0.0281579212691008 - -0.0535575358002337 - -0.0617245915143180 - 0.0507753178978075 - 0.2079018331396460 - 0.3327160895375440 - 0.3327160895375440 - 0.2079018331396460 - 0.0507753178978075 - -0.0617245915143180 - -0.0535575358002337 - -0.0281579212691008 - 0.0581639884202646 - 0.0415131831103279]; - assert(remez(15,[0,0.3,0.4,1],[1,1,0,0]),b,1e-14); + 0.0000000000000000 + 0.0563980420304213 + -0.0000000000000000 + -0.0119990278695041 + -0.0000000000000001 + -0.3016146759510104 + 0.0000000000000001 + 0.5244313235801866 + 0.0000000000000001 + -0.3016146759510104 + -0.0000000000000001 + -0.0119990278695041 + -0.0000000000000000 + 0.0563980420304213 + 0.0000000000000000]; + assert(cl2bp(7, 0.25*pi, 0.75*pi, [0.01, 1.04, 0.01], [-0.01, 0.96, -0.01], 2^11), b, 1e-14); + assert(cl2bp(7, 0.25*pi, 0.75*pi, [0.01, 1.04, 0.01], [-0.01, 0.96, -0.01]), b, 1e-14); 1 test, 1 passed, 0 known failure, 0 skipped +[src/upfirdn.cc] +>>>>> /build/reproducible-path/octave-signal-1.4.6/src/upfirdn.cc +***** assert (isequal (upfirdn (1:100, 1, 1, 1), 1:100)) +***** assert (isequal (upfirdn (1:100, 1, 1, 2), 1:2:100)) +***** error upfirdn () +***** error upfirdn (1,2) +***** error upfirdn (1,2,3) +***** error upfirdn (1,2,3,4,5) +6 tests, 6 passed, 0 known failure, 0 skipped Done running the unit tests. Summary: 1071 tests, 1070 passed, 1 known failures, 0 skipped dh_installdocs -O--buildsystem=octave @@ -10940,8 +10976,8 @@ dpkg-gencontrol: warning: package octave-signal: substitution variable ${octave:Upstream-Description} unused, but is defined dh_md5sums -O--buildsystem=octave dh_builddeb -O--buildsystem=octave -dpkg-deb: building package 'octave-signal-dbgsym' in '../octave-signal-dbgsym_1.4.6-1_amd64.deb'. dpkg-deb: building package 'octave-signal' in '../octave-signal_1.4.6-1_amd64.deb'. +dpkg-deb: building package 'octave-signal-dbgsym' in '../octave-signal-dbgsym_1.4.6-1_amd64.deb'. dpkg-genbuildinfo --build=binary -O../octave-signal_1.4.6-1_amd64.buildinfo dpkg-genchanges --build=binary -O../octave-signal_1.4.6-1_amd64.changes dpkg-genchanges: info: binary-only upload (no source code included) @@ -10949,12 +10985,14 @@ dpkg-buildpackage: info: binary-only upload (no source included) dpkg-genchanges: info: including full source code in upload I: copying local configuration +I: user script /srv/workspace/pbuilder/4000832/tmp/hooks/B01_cleanup starting +I: user script /srv/workspace/pbuilder/4000832/tmp/hooks/B01_cleanup finished I: unmounting dev/ptmx filesystem I: unmounting dev/pts filesystem I: unmounting dev/shm filesystem I: unmounting proc filesystem I: unmounting sys filesystem I: cleaning the build env -I: removing directory /srv/workspace/pbuilder/2378953 and its subdirectories -I: Current time: Fri Mar 13 14:02:15 -12 2026 -I: pbuilder-time-stamp: 1773453735 +I: removing directory /srv/workspace/pbuilder/4000832 and its subdirectories +I: Current time: Sun Feb 9 09:51:14 +14 2025 +I: pbuilder-time-stamp: 1739044274