Diff of the two buildlogs: -- --- b1/build.log 2019-06-19 17:54:15.983734217 +0000 +++ b2/build.log 2019-06-19 17:54:45.222391308 +0000 @@ -1,6 +1,6 @@ I: pbuilder: network access will be disabled during build -I: Current time: Wed Jun 19 05:43:15 -12 2019 -I: pbuilder-time-stamp: 1560966195 +I: Current time: Wed Jul 22 14:17:16 +14 2020 +I: pbuilder-time-stamp: 1595377036 I: Building the build Environment I: extracting base tarball [/var/cache/pbuilder/buster-reproducible-base.tgz] I: copying local configuration @@ -18,7 +18,7 @@ I: Extracting source gpgv: unknown type of key resource 'trustedkeys.kbx' gpgv: keyblock resource '/root/.gnupg/trustedkeys.kbx': General error -gpgv: Signature made Sun Sep 9 10:57:46 2018 -12 +gpgv: Signature made Mon Sep 10 12:57:46 2018 +14 gpgv: using RSA key D1E1316E93A760A8104D85FABB3A68018649AA06 gpgv: Can't check signature: No public key dpkg-source: warning: failed to verify signature on ./libmath-prime-util-gmp-perl_0.51-1.dsc @@ -27,6 +27,18 @@ dpkg-source: info: unpacking libmath-prime-util-gmp-perl_0.51-1.debian.tar.xz I: using fakeroot in build. I: Installing the build-deps +I: user script /srv/workspace/pbuilder/4067/tmp/hooks/D01_modify_environment starting +disorder-fs debug: Running on profitbricks-build16-i386. +I: Changing host+domainname to test build reproducibility +I: Adding a custom variable just for the fun of it... +I: Changing /bin/sh to bash +Removing 'diversion of /bin/sh to /bin/sh.distrib by dash' +Adding 'diversion of /bin/sh to /bin/sh.distrib by bash' +Removing 'diversion of /usr/share/man/man1/sh.1.gz to /usr/share/man/man1/sh.distrib.1.gz by dash' +Adding 'diversion of /usr/share/man/man1/sh.1.gz to /usr/share/man/man1/sh.distrib.1.gz by bash' +I: Setting pbuilder2's login shell to /bin/bash +I: Setting pbuilder2's GECOS to second user,second room,second work-phone,second home-phone,second other +I: user script /srv/workspace/pbuilder/4067/tmp/hooks/D01_modify_environment finished -> Attempting to satisfy build-dependencies -> Creating pbuilder-satisfydepends-dummy package Package: pbuilder-satisfydepends-dummy @@ -99,7 +111,7 @@ Get: 33 http://cdn-fastly.deb.debian.org/debian buster/main i386 debhelper all 12.1.1 [1016 kB] Get: 34 http://cdn-fastly.deb.debian.org/debian buster/main i386 libgmpxx4ldbl i386 2:6.1.2+dfsg-4 [23.2 kB] Get: 35 http://cdn-fastly.deb.debian.org/debian buster/main i386 libgmp-dev i386 2:6.1.2+dfsg-4 [648 kB] -Fetched 20.0 MB in 18s (1114 kB/s) +Fetched 20.0 MB in 1s (27.0 MB/s) debconf: delaying package configuration, since apt-utils is not installed Selecting previously unselected package libbsd0:i386. (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 19231 files and directories currently installed.) @@ -260,9 +272,41 @@ Building dependency tree... Reading state information... fakeroot is already the newest version (1.23-1). -0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. +The following additional packages will be installed: + libfile-find-rule-perl libnumber-compare-perl libtext-glob-perl +The following NEW packages will be installed: + libfile-find-rule-perl libnumber-compare-perl libtext-glob-perl usrmerge +0 upgraded, 4 newly installed, 0 to remove and 0 not upgraded. +Need to get 59.5 kB of archives. +After this operation, 182 kB of additional disk space will be used. +Get:1 http://cdn-fastly.deb.debian.org/debian buster/main i386 libnumber-compare-perl all 0.03-1 [7642 B] +Get:2 http://cdn-fastly.deb.debian.org/debian buster/main i386 libtext-glob-perl all 0.10-1 [8362 B] +Get:3 http://cdn-fastly.deb.debian.org/debian buster/main i386 libfile-find-rule-perl all 0.34-1 [30.6 kB] +Get:4 http://cdn-fastly.deb.debian.org/debian buster/main i386 usrmerge all 21 [12.8 kB] +debconf: delaying package configuration, since apt-utils is not installed +Fetched 59.5 kB in 0s (570 kB/s) +Selecting previously unselected package libnumber-compare-perl. +(Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 21294 files and directories currently installed.) +Preparing to unpack .../libnumber-compare-perl_0.03-1_all.deb ... +Unpacking libnumber-compare-perl (0.03-1) ... +Selecting previously unselected package libtext-glob-perl. +Preparing to unpack .../libtext-glob-perl_0.10-1_all.deb ... +Unpacking libtext-glob-perl (0.10-1) ... +Selecting previously unselected package libfile-find-rule-perl. +Preparing to unpack .../libfile-find-rule-perl_0.34-1_all.deb ... +Unpacking libfile-find-rule-perl (0.34-1) ... +Selecting previously unselected package usrmerge. +Preparing to unpack .../archives/usrmerge_21_all.deb ... +Unpacking usrmerge (21) ... +Setting up libtext-glob-perl (0.10-1) ... +Setting up libnumber-compare-perl (0.03-1) ... +Setting up libfile-find-rule-perl (0.34-1) ... +Setting up usrmerge (21) ... +The system has been successfully converted. +Processing triggers for man-db (2.8.5-2) ... +Not building database; man-db/auto-update is not 'true'. I: Building the package -I: Running cd /build/libmath-prime-util-gmp-perl-0.51/ && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games" HOME="/nonexistent/first-build" dpkg-buildpackage -us -uc -b +I: Running cd /build/libmath-prime-util-gmp-perl-0.51/ && env PATH="/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/i/capture/the/path" HOME="/nonexistent/second-build" dpkg-buildpackage -us -uc -b dpkg-buildpackage: info: source package libmath-prime-util-gmp-perl dpkg-buildpackage: info: source version 0.51-1 dpkg-buildpackage: info: source distribution unstable @@ -284,11 +328,10 @@ Writing Makefile for Math::Prime::Util::GMP Writing MYMETA.yml and MYMETA.json dh_auto_build - make -j10 + make -j18 make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.51' Running Mkbootstrap for GMP () i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.51=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.51\" -DXS_VERSION=\"0.51\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" prime_iterator.c -chmod 644 "GMP.bs" i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.51=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.51\" -DXS_VERSION=\"0.51\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" utility.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.51=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.51\" -DXS_VERSION=\"0.51\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" primality.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.51=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.51\" -DXS_VERSION=\"0.51\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" factor.c @@ -296,8 +339,8 @@ i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.51=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.51\" -DXS_VERSION=\"0.51\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" squfof126.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.51=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.51\" -DXS_VERSION=\"0.51\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" ecm.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.51=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.51\" -DXS_VERSION=\"0.51\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" tinyqs.c +chmod 644 "GMP.bs" i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.51=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.51\" -DXS_VERSION=\"0.51\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" simpqs.c -cp lib/Math/Prime/Util/GMP.pm blib/lib/Math/Prime/Util/GMP.pm i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.51=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.51\" -DXS_VERSION=\"0.51\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" bls75.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.51=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.51\" -DXS_VERSION=\"0.51\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" ecpp.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.51=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.51\" -DXS_VERSION=\"0.51\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" aks.c @@ -306,6 +349,7 @@ i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.51=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.51\" -DXS_VERSION=\"0.51\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" isaac.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.51=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.51\" -DXS_VERSION=\"0.51\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" random_prime.c "/usr/bin/perl" "/usr/share/perl/5.28/ExtUtils/xsubpp" -typemap '/usr/share/perl/5.28/ExtUtils/typemap' XS.xs > XS.xsc +cp lib/Math/Prime/Util/GMP.pm blib/lib/Math/Prime/Util/GMP.pm "/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- GMP.bs blib/arch/auto/Math/Prime/Util/GMP/GMP.bs 644 mv XS.xsc XS.c i686-linux-gnu-gcc -c -D_REENTRANT -D_GNU_SOURCE -DDEBIAN -fwrapv -fno-strict-aliasing -pipe -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -g -O2 -ffile-prefix-map=/build/libmath-prime-util-gmp-perl-0.51=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -DVERSION=\"0.51\" -DXS_VERSION=\"0.51\" -fPIC "-I/usr/lib/i386-linux-gnu/perl/5.28/CORE" XS.c @@ -317,7 +361,7 @@ Manifying 1 pod document make[1]: Leaving directory '/build/libmath-prime-util-gmp-perl-0.51' dh_auto_test - make -j10 test TEST_VERBOSE=1 + make -j18 test TEST_VERBOSE=1 make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.51' "/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- GMP.bs blib/arch/auto/Math/Prime/Util/GMP/GMP.bs 644 PERL_DL_NONLAZY=1 "/usr/bin/perl" "-MExtUtils::Command::MM" "-MTest::Harness" "-e" "undef *Test::Harness::Switches; test_harness(1, 'blib/lib', 'blib/arch')" t/*.t @@ -573,37 +617,37 @@ ok 10 - primes(undef,undef) ok 11 - primes(x,x) ok 12 - primes(-10,-4) -ok 13 - primes(3) should return [2 3] -ok 14 - primes(11) should return [2 3 5 7 11] -ok 15 - primes(7) should return [2 3 5 7] -ok 16 - primes(2) should return [2] -ok 17 - primes(20) should return [2 3 5 7 11 13 17 19] -ok 18 - primes(0) should return [] -ok 19 - primes(18) should return [2 3 5 7 11 13 17] -ok 20 - primes(6) should return [2 3 5] -ok 21 - primes(4) should return [2 3] -ok 22 - primes(5) should return [2 3 5] -ok 23 - primes(1) should return [] -ok 24 - primes(19) should return [2 3 5 7 11 13 17 19] -ok 25 - primes(3,7) should return [3 5 7] -ok 26 - primes(20,2) should return [] -ok 27 - primes(2,3) should return [2 3] -ok 28 - primes(3842610773,3842611109) should return [3842610773 3842611109] -ok 29 - primes(3,9) should return [3 5 7] -ok 30 - primes(2,2) should return [2] -ok 31 - primes(3088,3164) should return [3089 3109 3119 3121 3137 3163] -ok 32 - primes(4,8) should return [5 7] -ok 33 - primes(3,6) should return [3 5] -ok 34 - primes(2010733,2010881) should return [2010733 2010881] -ok 35 - primes(70,30) should return [] -ok 36 - primes(3,3) should return [3] -ok 37 - primes(3090,3162) should return [3109 3119 3121 3137] -ok 38 - primes(3842610774,3842611108) should return [] -ok 39 - primes(2,20) should return [2 3 5 7 11 13 17 19] -ok 40 - primes(2,5) should return [2 3 5] +ok 13 - primes(5) should return [2 3 5] +ok 14 - primes(4) should return [2 3] +ok 15 - primes(18) should return [2 3 5 7 11 13 17] +ok 16 - primes(6) should return [2 3 5] +ok 17 - primes(11) should return [2 3 5 7 11] +ok 18 - primes(1) should return [] +ok 19 - primes(20) should return [2 3 5 7 11 13 17 19] +ok 20 - primes(3) should return [2 3] +ok 21 - primes(19) should return [2 3 5 7 11 13 17 19] +ok 22 - primes(7) should return [2 3 5 7] +ok 23 - primes(2) should return [2] +ok 24 - primes(0) should return [] +ok 25 - primes(3,6) should return [3 5] +ok 26 - primes(3088,3164) should return [3089 3109 3119 3121 3137 3163] +ok 27 - primes(3,7) should return [3 5 7] +ok 28 - primes(3,9) should return [3 5 7] +ok 29 - primes(4,8) should return [5 7] +ok 30 - primes(20,2) should return [] +ok 31 - primes(2,2) should return [2] +ok 32 - primes(3842610773,3842611109) should return [3842610773 3842611109] +ok 33 - primes(2,3) should return [2 3] +ok 34 - primes(3842610774,3842611108) should return [] +ok 35 - primes(3,3) should return [3] +ok 36 - primes(2,5) should return [2 3 5] +ok 37 - primes(2010733,2010881) should return [2010733 2010881] +ok 38 - primes(2,20) should return [2 3 5 7 11 13 17 19] +ok 39 - primes(3090,3162) should return [3109 3119 3121 3137] +ok 40 - primes(3089,3163) should return [3089 3109 3119 3121 3137 3163] ok 41 - primes(30,70) should return [31 37 41 43 47 53 59 61 67] ok 42 - primes(2010734,2010880) should return [] -ok 43 - primes(3089,3163) should return [3089 3109 3119 3121 3137 3163] +ok 43 - primes(70,30) should return [] ok 44 - Primes between 1_693_182_318_746_371 and 1_693_182_318_747_671 ok 45 - primes( 2^66, 2^66 + 100 ) ok 46 - count primes within a range @@ -629,12 +673,12 @@ 1..27 ok 1 - prev_prime 0..3572 ok 2 - next_prime 0..3572 -ok 3 - next prime of 19609 is 19609+52 -ok 4 - prev prime of 19609+52 is 19609 +ok 3 - next prime of 360653 is 360653+96 +ok 4 - prev prime of 360653+96 is 360653 ok 5 - next prime of 2010733 is 2010733+148 ok 6 - prev prime of 2010733+148 is 2010733 -ok 7 - next prime of 360653 is 360653+96 -ok 8 - prev prime of 360653+96 is 360653 +ok 7 - next prime of 19609 is 19609+52 +ok 8 - prev prime of 19609+52 is 19609 ok 9 - next prime of 19608 is 19609 ok 10 - next prime of 19610 is 19661 ok 11 - next prime of 19660 is 19661 @@ -661,12 +705,12 @@ ok 2 - prime_count(0,2) == 1 ok 3 - prime_count(0,3) == 2 ok 4 - prime_count(2,2) == 2 -ok 5 - Pi(10000) = 1229 -ok 6 - Pi(10) = 4 -ok 7 - Pi(65535) = 6542 -ok 8 - Pi(100) = 25 -ok 9 - Pi(1000) = 168 -ok 10 - Pi(1) = 0 +ok 5 - Pi(1000) = 168 +ok 6 - Pi(10000) = 1229 +ok 7 - Pi(100) = 25 +ok 8 - Pi(1) = 0 +ok 9 - Pi(10) = 4 +ok 10 - Pi(65535) = 6542 ok 11 - prime_count(24113483758197309440,24113483758197310396) = 23 ok 12 - prime_count(45490240575506677760,45490240575506679266) = 45 ok 13 - prime_count(75458848506302300160,75458848506302301114) = 18 @@ -724,178 +768,178 @@ ok 65 - prime_count(396766049747924068225951765070086144,396766049747924068225951765070087394) = 10 ok 66 - prime_count(884985931172514936451903530140172288,884985931172514936451903530140172881) = 9 ok 67 - prime_count(1969978340430920872903807060280344576,1969978340430920872903807060280346393) = 17 -ok 68 - prime_count_lower(2^62) <= 109932807585469973 -ok 69 - prime_count_upper(2^62) >= 109932807585469973 -ok 70 - prime_count_lower(2^22) <= 295947 -ok 71 - prime_count_upper(2^22) >= 295947 -ok 72 - prime_count_lower(2^28) <= 14630843 -ok 73 - prime_count_upper(2^28) >= 14630843 -ok 74 - prime_count_lower(2^47) <= 4461632979717 -ok 75 - prime_count_upper(2^47) >= 4461632979717 -ok 76 - prime_count_lower(2^68) <= 6400771597544937806 -ok 77 - prime_count_upper(2^68) >= 6400771597544937806 -ok 78 - prime_count_lower(2^39) <= 21151907950 -ok 79 - prime_count_upper(2^39) >= 21151907950 -ok 80 - prime_count_lower(2^26) <= 3957809 -ok 81 - prime_count_upper(2^26) >= 3957809 -ok 82 - prime_count_lower(2^19) <= 43390 -ok 83 - prime_count_upper(2^19) >= 43390 -ok 84 - prime_count_lower(2^66) <= 1649819700464785589 -ok 85 - prime_count_upper(2^66) >= 1649819700464785589 -ok 86 - prime_count_lower(2^59) <= 14458792895301660 -ok 87 - prime_count_upper(2^59) >= 14458792895301660 -ok 88 - prime_count_lower(2^25) <= 2063689 -ok 89 - prime_count_upper(2^25) >= 2063689 -ok 90 - prime_count_lower(2^65) <= 837903145466607212 -ok 91 - prime_count_upper(2^65) >= 837903145466607212 -ok 92 - prime_count_lower(2^2) <= 2 -ok 93 - prime_count_upper(2^2) >= 2 -ok 94 - prime_count_lower(2^6) <= 18 -ok 95 - prime_count_upper(2^6) >= 18 -ok 96 - prime_count_lower(2^57) <= 3745011184713964 -ok 97 - prime_count_upper(2^57) >= 3745011184713964 -ok 98 - prime_count_lower(2^37) <= 5586502348 -ok 99 - prime_count_upper(2^37) >= 5586502348 -ok 100 - prime_count_lower(2^49) <= 17094432576778 -ok 101 - prime_count_upper(2^49) >= 17094432576778 -ok 102 - prime_count_lower(2^81) <= 43860397052947409356492 -ok 103 - prime_count_upper(2^81) >= 43860397052947409356492 -ok 104 - prime_count_lower(2^17) <= 12251 -ok 105 - prime_count_upper(2^17) >= 12251 -ok 106 - prime_count_lower(2^71) <= 48995571600129458363 -ok 107 - prime_count_upper(2^71) >= 48995571600129458363 -ok 108 - prime_count_lower(2^60) <= 28423094496953330 -ok 109 - prime_count_upper(2^60) >= 28423094496953330 -ok 110 - prime_count_lower(2^20) <= 82025 -ok 111 - prime_count_upper(2^20) >= 82025 -ok 112 - prime_count_lower(2^79) <= 11248065615133675809379 -ok 113 - prime_count_upper(2^79) >= 11248065615133675809379 -ok 114 - prime_count_lower(2^41) <= 80316571436 -ok 115 - prime_count_upper(2^41) >= 80316571436 -ok 116 - prime_count_lower(2^23) <= 564163 -ok 117 - prime_count_upper(2^23) >= 564163 -ok 118 - prime_count_lower(2^63) <= 216289611853439384 -ok 119 - prime_count_upper(2^63) >= 216289611853439384 -ok 120 - prime_count_lower(2^11) <= 309 -ok 121 - prime_count_upper(2^11) >= 309 -ok 122 - prime_count_lower(2^77) <= 2886507381056867953916 -ok 123 - prime_count_upper(2^77) >= 2886507381056867953916 -ok 124 - prime_count_lower(2^31) <= 105097565 -ok 125 - prime_count_upper(2^31) >= 105097565 -ok 126 - prime_count_lower(2^24) <= 1077871 -ok 127 - prime_count_upper(2^24) >= 1077871 -ok 128 - prime_count_lower(2^64) <= 425656284035217743 -ok 129 - prime_count_upper(2^64) >= 425656284035217743 -ok 130 - prime_count_lower(2^51) <= 65612899915304 -ok 131 - prime_count_upper(2^51) >= 65612899915304 -ok 132 - prime_count_lower(2^36) <= 2874398515 -ok 133 - prime_count_upper(2^36) >= 2874398515 -ok 134 - prime_count_lower(2^18) <= 23000 -ok 135 - prime_count_upper(2^18) >= 23000 -ok 136 - prime_count_lower(2^38) <= 10866266172 -ok 137 - prime_count_upper(2^38) >= 10866266172 -ok 138 - prime_count_lower(2^29) <= 28192750 -ok 139 - prime_count_upper(2^29) >= 28192750 -ok 140 - prime_count_lower(2^69) <= 12611864618760352880 -ok 141 - prime_count_upper(2^69) >= 12611864618760352880 -ok 142 - prime_count_lower(2^16) <= 6542 -ok 143 - prime_count_upper(2^16) >= 6542 -ok 144 - prime_count_lower(2^32) <= 203280221 -ok 145 - prime_count_upper(2^32) >= 203280221 -ok 146 - prime_count_lower(2^12) <= 564 -ok 147 - prime_count_upper(2^12) >= 564 -ok 148 - prime_count_lower(2^80) <= 22209558889635384205844 -ok 149 - prime_count_upper(2^80) >= 22209558889635384205844 -ok 150 - prime_count_lower(2^70) <= 24855455363362685793 -ok 151 - prime_count_upper(2^70) >= 24855455363362685793 -ok 152 - prime_count_lower(2^58) <= 7357400267843990 -ok 153 - prime_count_upper(2^58) >= 7357400267843990 +ok 68 - prime_count_lower(2^42) <= 156661034233 +ok 69 - prime_count_upper(2^42) >= 156661034233 +ok 70 - prime_count_lower(2^67) <= 3249254387052557215 +ok 71 - prime_count_upper(2^67) >= 3249254387052557215 +ok 72 - prime_count_lower(2^17) <= 12251 +ok 73 - prime_count_upper(2^17) >= 12251 +ok 74 - prime_count_lower(2^9) <= 97 +ok 75 - prime_count_upper(2^9) >= 97 +ok 76 - prime_count_lower(2^33) <= 393615806 +ok 77 - prime_count_upper(2^33) >= 393615806 +ok 78 - prime_count_lower(2^75) <= 741263521140740113483 +ok 79 - prime_count_upper(2^75) >= 741263521140740113483 +ok 80 - prime_count_lower(2^59) <= 14458792895301660 +ok 81 - prime_count_upper(2^59) >= 14458792895301660 +ok 82 - prime_count_lower(2^24) <= 1077871 +ok 83 - prime_count_upper(2^24) >= 1077871 +ok 84 - prime_count_lower(2^41) <= 80316571436 +ok 85 - prime_count_upper(2^41) >= 80316571436 +ok 86 - prime_count_lower(2^55) <= 971269945245201 +ok 87 - prime_count_upper(2^55) >= 971269945245201 +ok 88 - prime_count_lower(2^79) <= 11248065615133675809379 +ok 89 - prime_count_upper(2^79) >= 11248065615133675809379 +ok 90 - prime_count_lower(2^26) <= 3957809 +ok 91 - prime_count_upper(2^26) >= 3957809 +ok 92 - prime_count_lower(2^5) <= 11 +ok 93 - prime_count_upper(2^5) >= 11 +ok 94 - prime_count_lower(2^36) <= 2874398515 +ok 95 - prime_count_upper(2^36) >= 2874398515 +ok 96 - prime_count_lower(2^40) <= 41203088796 +ok 97 - prime_count_upper(2^40) >= 41203088796 +ok 98 - prime_count_lower(2^23) <= 564163 +ok 99 - prime_count_upper(2^23) >= 564163 +ok 100 - prime_count_lower(2^7) <= 31 +ok 101 - prime_count_upper(2^7) >= 31 +ok 102 - prime_count_lower(2^34) <= 762939111 +ok 103 - prime_count_upper(2^34) >= 762939111 +ok 104 - prime_count_lower(2^48) <= 8731188863470 +ok 105 - prime_count_upper(2^48) >= 8731188863470 +ok 106 - prime_count_lower(2^43) <= 305761713237 +ok 107 - prime_count_upper(2^43) >= 305761713237 +ok 108 - prime_count_lower(2^32) <= 203280221 +ok 109 - prime_count_upper(2^32) >= 203280221 +ok 110 - prime_count_lower(2^28) <= 14630843 +ok 111 - prime_count_upper(2^28) >= 14630843 +ok 112 - prime_count_lower(2^31) <= 105097565 +ok 113 - prime_count_upper(2^31) >= 105097565 +ok 114 - prime_count_lower(2^8) <= 54 +ok 115 - prime_count_upper(2^8) >= 54 +ok 116 - prime_count_lower(2^20) <= 82025 +ok 117 - prime_count_upper(2^20) >= 82025 +ok 118 - prime_count_lower(2^6) <= 18 +ok 119 - prime_count_upper(2^6) >= 18 +ok 120 - prime_count_lower(2^1) <= 1 +ok 121 - prime_count_upper(2^1) >= 1 +ok 122 - prime_count_lower(2^85) <= 668150111666935905701562 +ok 123 - prime_count_upper(2^85) >= 668150111666935905701562 +ok 124 - prime_count_lower(2^15) <= 3512 +ok 125 - prime_count_upper(2^15) >= 3512 +ok 126 - prime_count_lower(2^21) <= 155611 +ok 127 - prime_count_upper(2^21) >= 155611 +ok 128 - prime_count_lower(2^65) <= 837903145466607212 +ok 129 - prime_count_upper(2^65) >= 837903145466607212 +ok 130 - prime_count_lower(2^30) <= 54400028 +ok 131 - prime_count_upper(2^30) >= 54400028 +ok 132 - prime_count_lower(2^77) <= 2886507381056867953916 +ok 133 - prime_count_upper(2^77) >= 2886507381056867953916 +ok 134 - prime_count_lower(2^46) <= 2280998753949 +ok 135 - prime_count_upper(2^46) >= 2280998753949 +ok 136 - prime_count_lower(2^22) <= 295947 +ok 137 - prime_count_upper(2^22) >= 295947 +ok 138 - prime_count_lower(2^69) <= 12611864618760352880 +ok 139 - prime_count_upper(2^69) >= 12611864618760352880 +ok 140 - prime_count_lower(2^19) <= 43390 +ok 141 - prime_count_upper(2^19) >= 43390 +ok 142 - prime_count_lower(2^38) <= 10866266172 +ok 143 - prime_count_upper(2^38) >= 10866266172 +ok 144 - prime_count_lower(2^57) <= 3745011184713964 +ok 145 - prime_count_upper(2^57) >= 3745011184713964 +ok 146 - prime_count_lower(2^44) <= 597116381732 +ok 147 - prime_count_upper(2^44) >= 597116381732 +ok 148 - prime_count_lower(2^25) <= 2063689 +ok 149 - prime_count_upper(2^25) >= 2063689 +ok 150 - prime_count_lower(2^11) <= 309 +ok 151 - prime_count_upper(2^11) >= 309 +ok 152 - prime_count_lower(2^61) <= 55890484045084135 +ok 153 - prime_count_upper(2^61) >= 55890484045084135 ok 154 - prime_count_lower(2^56) <= 1906879381028850 ok 155 - prime_count_upper(2^56) >= 1906879381028850 -ok 156 - prime_count_lower(2^4) <= 6 -ok 157 - prime_count_upper(2^4) >= 6 -ok 158 - prime_count_lower(2^52) <= 128625503610475 -ok 159 - prime_count_upper(2^52) >= 128625503610475 -ok 160 - prime_count_lower(2^45) <= 1166746786182 -ok 161 - prime_count_upper(2^45) >= 1166746786182 -ok 162 - prime_count_lower(2^84) <= 338124238545210097236684 -ok 163 - prime_count_upper(2^84) >= 338124238545210097236684 -ok 164 - prime_count_lower(2^74) <= 375744164937699609596 -ok 165 - prime_count_upper(2^74) >= 375744164937699609596 -ok 166 - prime_count_lower(2^3) <= 4 -ok 167 - prime_count_upper(2^3) >= 4 -ok 168 - prime_count_lower(2^15) <= 3512 -ok 169 - prime_count_upper(2^15) >= 3512 -ok 170 - prime_count_lower(2^35) <= 1480206279 -ok 171 - prime_count_upper(2^35) >= 1480206279 -ok 172 - prime_count_lower(2^1) <= 1 -ok 173 - prime_count_upper(2^1) >= 1 -ok 174 - prime_count_lower(2^46) <= 2280998753949 -ok 175 - prime_count_upper(2^46) >= 2280998753949 -ok 176 - prime_count_lower(2^67) <= 3249254387052557215 -ok 177 - prime_count_upper(2^67) >= 3249254387052557215 -ok 178 - prime_count_lower(2^48) <= 8731188863470 -ok 179 - prime_count_upper(2^48) >= 8731188863470 -ok 180 - prime_count_lower(2^27) <= 7603553 -ok 181 - prime_count_upper(2^27) >= 7603553 -ok 182 - prime_count_lower(2^55) <= 971269945245201 -ok 183 - prime_count_upper(2^55) >= 971269945245201 -ok 184 - prime_count_lower(2^42) <= 156661034233 -ok 185 - prime_count_upper(2^42) >= 156661034233 -ok 186 - prime_count_lower(2^83) <= 171136408646923240987028 -ok 187 - prime_count_upper(2^83) >= 171136408646923240987028 -ok 188 - prime_count_lower(2^73) <= 190499823401327905601 -ok 189 - prime_count_upper(2^73) >= 190499823401327905601 -ok 190 - prime_count_lower(2^5) <= 11 -ok 191 - prime_count_upper(2^5) >= 11 -ok 192 - prime_count_lower(2^44) <= 597116381732 -ok 193 - prime_count_upper(2^44) >= 597116381732 -ok 194 - prime_count_lower(2^50) <= 33483379603407 -ok 195 - prime_count_upper(2^50) >= 33483379603407 -ok 196 - prime_count_lower(2^86) <= 1320486952377516565496055 -ok 197 - prime_count_upper(2^86) >= 1320486952377516565496055 -ok 198 - prime_count_lower(2^76) <= 1462626667154509638735 -ok 199 - prime_count_upper(2^76) >= 1462626667154509638735 -ok 200 - prime_count_lower(2^9) <= 97 -ok 201 - prime_count_upper(2^9) >= 97 -ok 202 - prime_count_lower(2^78) <= 5697549648954257752872 -ok 203 - prime_count_upper(2^78) >= 5697549648954257752872 -ok 204 - prime_count_lower(2^72) <= 96601075195075186855 -ok 205 - prime_count_upper(2^72) >= 96601075195075186855 -ok 206 - prime_count_lower(2^10) <= 172 -ok 207 - prime_count_upper(2^10) >= 172 -ok 208 - prime_count_lower(2^82) <= 86631124695994360074872 -ok 209 - prime_count_upper(2^82) >= 86631124695994360074872 -ok 210 - prime_count_lower(2^30) <= 54400028 -ok 211 - prime_count_upper(2^30) >= 54400028 -ok 212 - prime_count_lower(2^43) <= 305761713237 -ok 213 - prime_count_upper(2^43) >= 305761713237 -ok 214 - prime_count_lower(2^61) <= 55890484045084135 -ok 215 - prime_count_upper(2^61) >= 55890484045084135 -ok 216 - prime_count_lower(2^21) <= 155611 -ok 217 - prime_count_upper(2^21) >= 155611 -ok 218 - prime_count_lower(2^54) <= 494890204904784 -ok 219 - prime_count_upper(2^54) >= 494890204904784 -ok 220 - prime_count_lower(2^13) <= 1028 -ok 221 - prime_count_upper(2^13) >= 1028 -ok 222 - prime_count_lower(2^33) <= 393615806 -ok 223 - prime_count_upper(2^33) >= 393615806 -ok 224 - prime_count_lower(2^40) <= 41203088796 -ok 225 - prime_count_upper(2^40) >= 41203088796 -ok 226 - prime_count_lower(2^14) <= 1900 -ok 227 - prime_count_upper(2^14) >= 1900 -ok 228 - prime_count_lower(2^34) <= 762939111 -ok 229 - prime_count_upper(2^34) >= 762939111 -ok 230 - prime_count_lower(2^8) <= 54 -ok 231 - prime_count_upper(2^8) >= 54 -ok 232 - prime_count_lower(2^7) <= 31 -ok 233 - prime_count_upper(2^7) >= 31 -ok 234 - prime_count_lower(2^53) <= 252252704148404 -ok 235 - prime_count_upper(2^53) >= 252252704148404 -ok 236 - prime_count_lower(2^85) <= 668150111666935905701562 -ok 237 - prime_count_upper(2^85) >= 668150111666935905701562 -ok 238 - prime_count_lower(2^75) <= 741263521140740113483 -ok 239 - prime_count_upper(2^75) >= 741263521140740113483 +ok 156 - prime_count_lower(2^81) <= 43860397052947409356492 +ok 157 - prime_count_upper(2^81) >= 43860397052947409356492 +ok 158 - prime_count_lower(2^74) <= 375744164937699609596 +ok 159 - prime_count_upper(2^74) >= 375744164937699609596 +ok 160 - prime_count_lower(2^3) <= 4 +ok 161 - prime_count_upper(2^3) >= 4 +ok 162 - prime_count_lower(2^82) <= 86631124695994360074872 +ok 163 - prime_count_upper(2^82) >= 86631124695994360074872 +ok 164 - prime_count_lower(2^76) <= 1462626667154509638735 +ok 165 - prime_count_upper(2^76) >= 1462626667154509638735 +ok 166 - prime_count_lower(2^12) <= 564 +ok 167 - prime_count_upper(2^12) >= 564 +ok 168 - prime_count_lower(2^62) <= 109932807585469973 +ok 169 - prime_count_upper(2^62) >= 109932807585469973 +ok 170 - prime_count_lower(2^54) <= 494890204904784 +ok 171 - prime_count_upper(2^54) >= 494890204904784 +ok 172 - prime_count_lower(2^47) <= 4461632979717 +ok 173 - prime_count_upper(2^47) >= 4461632979717 +ok 174 - prime_count_lower(2^29) <= 28192750 +ok 175 - prime_count_upper(2^29) >= 28192750 +ok 176 - prime_count_lower(2^39) <= 21151907950 +ok 177 - prime_count_upper(2^39) >= 21151907950 +ok 178 - prime_count_lower(2^18) <= 23000 +ok 179 - prime_count_upper(2^18) >= 23000 +ok 180 - prime_count_lower(2^53) <= 252252704148404 +ok 181 - prime_count_upper(2^53) >= 252252704148404 +ok 182 - prime_count_lower(2^68) <= 6400771597544937806 +ok 183 - prime_count_upper(2^68) >= 6400771597544937806 +ok 184 - prime_count_lower(2^35) <= 1480206279 +ok 185 - prime_count_upper(2^35) >= 1480206279 +ok 186 - prime_count_lower(2^10) <= 172 +ok 187 - prime_count_upper(2^10) >= 172 +ok 188 - prime_count_lower(2^2) <= 2 +ok 189 - prime_count_upper(2^2) >= 2 +ok 190 - prime_count_lower(2^73) <= 190499823401327905601 +ok 191 - prime_count_upper(2^73) >= 190499823401327905601 +ok 192 - prime_count_lower(2^60) <= 28423094496953330 +ok 193 - prime_count_upper(2^60) >= 28423094496953330 +ok 194 - prime_count_lower(2^80) <= 22209558889635384205844 +ok 195 - prime_count_upper(2^80) >= 22209558889635384205844 +ok 196 - prime_count_lower(2^78) <= 5697549648954257752872 +ok 197 - prime_count_upper(2^78) >= 5697549648954257752872 +ok 198 - prime_count_lower(2^50) <= 33483379603407 +ok 199 - prime_count_upper(2^50) >= 33483379603407 +ok 200 - prime_count_lower(2^4) <= 6 +ok 201 - prime_count_upper(2^4) >= 6 +ok 202 - prime_count_lower(2^37) <= 5586502348 +ok 203 - prime_count_upper(2^37) >= 5586502348 +ok 204 - prime_count_lower(2^83) <= 171136408646923240987028 +ok 205 - prime_count_upper(2^83) >= 171136408646923240987028 +ok 206 - prime_count_lower(2^13) <= 1028 +ok 207 - prime_count_upper(2^13) >= 1028 +ok 208 - prime_count_lower(2^70) <= 24855455363362685793 +ok 209 - prime_count_upper(2^70) >= 24855455363362685793 +ok 210 - prime_count_lower(2^58) <= 7357400267843990 +ok 211 - prime_count_upper(2^58) >= 7357400267843990 +ok 212 - prime_count_lower(2^63) <= 216289611853439384 +ok 213 - prime_count_upper(2^63) >= 216289611853439384 +ok 214 - prime_count_lower(2^49) <= 17094432576778 +ok 215 - prime_count_upper(2^49) >= 17094432576778 +ok 216 - prime_count_lower(2^27) <= 7603553 +ok 217 - prime_count_upper(2^27) >= 7603553 +ok 218 - prime_count_lower(2^14) <= 1900 +ok 219 - prime_count_upper(2^14) >= 1900 +ok 220 - prime_count_lower(2^52) <= 128625503610475 +ok 221 - prime_count_upper(2^52) >= 128625503610475 +ok 222 - prime_count_lower(2^64) <= 425656284035217743 +ok 223 - prime_count_upper(2^64) >= 425656284035217743 +ok 224 - prime_count_lower(2^71) <= 48995571600129458363 +ok 225 - prime_count_upper(2^71) >= 48995571600129458363 +ok 226 - prime_count_lower(2^84) <= 338124238545210097236684 +ok 227 - prime_count_upper(2^84) >= 338124238545210097236684 +ok 228 - prime_count_lower(2^45) <= 1166746786182 +ok 229 - prime_count_upper(2^45) >= 1166746786182 +ok 230 - prime_count_lower(2^66) <= 1649819700464785589 +ok 231 - prime_count_upper(2^66) >= 1649819700464785589 +ok 232 - prime_count_lower(2^72) <= 96601075195075186855 +ok 233 - prime_count_upper(2^72) >= 96601075195075186855 +ok 234 - prime_count_lower(2^16) <= 6542 +ok 235 - prime_count_upper(2^16) >= 6542 +ok 236 - prime_count_lower(2^86) <= 1320486952377516565496055 +ok 237 - prime_count_upper(2^86) >= 1320486952377516565496055 +ok 238 - prime_count_lower(2^51) <= 65612899915304 +ok 239 - prime_count_upper(2^51) >= 65612899915304 ok t/15-probprime.t ............. 1..149 @@ -1210,922 +1254,922 @@ ok 16 - spsp(2, 2) shortcut prime ok 17 - slpsp(1) shortcut composite ok 18 - slpsp(3) shortcut prime -ok 19 - Pseudoprime (base 553174392) 553174393 passes MR -ok 20 - Pseudoprime (base 553174392) 553945231 passes MR -ok 21 - Pseudoprime (base 553174392) 554494951 passes MR -ok 22 - Pseudoprime (base 553174392) 554892787 passes MR -ok 23 - Pseudoprime (base 553174392) 555429169 passes MR -ok 24 - Pseudoprime (base 553174392) 557058133 passes MR -ok 25 - Pseudoprime (base 553174392) 557163157 passes MR -ok 26 - Pseudoprime (base 553174392) 557165209 passes MR -ok 27 - Pseudoprime (base 553174392) 558966793 passes MR -ok 28 - Pseudoprime (base 553174392) 559407061 passes MR -ok 29 - Pseudoprime (base 553174392) 560291719 passes MR -ok 30 - Pseudoprime (base 553174392) 561008251 passes MR -ok 31 - Pseudoprime (base 553174392) 563947141 passes MR -ok 32 - Pseudoprime (base 17) 9 passes MR -ok 33 - Pseudoprime (base 17) 91 passes MR -ok 34 - Pseudoprime (base 17) 145 passes MR -ok 35 - Pseudoprime (base 17) 781 passes MR -ok 36 - Pseudoprime (base 17) 1111 passes MR -ok 37 - Pseudoprime (base 17) 2821 passes MR -ok 38 - Pseudoprime (base 17) 4033 passes MR -ok 39 - Pseudoprime (base 17) 4187 passes MR -ok 40 - Pseudoprime (base 17) 5365 passes MR -ok 41 - Pseudoprime (base 17) 5833 passes MR -ok 42 - Pseudoprime (base 17) 6697 passes MR -ok 43 - Pseudoprime (base 17) 7171 passes MR -ok 44 - Pseudoprime (base 17) 15805 passes MR -ok 45 - Pseudoprime (base 17) 19729 passes MR -ok 46 - Pseudoprime (base 17) 21781 passes MR -ok 47 - Pseudoprime (base 17) 22791 passes MR -ok 48 - Pseudoprime (base 17) 24211 passes MR -ok 49 - Pseudoprime (base 17) 26245 passes MR -ok 50 - Pseudoprime (base 17) 31621 passes MR -ok 51 - Pseudoprime (base 17) 33001 passes MR -ok 52 - Pseudoprime (base 17) 33227 passes MR -ok 53 - Pseudoprime (base 17) 34441 passes MR -ok 54 - Pseudoprime (base 17) 35371 passes MR -ok 55 - Pseudoprime (base 17) 38081 passes MR -ok 56 - Pseudoprime (base 17) 42127 passes MR -ok 57 - Pseudoprime (base 17) 49771 passes MR -ok 58 - Pseudoprime (base 17) 71071 passes MR -ok 59 - Pseudoprime (base 17) 74665 passes MR -ok 60 - Pseudoprime (base 17) 77293 passes MR -ok 61 - Pseudoprime (base 17) 78881 passes MR -ok 62 - Pseudoprime (base 17) 88831 passes MR -ok 63 - Pseudoprime (base 17) 96433 passes MR -ok 64 - Pseudoprime (base 17) 97921 passes MR -ok 65 - Pseudoprime (base 17) 98671 passes MR -ok 66 - Pseudoprime (base 3) 121 passes MR -ok 67 - Pseudoprime (base 3) 703 passes MR -ok 68 - Pseudoprime (base 3) 1891 passes MR -ok 69 - Pseudoprime (base 3) 3281 passes MR -ok 70 - Pseudoprime (base 3) 8401 passes MR -ok 71 - Pseudoprime (base 3) 8911 passes MR -ok 72 - Pseudoprime (base 3) 10585 passes MR -ok 73 - Pseudoprime (base 3) 12403 passes MR -ok 74 - Pseudoprime (base 3) 16531 passes MR -ok 75 - Pseudoprime (base 3) 18721 passes MR -ok 76 - Pseudoprime (base 3) 19345 passes MR -ok 77 - Pseudoprime (base 3) 23521 passes MR -ok 78 - Pseudoprime (base 3) 31621 passes MR -ok 79 - Pseudoprime (base 3) 44287 passes MR -ok 80 - Pseudoprime (base 3) 47197 passes MR -ok 81 - Pseudoprime (base 3) 55969 passes MR -ok 82 - Pseudoprime (base 3) 63139 passes MR -ok 83 - Pseudoprime (base 3) 74593 passes MR -ok 84 - Pseudoprime (base 3) 79003 passes MR -ok 85 - Pseudoprime (base 3) 82513 passes MR -ok 86 - Pseudoprime (base 3) 87913 passes MR -ok 87 - Pseudoprime (base 3) 88573 passes MR -ok 88 - Pseudoprime (base 3) 97567 passes MR -ok 89 - 1729 is an Euler-Plumb pseudoprime -ok 90 - 1905 is an Euler-Plumb pseudoprime -ok 91 - 2047 is an Euler-Plumb pseudoprime -ok 92 - 2465 is an Euler-Plumb pseudoprime -ok 93 - 3277 is an Euler-Plumb pseudoprime -ok 94 - 4033 is an Euler-Plumb pseudoprime -ok 95 - 4681 is an Euler-Plumb pseudoprime -ok 96 - 8321 is an Euler-Plumb pseudoprime -ok 97 - 12801 is an Euler-Plumb pseudoprime -ok 98 - 15841 is an Euler-Plumb pseudoprime -ok 99 - 16705 is an Euler-Plumb pseudoprime -ok 100 - 18705 is an Euler-Plumb pseudoprime -ok 101 - 25761 is an Euler-Plumb pseudoprime -ok 102 - 29341 is an Euler-Plumb pseudoprime -ok 103 - 33153 is an Euler-Plumb pseudoprime -ok 104 - 34945 is an Euler-Plumb pseudoprime -ok 105 - 41041 is an Euler-Plumb pseudoprime -ok 106 - 42799 is an Euler-Plumb pseudoprime -ok 107 - 46657 is an Euler-Plumb pseudoprime -ok 108 - 49141 is an Euler-Plumb pseudoprime -ok 109 - 52633 is an Euler-Plumb pseudoprime -ok 110 - 65281 is an Euler-Plumb pseudoprime -ok 111 - 74665 is an Euler-Plumb pseudoprime -ok 112 - 75361 is an Euler-Plumb pseudoprime -ok 113 - 80581 is an Euler-Plumb pseudoprime -ok 114 - 85489 is an Euler-Plumb pseudoprime -ok 115 - 87249 is an Euler-Plumb pseudoprime -ok 116 - 88357 is an Euler-Plumb pseudoprime -ok 117 - 90751 is an Euler-Plumb pseudoprime -ok 118 - Pseudoprime (base 1340600841) 1345289261 passes MR -ok 119 - Pseudoprime (base 1340600841) 1345582981 passes MR -ok 120 - Pseudoprime (base 1340600841) 1347743101 passes MR -ok 121 - Pseudoprime (base 1340600841) 1348964401 passes MR -ok 122 - Pseudoprime (base 1340600841) 1350371821 passes MR -ok 123 - Pseudoprime (base 1340600841) 1353332417 passes MR -ok 124 - Pseudoprime (base 1340600841) 1355646961 passes MR -ok 125 - Pseudoprime (base 1340600841) 1357500901 passes MR -ok 126 - Pseudoprime (base 1340600841) 1361675929 passes MR -ok 127 - Pseudoprime (base 1340600841) 1364378203 passes MR -ok 128 - Pseudoprime (base 1340600841) 1366346521 passes MR -ok 129 - Pseudoprime (base 1340600841) 1367104639 passes MR -ok 130 - Pseudoprime (base 23) 169 passes MR -ok 131 - Pseudoprime (base 23) 265 passes MR -ok 132 - Pseudoprime (base 23) 553 passes MR -ok 133 - Pseudoprime (base 23) 1271 passes MR -ok 134 - Pseudoprime (base 23) 2701 passes MR -ok 135 - Pseudoprime (base 23) 4033 passes MR -ok 136 - Pseudoprime (base 23) 4371 passes MR -ok 137 - Pseudoprime (base 23) 4681 passes MR -ok 138 - Pseudoprime (base 23) 6533 passes MR -ok 139 - Pseudoprime (base 23) 6541 passes MR -ok 140 - Pseudoprime (base 23) 7957 passes MR -ok 141 - Pseudoprime (base 23) 8321 passes MR -ok 142 - Pseudoprime (base 23) 8651 passes MR -ok 143 - Pseudoprime (base 23) 8911 passes MR -ok 144 - Pseudoprime (base 23) 9805 passes MR -ok 145 - Pseudoprime (base 23) 14981 passes MR -ok 146 - Pseudoprime (base 23) 18721 passes MR -ok 147 - Pseudoprime (base 23) 25201 passes MR -ok 148 - Pseudoprime (base 23) 31861 passes MR -ok 149 - Pseudoprime (base 23) 34133 passes MR -ok 150 - Pseudoprime (base 23) 44173 passes MR -ok 151 - Pseudoprime (base 23) 47611 passes MR -ok 152 - Pseudoprime (base 23) 47783 passes MR -ok 153 - Pseudoprime (base 23) 50737 passes MR -ok 154 - Pseudoprime (base 23) 57401 passes MR -ok 155 - Pseudoprime (base 23) 62849 passes MR -ok 156 - Pseudoprime (base 23) 82513 passes MR -ok 157 - Pseudoprime (base 23) 96049 passes MR -ok 158 - Pseudoprime (base 73) 205 passes MR -ok 159 - Pseudoprime (base 73) 259 passes MR -ok 160 - Pseudoprime (base 73) 533 passes MR -ok 161 - Pseudoprime (base 73) 1441 passes MR -ok 162 - Pseudoprime (base 73) 1921 passes MR -ok 163 - Pseudoprime (base 73) 2665 passes MR -ok 164 - Pseudoprime (base 73) 3439 passes MR -ok 165 - Pseudoprime (base 73) 5257 passes MR -ok 166 - Pseudoprime (base 73) 15457 passes MR -ok 167 - Pseudoprime (base 73) 23281 passes MR -ok 168 - Pseudoprime (base 73) 24617 passes MR -ok 169 - Pseudoprime (base 73) 26797 passes MR -ok 170 - Pseudoprime (base 73) 27787 passes MR -ok 171 - Pseudoprime (base 73) 28939 passes MR -ok 172 - Pseudoprime (base 73) 34219 passes MR -ok 173 - Pseudoprime (base 73) 39481 passes MR -ok 174 - Pseudoprime (base 73) 44671 passes MR -ok 175 - Pseudoprime (base 73) 45629 passes MR -ok 176 - Pseudoprime (base 73) 64681 passes MR -ok 177 - Pseudoprime (base 73) 67069 passes MR -ok 178 - Pseudoprime (base 73) 76429 passes MR -ok 179 - Pseudoprime (base 73) 79501 passes MR -ok 180 - Pseudoprime (base 73) 93521 passes MR -ok 181 - 15 is an Euler pseudoprime to base 29 -ok 182 - 91 is an Euler pseudoprime to base 29 -ok 183 - 341 is an Euler pseudoprime to base 29 -ok 184 - 469 is an Euler pseudoprime to base 29 -ok 185 - 871 is an Euler pseudoprime to base 29 -ok 186 - 2257 is an Euler pseudoprime to base 29 -ok 187 - 4371 is an Euler pseudoprime to base 29 -ok 188 - 4411 is an Euler pseudoprime to base 29 -ok 189 - 5149 is an Euler pseudoprime to base 29 -ok 190 - 5185 is an Euler pseudoprime to base 29 -ok 191 - 6097 is an Euler pseudoprime to base 29 -ok 192 - 8401 is an Euler pseudoprime to base 29 -ok 193 - 8841 is an Euler pseudoprime to base 29 -ok 194 - 11581 is an Euler pseudoprime to base 29 -ok 195 - 12431 is an Euler pseudoprime to base 29 -ok 196 - 15577 is an Euler pseudoprime to base 29 -ok 197 - 15841 is an Euler pseudoprime to base 29 -ok 198 - 16471 is an Euler pseudoprime to base 29 -ok 199 - 19093 is an Euler pseudoprime to base 29 -ok 200 - 22281 is an Euler pseudoprime to base 29 -ok 201 - 25681 is an Euler pseudoprime to base 29 -ok 202 - 27613 is an Euler pseudoprime to base 29 -ok 203 - 28009 is an Euler pseudoprime to base 29 -ok 204 - 29539 is an Euler pseudoprime to base 29 -ok 205 - 31417 is an Euler pseudoprime to base 29 -ok 206 - 33001 is an Euler pseudoprime to base 29 -ok 207 - 41041 is an Euler pseudoprime to base 29 -ok 208 - 46657 is an Euler pseudoprime to base 29 -ok 209 - 48133 is an Euler pseudoprime to base 29 -ok 210 - 49141 is an Euler pseudoprime to base 29 -ok 211 - 54913 is an Euler pseudoprime to base 29 -ok 212 - 57889 is an Euler pseudoprime to base 29 -ok 213 - 79003 is an Euler pseudoprime to base 29 -ok 214 - 98301 is an Euler pseudoprime to base 29 -ok 215 - 989 is an extra strong Lucas pseudoprime -ok 216 - 3239 is an extra strong Lucas pseudoprime -ok 217 - 5777 is an extra strong Lucas pseudoprime -ok 218 - 10877 is an extra strong Lucas pseudoprime -ok 219 - 27971 is an extra strong Lucas pseudoprime -ok 220 - 29681 is an extra strong Lucas pseudoprime -ok 221 - 30739 is an extra strong Lucas pseudoprime -ok 222 - 31631 is an extra strong Lucas pseudoprime -ok 223 - 39059 is an extra strong Lucas pseudoprime -ok 224 - 72389 is an extra strong Lucas pseudoprime -ok 225 - 73919 is an extra strong Lucas pseudoprime -ok 226 - 75077 is an extra strong Lucas pseudoprime -ok 227 - 100127 is an extra strong Lucas pseudoprime -ok 228 - 113573 is an extra strong Lucas pseudoprime -ok 229 - 125249 is an extra strong Lucas pseudoprime -ok 230 - 137549 is an extra strong Lucas pseudoprime -ok 231 - 137801 is an extra strong Lucas pseudoprime -ok 232 - 153931 is an extra strong Lucas pseudoprime -ok 233 - 155819 is an extra strong Lucas pseudoprime -ok 234 - Pseudoprime (base 75088) 75089 passes MR -ok 235 - Pseudoprime (base 75088) 79381 passes MR -ok 236 - Pseudoprime (base 75088) 81317 passes MR -ok 237 - Pseudoprime (base 75088) 91001 passes MR -ok 238 - Pseudoprime (base 75088) 100101 passes MR -ok 239 - Pseudoprime (base 75088) 111361 passes MR -ok 240 - Pseudoprime (base 75088) 114211 passes MR -ok 241 - Pseudoprime (base 75088) 136927 passes MR -ok 242 - Pseudoprime (base 75088) 148289 passes MR -ok 243 - Pseudoprime (base 75088) 169641 passes MR -ok 244 - Pseudoprime (base 75088) 176661 passes MR -ok 245 - Pseudoprime (base 75088) 191407 passes MR -ok 246 - Pseudoprime (base 75088) 195649 passes MR -ok 247 - 323 is a Lucas-Selfridge pseudoprime -ok 248 - 377 is a Lucas-Selfridge pseudoprime -ok 249 - 1159 is a Lucas-Selfridge pseudoprime -ok 250 - 1829 is a Lucas-Selfridge pseudoprime -ok 251 - 3827 is a Lucas-Selfridge pseudoprime -ok 252 - 5459 is a Lucas-Selfridge pseudoprime -ok 253 - 5777 is a Lucas-Selfridge pseudoprime -ok 254 - 9071 is a Lucas-Selfridge pseudoprime -ok 255 - 9179 is a Lucas-Selfridge pseudoprime -ok 256 - 10877 is a Lucas-Selfridge pseudoprime -ok 257 - 11419 is a Lucas-Selfridge pseudoprime -ok 258 - 11663 is a Lucas-Selfridge pseudoprime -ok 259 - 13919 is a Lucas-Selfridge pseudoprime -ok 260 - 14839 is a Lucas-Selfridge pseudoprime -ok 261 - 16109 is a Lucas-Selfridge pseudoprime -ok 262 - 16211 is a Lucas-Selfridge pseudoprime -ok 263 - 18407 is a Lucas-Selfridge pseudoprime -ok 264 - 18971 is a Lucas-Selfridge pseudoprime -ok 265 - 19043 is a Lucas-Selfridge pseudoprime -ok 266 - 121 is an Euler pseudoprime to base 3 -ok 267 - 703 is an Euler pseudoprime to base 3 -ok 268 - 1729 is an Euler pseudoprime to base 3 -ok 269 - 1891 is an Euler pseudoprime to base 3 -ok 270 - 2821 is an Euler pseudoprime to base 3 -ok 271 - 3281 is an Euler pseudoprime to base 3 -ok 272 - 7381 is an Euler pseudoprime to base 3 -ok 273 - 8401 is an Euler pseudoprime to base 3 -ok 274 - 8911 is an Euler pseudoprime to base 3 -ok 275 - 10585 is an Euler pseudoprime to base 3 -ok 276 - 12403 is an Euler pseudoprime to base 3 -ok 277 - 15457 is an Euler pseudoprime to base 3 -ok 278 - 15841 is an Euler pseudoprime to base 3 -ok 279 - 16531 is an Euler pseudoprime to base 3 -ok 280 - 18721 is an Euler pseudoprime to base 3 -ok 281 - 19345 is an Euler pseudoprime to base 3 -ok 282 - 23521 is an Euler pseudoprime to base 3 -ok 283 - 24661 is an Euler pseudoprime to base 3 -ok 284 - 28009 is an Euler pseudoprime to base 3 -ok 285 - 29341 is an Euler pseudoprime to base 3 -ok 286 - 31621 is an Euler pseudoprime to base 3 -ok 287 - 41041 is an Euler pseudoprime to base 3 -ok 288 - 44287 is an Euler pseudoprime to base 3 -ok 289 - 46657 is an Euler pseudoprime to base 3 -ok 290 - 47197 is an Euler pseudoprime to base 3 -ok 291 - 49141 is an Euler pseudoprime to base 3 -ok 292 - 50881 is an Euler pseudoprime to base 3 -ok 293 - 52633 is an Euler pseudoprime to base 3 -ok 294 - 55969 is an Euler pseudoprime to base 3 -ok 295 - 63139 is an Euler pseudoprime to base 3 -ok 296 - 63973 is an Euler pseudoprime to base 3 -ok 297 - 74593 is an Euler pseudoprime to base 3 -ok 298 - 75361 is an Euler pseudoprime to base 3 -ok 299 - 79003 is an Euler pseudoprime to base 3 -ok 300 - 82513 is an Euler pseudoprime to base 3 -ok 301 - 87913 is an Euler pseudoprime to base 3 -ok 302 - 88573 is an Euler pseudoprime to base 3 -ok 303 - 93961 is an Euler pseudoprime to base 3 -ok 304 - 97567 is an Euler pseudoprime to base 3 -ok 305 - 341 is a pseudoprime to base 2 -ok 306 - 561 is a pseudoprime to base 2 -ok 307 - 645 is a pseudoprime to base 2 -ok 308 - 1105 is a pseudoprime to base 2 -ok 309 - 1387 is a pseudoprime to base 2 -ok 310 - 1729 is a pseudoprime to base 2 -ok 311 - 1905 is a pseudoprime to base 2 -ok 312 - 2047 is a pseudoprime to base 2 -ok 313 - 2465 is a pseudoprime to base 2 -ok 314 - 2701 is a pseudoprime to base 2 -ok 315 - 2821 is a pseudoprime to base 2 -ok 316 - 3277 is a pseudoprime to base 2 -ok 317 - 4033 is a pseudoprime to base 2 -ok 318 - 4369 is a pseudoprime to base 2 -ok 319 - 4371 is a pseudoprime to base 2 -ok 320 - 4681 is a pseudoprime to base 2 -ok 321 - 5461 is a pseudoprime to base 2 -ok 322 - 6601 is a pseudoprime to base 2 -ok 323 - 7957 is a pseudoprime to base 2 -ok 324 - 8321 is a pseudoprime to base 2 -ok 325 - 8481 is a pseudoprime to base 2 -ok 326 - 8911 is a pseudoprime to base 2 -ok 327 - 10261 is a pseudoprime to base 2 -ok 328 - 10585 is a pseudoprime to base 2 -ok 329 - 11305 is a pseudoprime to base 2 -ok 330 - 12801 is a pseudoprime to base 2 -ok 331 - 13741 is a pseudoprime to base 2 -ok 332 - 13747 is a pseudoprime to base 2 -ok 333 - 13981 is a pseudoprime to base 2 -ok 334 - 14491 is a pseudoprime to base 2 -ok 335 - 15709 is a pseudoprime to base 2 -ok 336 - 15841 is a pseudoprime to base 2 -ok 337 - 16705 is a pseudoprime to base 2 -ok 338 - 18705 is a pseudoprime to base 2 -ok 339 - 18721 is a pseudoprime to base 2 -ok 340 - 19951 is a pseudoprime to base 2 -ok 341 - 23001 is a pseudoprime to base 2 -ok 342 - 23377 is a pseudoprime to base 2 -ok 343 - 25761 is a pseudoprime to base 2 -ok 344 - 29341 is a pseudoprime to base 2 -ok 345 - Pseudoprime (base 29) 15 passes MR -ok 346 - Pseudoprime (base 29) 91 passes MR -ok 347 - Pseudoprime (base 29) 341 passes MR -ok 348 - Pseudoprime (base 29) 469 passes MR -ok 349 - Pseudoprime (base 29) 871 passes MR -ok 350 - Pseudoprime (base 29) 2257 passes MR -ok 351 - Pseudoprime (base 29) 4371 passes MR -ok 352 - Pseudoprime (base 29) 4411 passes MR -ok 353 - Pseudoprime (base 29) 5149 passes MR -ok 354 - Pseudoprime (base 29) 6097 passes MR -ok 355 - Pseudoprime (base 29) 8401 passes MR -ok 356 - Pseudoprime (base 29) 11581 passes MR -ok 357 - Pseudoprime (base 29) 12431 passes MR -ok 358 - Pseudoprime (base 29) 15577 passes MR -ok 359 - Pseudoprime (base 29) 16471 passes MR -ok 360 - Pseudoprime (base 29) 19093 passes MR -ok 361 - Pseudoprime (base 29) 25681 passes MR -ok 362 - Pseudoprime (base 29) 28009 passes MR -ok 363 - Pseudoprime (base 29) 29539 passes MR -ok 364 - Pseudoprime (base 29) 31417 passes MR -ok 365 - Pseudoprime (base 29) 33001 passes MR -ok 366 - Pseudoprime (base 29) 48133 passes MR -ok 367 - Pseudoprime (base 29) 49141 passes MR -ok 368 - Pseudoprime (base 29) 54913 passes MR -ok 369 - Pseudoprime (base 29) 79003 passes MR -ok 370 - Pseudoprime (base 325) 341 passes MR -ok 371 - Pseudoprime (base 325) 343 passes MR -ok 372 - Pseudoprime (base 325) 697 passes MR -ok 373 - Pseudoprime (base 325) 1141 passes MR -ok 374 - Pseudoprime (base 325) 2059 passes MR -ok 375 - Pseudoprime (base 325) 2149 passes MR -ok 376 - Pseudoprime (base 325) 3097 passes MR -ok 377 - Pseudoprime (base 325) 3537 passes MR -ok 378 - Pseudoprime (base 325) 4033 passes MR -ok 379 - Pseudoprime (base 325) 4681 passes MR -ok 380 - Pseudoprime (base 325) 4941 passes MR -ok 381 - Pseudoprime (base 325) 5833 passes MR -ok 382 - Pseudoprime (base 325) 6517 passes MR -ok 383 - Pseudoprime (base 325) 7987 passes MR -ok 384 - Pseudoprime (base 325) 8911 passes MR -ok 385 - Pseudoprime (base 325) 12403 passes MR -ok 386 - Pseudoprime (base 325) 12913 passes MR -ok 387 - Pseudoprime (base 325) 15043 passes MR -ok 388 - Pseudoprime (base 325) 16021 passes MR -ok 389 - Pseudoprime (base 325) 20017 passes MR -ok 390 - Pseudoprime (base 325) 22261 passes MR -ok 391 - Pseudoprime (base 325) 23221 passes MR -ok 392 - Pseudoprime (base 325) 24649 passes MR -ok 393 - Pseudoprime (base 325) 24929 passes MR -ok 394 - Pseudoprime (base 325) 31841 passes MR -ok 395 - Pseudoprime (base 325) 35371 passes MR -ok 396 - Pseudoprime (base 325) 38503 passes MR -ok 397 - Pseudoprime (base 325) 43213 passes MR -ok 398 - Pseudoprime (base 325) 44173 passes MR -ok 399 - Pseudoprime (base 325) 47197 passes MR -ok 400 - Pseudoprime (base 325) 50041 passes MR -ok 401 - Pseudoprime (base 325) 55909 passes MR -ok 402 - Pseudoprime (base 325) 56033 passes MR -ok 403 - Pseudoprime (base 325) 58969 passes MR -ok 404 - Pseudoprime (base 325) 59089 passes MR -ok 405 - Pseudoprime (base 325) 61337 passes MR -ok 406 - Pseudoprime (base 325) 65441 passes MR -ok 407 - Pseudoprime (base 325) 68823 passes MR -ok 408 - Pseudoprime (base 325) 72641 passes MR -ok 409 - Pseudoprime (base 325) 76793 passes MR -ok 410 - Pseudoprime (base 325) 78409 passes MR -ok 411 - Pseudoprime (base 325) 85879 passes MR -ok 412 - Pseudoprime (base 37) 9 passes MR -ok 413 - Pseudoprime (base 37) 451 passes MR -ok 414 - Pseudoprime (base 37) 469 passes MR -ok 415 - Pseudoprime (base 37) 589 passes MR -ok 416 - Pseudoprime (base 37) 685 passes MR -ok 417 - Pseudoprime (base 37) 817 passes MR -ok 418 - Pseudoprime (base 37) 1333 passes MR -ok 419 - Pseudoprime (base 37) 3781 passes MR -ok 420 - Pseudoprime (base 37) 8905 passes MR -ok 421 - Pseudoprime (base 37) 9271 passes MR -ok 422 - Pseudoprime (base 37) 18631 passes MR -ok 423 - Pseudoprime (base 37) 19517 passes MR -ok 424 - Pseudoprime (base 37) 20591 passes MR -ok 425 - Pseudoprime (base 37) 25327 passes MR -ok 426 - Pseudoprime (base 37) 34237 passes MR -ok 427 - Pseudoprime (base 37) 45551 passes MR -ok 428 - Pseudoprime (base 37) 46981 passes MR -ok 429 - Pseudoprime (base 37) 47587 passes MR -ok 430 - Pseudoprime (base 37) 48133 passes MR -ok 431 - Pseudoprime (base 37) 59563 passes MR -ok 432 - Pseudoprime (base 37) 61337 passes MR -ok 433 - Pseudoprime (base 37) 68101 passes MR -ok 434 - Pseudoprime (base 37) 68251 passes MR -ok 435 - Pseudoprime (base 37) 73633 passes MR -ok 436 - Pseudoprime (base 37) 79381 passes MR -ok 437 - Pseudoprime (base 37) 79501 passes MR -ok 438 - Pseudoprime (base 37) 83333 passes MR -ok 439 - Pseudoprime (base 37) 84151 passes MR -ok 440 - Pseudoprime (base 37) 96727 passes MR -ok 441 - Pseudoprime (base 3046413974) 3046413975 passes MR -ok 442 - Pseudoprime (base 3046413974) 3048698683 passes MR -ok 443 - Pseudoprime (base 3046413974) 3051199817 passes MR -ok 444 - Pseudoprime (base 3046413974) 3068572849 passes MR -ok 445 - Pseudoprime (base 3046413974) 3069705673 passes MR -ok 446 - Pseudoprime (base 3046413974) 3070556233 passes MR -ok 447 - Pseudoprime (base 3046413974) 3079010071 passes MR -ok 448 - Pseudoprime (base 3046413974) 3089940811 passes MR -ok 449 - Pseudoprime (base 3046413974) 3090723901 passes MR -ok 450 - Pseudoprime (base 3046413974) 3109299161 passes MR -ok 451 - Pseudoprime (base 3046413974) 3110951251 passes MR -ok 452 - Pseudoprime (base 3046413974) 3113625601 passes MR -ok 453 - 271441 is a Perrin pseudoprime -ok 454 - 904631 is a Perrin pseudoprime -ok 455 - 16532714 is a Perrin pseudoprime -ok 456 - 24658561 is a Perrin pseudoprime -ok 457 - 27422714 is a Perrin pseudoprime -ok 458 - 27664033 is a Perrin pseudoprime -ok 459 - 46672291 is a Perrin pseudoprime -ok 460 - 102690901 is a Perrin pseudoprime -ok 461 - 130944133 is a Perrin pseudoprime -ok 462 - 196075949 is a Perrin pseudoprime -ok 463 - 214038533 is a Perrin pseudoprime -ok 464 - 517697641 is a Perrin pseudoprime -ok 465 - 545670533 is a Perrin pseudoprime -ok 466 - 801123451 is a Perrin pseudoprime -ok 467 - Pseudoprime (base 3613982119) 3626488471 passes MR -ok 468 - Pseudoprime (base 3613982119) 3630467017 passes MR -ok 469 - Pseudoprime (base 3613982119) 3643480501 passes MR -ok 470 - Pseudoprime (base 3613982119) 3651840727 passes MR -ok 471 - Pseudoprime (base 3613982119) 3653628247 passes MR -ok 472 - Pseudoprime (base 3613982119) 3654142177 passes MR -ok 473 - Pseudoprime (base 3613982119) 3672033223 passes MR -ok 474 - Pseudoprime (base 3613982119) 3672036061 passes MR -ok 475 - Pseudoprime (base 3613982119) 3675774019 passes MR -ok 476 - Pseudoprime (base 3613982119) 3687246109 passes MR -ok 477 - Pseudoprime (base 3613982119) 3690036017 passes MR -ok 478 - Pseudoprime (base 3613982119) 3720856369 passes MR -ok 479 - 561 is an Euler pseudoprime to base 2 -ok 480 - 1105 is an Euler pseudoprime to base 2 -ok 481 - 1729 is an Euler pseudoprime to base 2 -ok 482 - 1905 is an Euler pseudoprime to base 2 -ok 483 - 2047 is an Euler pseudoprime to base 2 -ok 484 - 2465 is an Euler pseudoprime to base 2 -ok 485 - 3277 is an Euler pseudoprime to base 2 -ok 486 - 4033 is an Euler pseudoprime to base 2 -ok 487 - 4681 is an Euler pseudoprime to base 2 -ok 488 - 6601 is an Euler pseudoprime to base 2 -ok 489 - 8321 is an Euler pseudoprime to base 2 -ok 490 - 8481 is an Euler pseudoprime to base 2 -ok 491 - 10585 is an Euler pseudoprime to base 2 -ok 492 - 12801 is an Euler pseudoprime to base 2 -ok 493 - 15841 is an Euler pseudoprime to base 2 -ok 494 - 16705 is an Euler pseudoprime to base 2 -ok 495 - 18705 is an Euler pseudoprime to base 2 -ok 496 - 25761 is an Euler pseudoprime to base 2 -ok 497 - 29341 is an Euler pseudoprime to base 2 -ok 498 - 30121 is an Euler pseudoprime to base 2 -ok 499 - 33153 is an Euler pseudoprime to base 2 -ok 500 - 34945 is an Euler pseudoprime to base 2 -ok 501 - 41041 is an Euler pseudoprime to base 2 -ok 502 - 42799 is an Euler pseudoprime to base 2 -ok 503 - 46657 is an Euler pseudoprime to base 2 -ok 504 - 49141 is an Euler pseudoprime to base 2 -ok 505 - 52633 is an Euler pseudoprime to base 2 -ok 506 - 62745 is an Euler pseudoprime to base 2 -ok 507 - 65281 is an Euler pseudoprime to base 2 -ok 508 - 74665 is an Euler pseudoprime to base 2 -ok 509 - 75361 is an Euler pseudoprime to base 2 -ok 510 - 80581 is an Euler pseudoprime to base 2 -ok 511 - 85489 is an Euler pseudoprime to base 2 -ok 512 - 87249 is an Euler pseudoprime to base 2 -ok 513 - 88357 is an Euler pseudoprime to base 2 -ok 514 - 90751 is an Euler pseudoprime to base 2 -ok 515 - Pseudoprime (base 11) 133 passes MR -ok 516 - Pseudoprime (base 11) 793 passes MR -ok 517 - Pseudoprime (base 11) 2047 passes MR -ok 518 - Pseudoprime (base 11) 4577 passes MR -ok 519 - Pseudoprime (base 11) 5041 passes MR -ok 520 - Pseudoprime (base 11) 12403 passes MR -ok 521 - Pseudoprime (base 11) 13333 passes MR -ok 522 - Pseudoprime (base 11) 14521 passes MR -ok 523 - Pseudoprime (base 11) 17711 passes MR -ok 524 - Pseudoprime (base 11) 23377 passes MR -ok 525 - Pseudoprime (base 11) 43213 passes MR -ok 526 - Pseudoprime (base 11) 43739 passes MR -ok 527 - Pseudoprime (base 11) 47611 passes MR -ok 528 - Pseudoprime (base 11) 48283 passes MR -ok 529 - Pseudoprime (base 11) 49601 passes MR -ok 530 - Pseudoprime (base 11) 50737 passes MR -ok 531 - Pseudoprime (base 11) 50997 passes MR -ok 532 - Pseudoprime (base 11) 56057 passes MR -ok 533 - Pseudoprime (base 11) 58969 passes MR -ok 534 - Pseudoprime (base 11) 68137 passes MR -ok 535 - Pseudoprime (base 11) 74089 passes MR -ok 536 - Pseudoprime (base 11) 85879 passes MR -ok 537 - Pseudoprime (base 11) 86347 passes MR -ok 538 - Pseudoprime (base 11) 87913 passes MR -ok 539 - Pseudoprime (base 11) 88831 passes MR -ok 540 - Pseudoprime (base 5) 781 passes MR -ok 541 - Pseudoprime (base 5) 1541 passes MR -ok 542 - Pseudoprime (base 5) 5461 passes MR -ok 543 - Pseudoprime (base 5) 5611 passes MR -ok 544 - Pseudoprime (base 5) 7813 passes MR -ok 545 - Pseudoprime (base 5) 13021 passes MR -ok 546 - Pseudoprime (base 5) 14981 passes MR -ok 547 - Pseudoprime (base 5) 15751 passes MR -ok 548 - Pseudoprime (base 5) 24211 passes MR -ok 549 - Pseudoprime (base 5) 25351 passes MR -ok 550 - Pseudoprime (base 5) 29539 passes MR -ok 551 - Pseudoprime (base 5) 38081 passes MR -ok 552 - Pseudoprime (base 5) 40501 passes MR -ok 553 - Pseudoprime (base 5) 44801 passes MR -ok 554 - Pseudoprime (base 5) 53971 passes MR -ok 555 - Pseudoprime (base 5) 79381 passes MR -ok 556 - Pseudoprime (base 13) 85 passes MR -ok 557 - Pseudoprime (base 13) 1099 passes MR -ok 558 - Pseudoprime (base 13) 5149 passes MR -ok 559 - Pseudoprime (base 13) 7107 passes MR -ok 560 - Pseudoprime (base 13) 8911 passes MR -ok 561 - Pseudoprime (base 13) 9637 passes MR -ok 562 - Pseudoprime (base 13) 13019 passes MR -ok 563 - Pseudoprime (base 13) 14491 passes MR -ok 564 - Pseudoprime (base 13) 17803 passes MR -ok 565 - Pseudoprime (base 13) 19757 passes MR -ok 566 - Pseudoprime (base 13) 20881 passes MR -ok 567 - Pseudoprime (base 13) 22177 passes MR -ok 568 - Pseudoprime (base 13) 23521 passes MR -ok 569 - Pseudoprime (base 13) 26521 passes MR -ok 570 - Pseudoprime (base 13) 35371 passes MR -ok 571 - Pseudoprime (base 13) 44173 passes MR -ok 572 - Pseudoprime (base 13) 45629 passes MR -ok 573 - Pseudoprime (base 13) 54097 passes MR -ok 574 - Pseudoprime (base 13) 56033 passes MR -ok 575 - Pseudoprime (base 13) 57205 passes MR -ok 576 - Pseudoprime (base 13) 75241 passes MR -ok 577 - Pseudoprime (base 13) 83333 passes MR -ok 578 - Pseudoprime (base 13) 85285 passes MR -ok 579 - Pseudoprime (base 13) 86347 passes MR -ok 580 - 91 is a pseudoprime to base 3 -ok 581 - 121 is a pseudoprime to base 3 -ok 582 - 286 is a pseudoprime to base 3 -ok 583 - 671 is a pseudoprime to base 3 -ok 584 - 703 is a pseudoprime to base 3 -ok 585 - 949 is a pseudoprime to base 3 -ok 586 - 1105 is a pseudoprime to base 3 -ok 587 - 1541 is a pseudoprime to base 3 -ok 588 - 1729 is a pseudoprime to base 3 -ok 589 - 1891 is a pseudoprime to base 3 -ok 590 - 2465 is a pseudoprime to base 3 -ok 591 - 2665 is a pseudoprime to base 3 -ok 592 - 2701 is a pseudoprime to base 3 -ok 593 - 2821 is a pseudoprime to base 3 -ok 594 - 3281 is a pseudoprime to base 3 -ok 595 - 3367 is a pseudoprime to base 3 -ok 596 - 3751 is a pseudoprime to base 3 -ok 597 - 4961 is a pseudoprime to base 3 -ok 598 - 5551 is a pseudoprime to base 3 -ok 599 - 6601 is a pseudoprime to base 3 -ok 600 - 7381 is a pseudoprime to base 3 -ok 601 - 8401 is a pseudoprime to base 3 -ok 602 - 8911 is a pseudoprime to base 3 -ok 603 - 10585 is a pseudoprime to base 3 -ok 604 - 11011 is a pseudoprime to base 3 -ok 605 - 12403 is a pseudoprime to base 3 -ok 606 - 14383 is a pseudoprime to base 3 -ok 607 - 15203 is a pseudoprime to base 3 -ok 608 - 15457 is a pseudoprime to base 3 -ok 609 - 15841 is a pseudoprime to base 3 -ok 610 - 16471 is a pseudoprime to base 3 -ok 611 - 16531 is a pseudoprime to base 3 -ok 612 - 18721 is a pseudoprime to base 3 -ok 613 - 19345 is a pseudoprime to base 3 -ok 614 - 23521 is a pseudoprime to base 3 -ok 615 - 24046 is a pseudoprime to base 3 -ok 616 - 24661 is a pseudoprime to base 3 -ok 617 - 24727 is a pseudoprime to base 3 -ok 618 - 28009 is a pseudoprime to base 3 -ok 619 - 29161 is a pseudoprime to base 3 -ok 620 - Pseudoprime (base 61) 217 passes MR -ok 621 - Pseudoprime (base 61) 341 passes MR -ok 622 - Pseudoprime (base 61) 1261 passes MR -ok 623 - Pseudoprime (base 61) 2701 passes MR -ok 624 - Pseudoprime (base 61) 3661 passes MR -ok 625 - Pseudoprime (base 61) 6541 passes MR -ok 626 - Pseudoprime (base 61) 6697 passes MR -ok 627 - Pseudoprime (base 61) 7613 passes MR -ok 628 - Pseudoprime (base 61) 13213 passes MR -ok 629 - Pseudoprime (base 61) 16213 passes MR -ok 630 - Pseudoprime (base 61) 22177 passes MR -ok 631 - Pseudoprime (base 61) 23653 passes MR -ok 632 - Pseudoprime (base 61) 23959 passes MR -ok 633 - Pseudoprime (base 61) 31417 passes MR -ok 634 - Pseudoprime (base 61) 50117 passes MR -ok 635 - Pseudoprime (base 61) 61777 passes MR -ok 636 - Pseudoprime (base 61) 63139 passes MR -ok 637 - Pseudoprime (base 61) 67721 passes MR -ok 638 - Pseudoprime (base 61) 76301 passes MR -ok 639 - Pseudoprime (base 61) 77421 passes MR -ok 640 - Pseudoprime (base 61) 79381 passes MR -ok 641 - Pseudoprime (base 61) 80041 passes MR -ok 642 - Pseudoprime (base 642735) 653251 passes MR -ok 643 - Pseudoprime (base 642735) 653333 passes MR -ok 644 - Pseudoprime (base 642735) 663181 passes MR -ok 645 - Pseudoprime (base 642735) 676651 passes MR -ok 646 - Pseudoprime (base 642735) 714653 passes MR -ok 647 - Pseudoprime (base 642735) 759277 passes MR -ok 648 - Pseudoprime (base 642735) 794683 passes MR -ok 649 - Pseudoprime (base 642735) 805141 passes MR -ok 650 - Pseudoprime (base 642735) 844097 passes MR -ok 651 - Pseudoprime (base 642735) 872191 passes MR -ok 652 - Pseudoprime (base 642735) 874171 passes MR -ok 653 - Pseudoprime (base 642735) 894671 passes MR -ok 654 - Pseudoprime (base 203659041) 204172939 passes MR -ok 655 - Pseudoprime (base 203659041) 204456793 passes MR -ok 656 - Pseudoprime (base 203659041) 206407057 passes MR -ok 657 - Pseudoprime (base 203659041) 206976001 passes MR -ok 658 - Pseudoprime (base 203659041) 207373483 passes MR -ok 659 - Pseudoprime (base 203659041) 209301121 passes MR -ok 660 - Pseudoprime (base 203659041) 210339397 passes MR -ok 661 - Pseudoprime (base 203659041) 211867969 passes MR -ok 662 - Pseudoprime (base 203659041) 212146507 passes MR -ok 663 - Pseudoprime (base 203659041) 212337217 passes MR -ok 664 - Pseudoprime (base 203659041) 212355793 passes MR -ok 665 - Pseudoprime (base 203659041) 214400629 passes MR -ok 666 - Pseudoprime (base 203659041) 214539841 passes MR -ok 667 - Pseudoprime (base 203659041) 215161459 passes MR -ok 668 - 13333 is a Frobenius (3,-5) pseudoprime -ok 669 - 44801 is a Frobenius (3,-5) pseudoprime -ok 670 - 486157 is a Frobenius (3,-5) pseudoprime -ok 671 - 1615681 is a Frobenius (3,-5) pseudoprime -ok 672 - 3125281 is a Frobenius (3,-5) pseudoprime -ok 673 - 4219129 is a Frobenius (3,-5) pseudoprime -ok 674 - 9006401 is a Frobenius (3,-5) pseudoprime -ok 675 - 12589081 is a Frobenius (3,-5) pseudoprime -ok 676 - 13404751 is a Frobenius (3,-5) pseudoprime -ok 677 - 15576571 is a Frobenius (3,-5) pseudoprime -ok 678 - 16719781 is a Frobenius (3,-5) pseudoprime -ok 679 - Pseudoprime (base 1795265022) 1795265023 passes MR -ok 680 - Pseudoprime (base 1795265022) 1797174457 passes MR -ok 681 - Pseudoprime (base 1795265022) 1797741901 passes MR -ok 682 - Pseudoprime (base 1795265022) 1804469753 passes MR -ok 683 - Pseudoprime (base 1795265022) 1807751977 passes MR -ok 684 - Pseudoprime (base 1795265022) 1808043283 passes MR -ok 685 - Pseudoprime (base 1795265022) 1808205701 passes MR -ok 686 - Pseudoprime (base 1795265022) 1813675681 passes MR -ok 687 - Pseudoprime (base 1795265022) 1816462201 passes MR -ok 688 - Pseudoprime (base 1795265022) 1817936371 passes MR -ok 689 - Pseudoprime (base 1795265022) 1819050257 passes MR -ok 690 - Pseudoprime (base 9780504) 9780505 passes MR -ok 691 - Pseudoprime (base 9780504) 9784915 passes MR -ok 692 - Pseudoprime (base 9780504) 9826489 passes MR -ok 693 - Pseudoprime (base 9780504) 9882457 passes MR -ok 694 - Pseudoprime (base 9780504) 9974791 passes MR -ok 695 - Pseudoprime (base 9780504) 10017517 passes MR -ok 696 - Pseudoprime (base 9780504) 10018081 passes MR -ok 697 - Pseudoprime (base 9780504) 10084177 passes MR -ok 698 - Pseudoprime (base 9780504) 10188481 passes MR -ok 699 - Pseudoprime (base 9780504) 10247357 passes MR -ok 700 - Pseudoprime (base 9780504) 10267951 passes MR -ok 701 - Pseudoprime (base 9780504) 10392241 passes MR -ok 702 - Pseudoprime (base 9780504) 10427209 passes MR -ok 703 - Pseudoprime (base 9780504) 10511201 passes MR -ok 704 - Pseudoprime (base 31) 15 passes MR -ok 705 - Pseudoprime (base 31) 49 passes MR -ok 706 - Pseudoprime (base 31) 133 passes MR -ok 707 - Pseudoprime (base 31) 481 passes MR -ok 708 - Pseudoprime (base 31) 931 passes MR -ok 709 - Pseudoprime (base 31) 6241 passes MR -ok 710 - Pseudoprime (base 31) 8911 passes MR -ok 711 - Pseudoprime (base 31) 9131 passes MR -ok 712 - Pseudoprime (base 31) 10963 passes MR -ok 713 - Pseudoprime (base 31) 11041 passes MR -ok 714 - Pseudoprime (base 31) 14191 passes MR -ok 715 - Pseudoprime (base 31) 17767 passes MR -ok 716 - Pseudoprime (base 31) 29341 passes MR -ok 717 - Pseudoprime (base 31) 56033 passes MR -ok 718 - Pseudoprime (base 31) 58969 passes MR -ok 719 - Pseudoprime (base 31) 68251 passes MR -ok 720 - Pseudoprime (base 31) 79003 passes MR -ok 721 - Pseudoprime (base 31) 83333 passes MR -ok 722 - Pseudoprime (base 31) 87061 passes MR -ok 723 - Pseudoprime (base 31) 88183 passes MR -ok 724 - 3239 is an almost extra strong Lucas pseudoprime (increment 2) -ok 725 - 4531 is an almost extra strong Lucas pseudoprime (increment 2) -ok 726 - 5777 is an almost extra strong Lucas pseudoprime (increment 2) -ok 727 - 10877 is an almost extra strong Lucas pseudoprime (increment 2) -ok 728 - 12209 is an almost extra strong Lucas pseudoprime (increment 2) -ok 729 - 21899 is an almost extra strong Lucas pseudoprime (increment 2) -ok 730 - 31631 is an almost extra strong Lucas pseudoprime (increment 2) -ok 731 - 31831 is an almost extra strong Lucas pseudoprime (increment 2) -ok 732 - 32129 is an almost extra strong Lucas pseudoprime (increment 2) -ok 733 - 34481 is an almost extra strong Lucas pseudoprime (increment 2) -ok 734 - 36079 is an almost extra strong Lucas pseudoprime (increment 2) -ok 735 - 37949 is an almost extra strong Lucas pseudoprime (increment 2) -ok 736 - 47849 is an almost extra strong Lucas pseudoprime (increment 2) -ok 737 - 50959 is an almost extra strong Lucas pseudoprime (increment 2) -ok 738 - 51641 is an almost extra strong Lucas pseudoprime (increment 2) -ok 739 - 62479 is an almost extra strong Lucas pseudoprime (increment 2) -ok 740 - 73919 is an almost extra strong Lucas pseudoprime (increment 2) -ok 741 - 75077 is an almost extra strong Lucas pseudoprime (increment 2) -ok 742 - 97109 is an almost extra strong Lucas pseudoprime (increment 2) -ok 743 - 100127 is an almost extra strong Lucas pseudoprime (increment 2) -ok 744 - 108679 is an almost extra strong Lucas pseudoprime (increment 2) -ok 745 - 113573 is an almost extra strong Lucas pseudoprime (increment 2) -ok 746 - 116899 is an almost extra strong Lucas pseudoprime (increment 2) -ok 747 - 154697 is an almost extra strong Lucas pseudoprime (increment 2) -ok 748 - 161027 is an almost extra strong Lucas pseudoprime (increment 2) -ok 749 - Pseudoprime (base 450775) 465991 passes MR -ok 750 - Pseudoprime (base 450775) 468931 passes MR -ok 751 - Pseudoprime (base 450775) 485357 passes MR -ok 752 - Pseudoprime (base 450775) 505441 passes MR -ok 753 - Pseudoprime (base 450775) 536851 passes MR -ok 754 - Pseudoprime (base 450775) 556421 passes MR -ok 755 - Pseudoprime (base 450775) 578771 passes MR -ok 756 - Pseudoprime (base 450775) 585631 passes MR -ok 757 - Pseudoprime (base 450775) 586249 passes MR -ok 758 - Pseudoprime (base 450775) 606361 passes MR -ok 759 - Pseudoprime (base 450775) 631651 passes MR -ok 760 - Pseudoprime (base 450775) 638731 passes MR -ok 761 - Pseudoprime (base 450775) 641683 passes MR -ok 762 - Pseudoprime (base 450775) 645679 passes MR -ok 763 - Pseudoprime (base 7) 25 passes MR -ok 764 - Pseudoprime (base 7) 325 passes MR -ok 765 - Pseudoprime (base 7) 703 passes MR -ok 766 - Pseudoprime (base 7) 2101 passes MR -ok 767 - Pseudoprime (base 7) 2353 passes MR -ok 768 - Pseudoprime (base 7) 4525 passes MR -ok 769 - Pseudoprime (base 7) 11041 passes MR -ok 770 - Pseudoprime (base 7) 14089 passes MR -ok 771 - Pseudoprime (base 7) 20197 passes MR -ok 772 - Pseudoprime (base 7) 29857 passes MR -ok 773 - Pseudoprime (base 7) 29891 passes MR -ok 774 - Pseudoprime (base 7) 39331 passes MR -ok 775 - Pseudoprime (base 7) 49241 passes MR -ok 776 - Pseudoprime (base 7) 58825 passes MR -ok 777 - Pseudoprime (base 7) 64681 passes MR -ok 778 - Pseudoprime (base 7) 76627 passes MR -ok 779 - Pseudoprime (base 7) 78937 passes MR -ok 780 - Pseudoprime (base 7) 79381 passes MR -ok 781 - Pseudoprime (base 7) 87673 passes MR -ok 782 - Pseudoprime (base 7) 88399 passes MR -ok 783 - Pseudoprime (base 7) 88831 passes MR -ok 784 - Pseudoprime (base 2) 2047 passes MR -ok 785 - Pseudoprime (base 2) 3277 passes MR -ok 786 - Pseudoprime (base 2) 4033 passes MR -ok 787 - Pseudoprime (base 2) 4681 passes MR -ok 788 - Pseudoprime (base 2) 8321 passes MR -ok 789 - Pseudoprime (base 2) 15841 passes MR -ok 790 - Pseudoprime (base 2) 29341 passes MR -ok 791 - Pseudoprime (base 2) 42799 passes MR -ok 792 - Pseudoprime (base 2) 49141 passes MR -ok 793 - Pseudoprime (base 2) 52633 passes MR -ok 794 - Pseudoprime (base 2) 65281 passes MR -ok 795 - Pseudoprime (base 2) 74665 passes MR -ok 796 - Pseudoprime (base 2) 80581 passes MR -ok 797 - Pseudoprime (base 2) 85489 passes MR -ok 798 - Pseudoprime (base 2) 88357 passes MR -ok 799 - Pseudoprime (base 2) 90751 passes MR -ok 800 - Pseudoprime (base 2) 1194649 passes MR -ok 801 - 4181 is a Frobenius (1,-1) pseudoprime -ok 802 - 5777 is a Frobenius (1,-1) pseudoprime -ok 803 - 6721 is a Frobenius (1,-1) pseudoprime -ok 804 - 10877 is a Frobenius (1,-1) pseudoprime -ok 805 - 13201 is a Frobenius (1,-1) pseudoprime -ok 806 - 15251 is a Frobenius (1,-1) pseudoprime -ok 807 - 34561 is a Frobenius (1,-1) pseudoprime -ok 808 - 51841 is a Frobenius (1,-1) pseudoprime -ok 809 - 64079 is a Frobenius (1,-1) pseudoprime -ok 810 - 64681 is a Frobenius (1,-1) pseudoprime -ok 811 - 67861 is a Frobenius (1,-1) pseudoprime -ok 812 - 68251 is a Frobenius (1,-1) pseudoprime -ok 813 - 75077 is a Frobenius (1,-1) pseudoprime -ok 814 - 90061 is a Frobenius (1,-1) pseudoprime -ok 815 - 96049 is a Frobenius (1,-1) pseudoprime -ok 816 - 97921 is a Frobenius (1,-1) pseudoprime -ok 817 - 100127 is a Frobenius (1,-1) pseudoprime -ok 818 - Pseudoprime (base 28178) 28179 passes MR -ok 819 - Pseudoprime (base 28178) 29381 passes MR -ok 820 - Pseudoprime (base 28178) 30353 passes MR -ok 821 - Pseudoprime (base 28178) 34441 passes MR -ok 822 - Pseudoprime (base 28178) 35371 passes MR -ok 823 - Pseudoprime (base 28178) 37051 passes MR -ok 824 - Pseudoprime (base 28178) 38503 passes MR -ok 825 - Pseudoprime (base 28178) 43387 passes MR -ok 826 - Pseudoprime (base 28178) 50557 passes MR -ok 827 - Pseudoprime (base 28178) 51491 passes MR -ok 828 - Pseudoprime (base 28178) 57553 passes MR -ok 829 - Pseudoprime (base 28178) 79003 passes MR -ok 830 - Pseudoprime (base 28178) 82801 passes MR -ok 831 - Pseudoprime (base 28178) 83333 passes MR -ok 832 - Pseudoprime (base 28178) 87249 passes MR -ok 833 - Pseudoprime (base 28178) 88507 passes MR -ok 834 - Pseudoprime (base 28178) 97921 passes MR -ok 835 - Pseudoprime (base 28178) 99811 passes MR -ok 836 - Pseudoprime (base 9375) 11521 passes MR -ok 837 - Pseudoprime (base 9375) 14689 passes MR -ok 838 - Pseudoprime (base 9375) 17893 passes MR -ok 839 - Pseudoprime (base 9375) 18361 passes MR -ok 840 - Pseudoprime (base 9375) 20591 passes MR -ok 841 - Pseudoprime (base 9375) 28093 passes MR -ok 842 - Pseudoprime (base 9375) 32809 passes MR -ok 843 - Pseudoprime (base 9375) 37969 passes MR -ok 844 - Pseudoprime (base 9375) 44287 passes MR -ok 845 - Pseudoprime (base 9375) 60701 passes MR -ok 846 - Pseudoprime (base 9375) 70801 passes MR -ok 847 - Pseudoprime (base 9375) 79957 passes MR -ok 848 - Pseudoprime (base 9375) 88357 passes MR -ok 849 - Pseudoprime (base 9375) 88831 passes MR -ok 850 - Pseudoprime (base 9375) 94249 passes MR -ok 851 - Pseudoprime (base 9375) 96247 passes MR -ok 852 - Pseudoprime (base 9375) 99547 passes MR -ok 853 - 989 is an almost extra strong Lucas pseudoprime (increment 1) -ok 854 - 3239 is an almost extra strong Lucas pseudoprime (increment 1) -ok 855 - 5777 is an almost extra strong Lucas pseudoprime (increment 1) -ok 856 - 10469 is an almost extra strong Lucas pseudoprime (increment 1) -ok 857 - 10877 is an almost extra strong Lucas pseudoprime (increment 1) -ok 858 - 27971 is an almost extra strong Lucas pseudoprime (increment 1) -ok 859 - 29681 is an almost extra strong Lucas pseudoprime (increment 1) -ok 860 - 30739 is an almost extra strong Lucas pseudoprime (increment 1) -ok 861 - 31631 is an almost extra strong Lucas pseudoprime (increment 1) -ok 862 - 39059 is an almost extra strong Lucas pseudoprime (increment 1) -ok 863 - 72389 is an almost extra strong Lucas pseudoprime (increment 1) -ok 864 - 73919 is an almost extra strong Lucas pseudoprime (increment 1) -ok 865 - 75077 is an almost extra strong Lucas pseudoprime (increment 1) -ok 866 - 100127 is an almost extra strong Lucas pseudoprime (increment 1) -ok 867 - 113573 is an almost extra strong Lucas pseudoprime (increment 1) -ok 868 - 125249 is an almost extra strong Lucas pseudoprime (increment 1) -ok 869 - 137549 is an almost extra strong Lucas pseudoprime (increment 1) -ok 870 - 137801 is an almost extra strong Lucas pseudoprime (increment 1) -ok 871 - 153931 is an almost extra strong Lucas pseudoprime (increment 1) -ok 872 - 154697 is an almost extra strong Lucas pseudoprime (increment 1) -ok 873 - 155819 is an almost extra strong Lucas pseudoprime (increment 1) -ok 874 - 5459 is a strong Lucas-Selfridge pseudoprime -ok 875 - 5777 is a strong Lucas-Selfridge pseudoprime -ok 876 - 10877 is a strong Lucas-Selfridge pseudoprime -ok 877 - 16109 is a strong Lucas-Selfridge pseudoprime -ok 878 - 18971 is a strong Lucas-Selfridge pseudoprime -ok 879 - 22499 is a strong Lucas-Selfridge pseudoprime -ok 880 - 24569 is a strong Lucas-Selfridge pseudoprime -ok 881 - 25199 is a strong Lucas-Selfridge pseudoprime -ok 882 - 40309 is a strong Lucas-Selfridge pseudoprime -ok 883 - 58519 is a strong Lucas-Selfridge pseudoprime -ok 884 - 75077 is a strong Lucas-Selfridge pseudoprime -ok 885 - 97439 is a strong Lucas-Selfridge pseudoprime -ok 886 - 100127 is a strong Lucas-Selfridge pseudoprime -ok 887 - 113573 is a strong Lucas-Selfridge pseudoprime -ok 888 - 115639 is a strong Lucas-Selfridge pseudoprime -ok 889 - 130139 is a strong Lucas-Selfridge pseudoprime -ok 890 - Pseudoprime (base 1005905886) 1005905887 passes MR -ok 891 - Pseudoprime (base 1005905886) 1007713171 passes MR -ok 892 - Pseudoprime (base 1005905886) 1008793699 passes MR -ok 893 - Pseudoprime (base 1005905886) 1010415421 passes MR -ok 894 - Pseudoprime (base 1005905886) 1010487061 passes MR -ok 895 - Pseudoprime (base 1005905886) 1010836369 passes MR -ok 896 - Pseudoprime (base 1005905886) 1012732873 passes MR -ok 897 - Pseudoprime (base 1005905886) 1015269391 passes MR -ok 898 - Pseudoprime (base 1005905886) 1016250247 passes MR -ok 899 - Pseudoprime (base 1005905886) 1018405741 passes MR -ok 900 - Pseudoprime (base 1005905886) 1020182041 passes MR -ok 901 - Pseudoprime (base 19) 9 passes MR -ok 902 - Pseudoprime (base 19) 49 passes MR -ok 903 - Pseudoprime (base 19) 169 passes MR -ok 904 - Pseudoprime (base 19) 343 passes MR -ok 905 - Pseudoprime (base 19) 1849 passes MR -ok 906 - Pseudoprime (base 19) 2353 passes MR -ok 907 - Pseudoprime (base 19) 2701 passes MR -ok 908 - Pseudoprime (base 19) 4033 passes MR -ok 909 - Pseudoprime (base 19) 4681 passes MR -ok 910 - Pseudoprime (base 19) 6541 passes MR -ok 911 - Pseudoprime (base 19) 6697 passes MR -ok 912 - Pseudoprime (base 19) 7957 passes MR -ok 913 - Pseudoprime (base 19) 9997 passes MR -ok 914 - Pseudoprime (base 19) 12403 passes MR -ok 915 - Pseudoprime (base 19) 13213 passes MR -ok 916 - Pseudoprime (base 19) 13747 passes MR -ok 917 - Pseudoprime (base 19) 15251 passes MR -ok 918 - Pseudoprime (base 19) 16531 passes MR -ok 919 - Pseudoprime (base 19) 18769 passes MR -ok 920 - Pseudoprime (base 19) 19729 passes MR -ok 921 - Pseudoprime (base 19) 24761 passes MR -ok 922 - Pseudoprime (base 19) 30589 passes MR -ok 923 - Pseudoprime (base 19) 31621 passes MR -ok 924 - Pseudoprime (base 19) 31861 passes MR -ok 925 - Pseudoprime (base 19) 32477 passes MR -ok 926 - Pseudoprime (base 19) 41003 passes MR -ok 927 - Pseudoprime (base 19) 49771 passes MR -ok 928 - Pseudoprime (base 19) 63139 passes MR -ok 929 - Pseudoprime (base 19) 64681 passes MR -ok 930 - Pseudoprime (base 19) 65161 passes MR -ok 931 - Pseudoprime (base 19) 66421 passes MR -ok 932 - Pseudoprime (base 19) 68257 passes MR -ok 933 - Pseudoprime (base 19) 73555 passes MR -ok 934 - Pseudoprime (base 19) 96049 passes MR +ok 19 - Pseudoprime (base 73) 205 passes MR +ok 20 - Pseudoprime (base 73) 259 passes MR +ok 21 - Pseudoprime (base 73) 533 passes MR +ok 22 - Pseudoprime (base 73) 1441 passes MR +ok 23 - Pseudoprime (base 73) 1921 passes MR +ok 24 - Pseudoprime (base 73) 2665 passes MR +ok 25 - Pseudoprime (base 73) 3439 passes MR +ok 26 - Pseudoprime (base 73) 5257 passes MR +ok 27 - Pseudoprime (base 73) 15457 passes MR +ok 28 - Pseudoprime (base 73) 23281 passes MR +ok 29 - Pseudoprime (base 73) 24617 passes MR +ok 30 - Pseudoprime (base 73) 26797 passes MR +ok 31 - Pseudoprime (base 73) 27787 passes MR +ok 32 - Pseudoprime (base 73) 28939 passes MR +ok 33 - Pseudoprime (base 73) 34219 passes MR +ok 34 - Pseudoprime (base 73) 39481 passes MR +ok 35 - Pseudoprime (base 73) 44671 passes MR +ok 36 - Pseudoprime (base 73) 45629 passes MR +ok 37 - Pseudoprime (base 73) 64681 passes MR +ok 38 - Pseudoprime (base 73) 67069 passes MR +ok 39 - Pseudoprime (base 73) 76429 passes MR +ok 40 - Pseudoprime (base 73) 79501 passes MR +ok 41 - Pseudoprime (base 73) 93521 passes MR +ok 42 - Pseudoprime (base 23) 169 passes MR +ok 43 - Pseudoprime (base 23) 265 passes MR +ok 44 - Pseudoprime (base 23) 553 passes MR +ok 45 - Pseudoprime (base 23) 1271 passes MR +ok 46 - Pseudoprime (base 23) 2701 passes MR +ok 47 - Pseudoprime (base 23) 4033 passes MR +ok 48 - Pseudoprime (base 23) 4371 passes MR +ok 49 - Pseudoprime (base 23) 4681 passes MR +ok 50 - Pseudoprime (base 23) 6533 passes MR +ok 51 - Pseudoprime (base 23) 6541 passes MR +ok 52 - Pseudoprime (base 23) 7957 passes MR +ok 53 - Pseudoprime (base 23) 8321 passes MR +ok 54 - Pseudoprime (base 23) 8651 passes MR +ok 55 - Pseudoprime (base 23) 8911 passes MR +ok 56 - Pseudoprime (base 23) 9805 passes MR +ok 57 - Pseudoprime (base 23) 14981 passes MR +ok 58 - Pseudoprime (base 23) 18721 passes MR +ok 59 - Pseudoprime (base 23) 25201 passes MR +ok 60 - Pseudoprime (base 23) 31861 passes MR +ok 61 - Pseudoprime (base 23) 34133 passes MR +ok 62 - Pseudoprime (base 23) 44173 passes MR +ok 63 - Pseudoprime (base 23) 47611 passes MR +ok 64 - Pseudoprime (base 23) 47783 passes MR +ok 65 - Pseudoprime (base 23) 50737 passes MR +ok 66 - Pseudoprime (base 23) 57401 passes MR +ok 67 - Pseudoprime (base 23) 62849 passes MR +ok 68 - Pseudoprime (base 23) 82513 passes MR +ok 69 - Pseudoprime (base 23) 96049 passes MR +ok 70 - 341 is a pseudoprime to base 2 +ok 71 - 561 is a pseudoprime to base 2 +ok 72 - 645 is a pseudoprime to base 2 +ok 73 - 1105 is a pseudoprime to base 2 +ok 74 - 1387 is a pseudoprime to base 2 +ok 75 - 1729 is a pseudoprime to base 2 +ok 76 - 1905 is a pseudoprime to base 2 +ok 77 - 2047 is a pseudoprime to base 2 +ok 78 - 2465 is a pseudoprime to base 2 +ok 79 - 2701 is a pseudoprime to base 2 +ok 80 - 2821 is a pseudoprime to base 2 +ok 81 - 3277 is a pseudoprime to base 2 +ok 82 - 4033 is a pseudoprime to base 2 +ok 83 - 4369 is a pseudoprime to base 2 +ok 84 - 4371 is a pseudoprime to base 2 +ok 85 - 4681 is a pseudoprime to base 2 +ok 86 - 5461 is a pseudoprime to base 2 +ok 87 - 6601 is a pseudoprime to base 2 +ok 88 - 7957 is a pseudoprime to base 2 +ok 89 - 8321 is a pseudoprime to base 2 +ok 90 - 8481 is a pseudoprime to base 2 +ok 91 - 8911 is a pseudoprime to base 2 +ok 92 - 10261 is a pseudoprime to base 2 +ok 93 - 10585 is a pseudoprime to base 2 +ok 94 - 11305 is a pseudoprime to base 2 +ok 95 - 12801 is a pseudoprime to base 2 +ok 96 - 13741 is a pseudoprime to base 2 +ok 97 - 13747 is a pseudoprime to base 2 +ok 98 - 13981 is a pseudoprime to base 2 +ok 99 - 14491 is a pseudoprime to base 2 +ok 100 - 15709 is a pseudoprime to base 2 +ok 101 - 15841 is a pseudoprime to base 2 +ok 102 - 16705 is a pseudoprime to base 2 +ok 103 - 18705 is a pseudoprime to base 2 +ok 104 - 18721 is a pseudoprime to base 2 +ok 105 - 19951 is a pseudoprime to base 2 +ok 106 - 23001 is a pseudoprime to base 2 +ok 107 - 23377 is a pseudoprime to base 2 +ok 108 - 25761 is a pseudoprime to base 2 +ok 109 - 29341 is a pseudoprime to base 2 +ok 110 - Pseudoprime (base 3) 121 passes MR +ok 111 - Pseudoprime (base 3) 703 passes MR +ok 112 - Pseudoprime (base 3) 1891 passes MR +ok 113 - Pseudoprime (base 3) 3281 passes MR +ok 114 - Pseudoprime (base 3) 8401 passes MR +ok 115 - Pseudoprime (base 3) 8911 passes MR +ok 116 - Pseudoprime (base 3) 10585 passes MR +ok 117 - Pseudoprime (base 3) 12403 passes MR +ok 118 - Pseudoprime (base 3) 16531 passes MR +ok 119 - Pseudoprime (base 3) 18721 passes MR +ok 120 - Pseudoprime (base 3) 19345 passes MR +ok 121 - Pseudoprime (base 3) 23521 passes MR +ok 122 - Pseudoprime (base 3) 31621 passes MR +ok 123 - Pseudoprime (base 3) 44287 passes MR +ok 124 - Pseudoprime (base 3) 47197 passes MR +ok 125 - Pseudoprime (base 3) 55969 passes MR +ok 126 - Pseudoprime (base 3) 63139 passes MR +ok 127 - Pseudoprime (base 3) 74593 passes MR +ok 128 - Pseudoprime (base 3) 79003 passes MR +ok 129 - Pseudoprime (base 3) 82513 passes MR +ok 130 - Pseudoprime (base 3) 87913 passes MR +ok 131 - Pseudoprime (base 3) 88573 passes MR +ok 132 - Pseudoprime (base 3) 97567 passes MR +ok 133 - Pseudoprime (base 13) 85 passes MR +ok 134 - Pseudoprime (base 13) 1099 passes MR +ok 135 - Pseudoprime (base 13) 5149 passes MR +ok 136 - Pseudoprime (base 13) 7107 passes MR +ok 137 - Pseudoprime (base 13) 8911 passes MR +ok 138 - Pseudoprime (base 13) 9637 passes MR +ok 139 - Pseudoprime (base 13) 13019 passes MR +ok 140 - Pseudoprime (base 13) 14491 passes MR +ok 141 - Pseudoprime (base 13) 17803 passes MR +ok 142 - Pseudoprime (base 13) 19757 passes MR +ok 143 - Pseudoprime (base 13) 20881 passes MR +ok 144 - Pseudoprime (base 13) 22177 passes MR +ok 145 - Pseudoprime (base 13) 23521 passes MR +ok 146 - Pseudoprime (base 13) 26521 passes MR +ok 147 - Pseudoprime (base 13) 35371 passes MR +ok 148 - Pseudoprime (base 13) 44173 passes MR +ok 149 - Pseudoprime (base 13) 45629 passes MR +ok 150 - Pseudoprime (base 13) 54097 passes MR +ok 151 - Pseudoprime (base 13) 56033 passes MR +ok 152 - Pseudoprime (base 13) 57205 passes MR +ok 153 - Pseudoprime (base 13) 75241 passes MR +ok 154 - Pseudoprime (base 13) 83333 passes MR +ok 155 - Pseudoprime (base 13) 85285 passes MR +ok 156 - Pseudoprime (base 13) 86347 passes MR +ok 157 - Pseudoprime (base 3046413974) 3046413975 passes MR +ok 158 - Pseudoprime (base 3046413974) 3048698683 passes MR +ok 159 - Pseudoprime (base 3046413974) 3051199817 passes MR +ok 160 - Pseudoprime (base 3046413974) 3068572849 passes MR +ok 161 - Pseudoprime (base 3046413974) 3069705673 passes MR +ok 162 - Pseudoprime (base 3046413974) 3070556233 passes MR +ok 163 - Pseudoprime (base 3046413974) 3079010071 passes MR +ok 164 - Pseudoprime (base 3046413974) 3089940811 passes MR +ok 165 - Pseudoprime (base 3046413974) 3090723901 passes MR +ok 166 - Pseudoprime (base 3046413974) 3109299161 passes MR +ok 167 - Pseudoprime (base 3046413974) 3110951251 passes MR +ok 168 - Pseudoprime (base 3046413974) 3113625601 passes MR +ok 169 - Pseudoprime (base 1795265022) 1795265023 passes MR +ok 170 - Pseudoprime (base 1795265022) 1797174457 passes MR +ok 171 - Pseudoprime (base 1795265022) 1797741901 passes MR +ok 172 - Pseudoprime (base 1795265022) 1804469753 passes MR +ok 173 - Pseudoprime (base 1795265022) 1807751977 passes MR +ok 174 - Pseudoprime (base 1795265022) 1808043283 passes MR +ok 175 - Pseudoprime (base 1795265022) 1808205701 passes MR +ok 176 - Pseudoprime (base 1795265022) 1813675681 passes MR +ok 177 - Pseudoprime (base 1795265022) 1816462201 passes MR +ok 178 - Pseudoprime (base 1795265022) 1817936371 passes MR +ok 179 - Pseudoprime (base 1795265022) 1819050257 passes MR +ok 180 - Pseudoprime (base 203659041) 204172939 passes MR +ok 181 - Pseudoprime (base 203659041) 204456793 passes MR +ok 182 - Pseudoprime (base 203659041) 206407057 passes MR +ok 183 - Pseudoprime (base 203659041) 206976001 passes MR +ok 184 - Pseudoprime (base 203659041) 207373483 passes MR +ok 185 - Pseudoprime (base 203659041) 209301121 passes MR +ok 186 - Pseudoprime (base 203659041) 210339397 passes MR +ok 187 - Pseudoprime (base 203659041) 211867969 passes MR +ok 188 - Pseudoprime (base 203659041) 212146507 passes MR +ok 189 - Pseudoprime (base 203659041) 212337217 passes MR +ok 190 - Pseudoprime (base 203659041) 212355793 passes MR +ok 191 - Pseudoprime (base 203659041) 214400629 passes MR +ok 192 - Pseudoprime (base 203659041) 214539841 passes MR +ok 193 - Pseudoprime (base 203659041) 215161459 passes MR +ok 194 - Pseudoprime (base 1340600841) 1345289261 passes MR +ok 195 - Pseudoprime (base 1340600841) 1345582981 passes MR +ok 196 - Pseudoprime (base 1340600841) 1347743101 passes MR +ok 197 - Pseudoprime (base 1340600841) 1348964401 passes MR +ok 198 - Pseudoprime (base 1340600841) 1350371821 passes MR +ok 199 - Pseudoprime (base 1340600841) 1353332417 passes MR +ok 200 - Pseudoprime (base 1340600841) 1355646961 passes MR +ok 201 - Pseudoprime (base 1340600841) 1357500901 passes MR +ok 202 - Pseudoprime (base 1340600841) 1361675929 passes MR +ok 203 - Pseudoprime (base 1340600841) 1364378203 passes MR +ok 204 - Pseudoprime (base 1340600841) 1366346521 passes MR +ok 205 - Pseudoprime (base 1340600841) 1367104639 passes MR +ok 206 - 3239 is an almost extra strong Lucas pseudoprime (increment 2) +ok 207 - 4531 is an almost extra strong Lucas pseudoprime (increment 2) +ok 208 - 5777 is an almost extra strong Lucas pseudoprime (increment 2) +ok 209 - 10877 is an almost extra strong Lucas pseudoprime (increment 2) +ok 210 - 12209 is an almost extra strong Lucas pseudoprime (increment 2) +ok 211 - 21899 is an almost extra strong Lucas pseudoprime (increment 2) +ok 212 - 31631 is an almost extra strong Lucas pseudoprime (increment 2) +ok 213 - 31831 is an almost extra strong Lucas pseudoprime (increment 2) +ok 214 - 32129 is an almost extra strong Lucas pseudoprime (increment 2) +ok 215 - 34481 is an almost extra strong Lucas pseudoprime (increment 2) +ok 216 - 36079 is an almost extra strong Lucas pseudoprime (increment 2) +ok 217 - 37949 is an almost extra strong Lucas pseudoprime (increment 2) +ok 218 - 47849 is an almost extra strong Lucas pseudoprime (increment 2) +ok 219 - 50959 is an almost extra strong Lucas pseudoprime (increment 2) +ok 220 - 51641 is an almost extra strong Lucas pseudoprime (increment 2) +ok 221 - 62479 is an almost extra strong Lucas pseudoprime (increment 2) +ok 222 - 73919 is an almost extra strong Lucas pseudoprime (increment 2) +ok 223 - 75077 is an almost extra strong Lucas pseudoprime (increment 2) +ok 224 - 97109 is an almost extra strong Lucas pseudoprime (increment 2) +ok 225 - 100127 is an almost extra strong Lucas pseudoprime (increment 2) +ok 226 - 108679 is an almost extra strong Lucas pseudoprime (increment 2) +ok 227 - 113573 is an almost extra strong Lucas pseudoprime (increment 2) +ok 228 - 116899 is an almost extra strong Lucas pseudoprime (increment 2) +ok 229 - 154697 is an almost extra strong Lucas pseudoprime (increment 2) +ok 230 - 161027 is an almost extra strong Lucas pseudoprime (increment 2) +ok 231 - Pseudoprime (base 553174392) 553174393 passes MR +ok 232 - Pseudoprime (base 553174392) 553945231 passes MR +ok 233 - Pseudoprime (base 553174392) 554494951 passes MR +ok 234 - Pseudoprime (base 553174392) 554892787 passes MR +ok 235 - Pseudoprime (base 553174392) 555429169 passes MR +ok 236 - Pseudoprime (base 553174392) 557058133 passes MR +ok 237 - Pseudoprime (base 553174392) 557163157 passes MR +ok 238 - Pseudoprime (base 553174392) 557165209 passes MR +ok 239 - Pseudoprime (base 553174392) 558966793 passes MR +ok 240 - Pseudoprime (base 553174392) 559407061 passes MR +ok 241 - Pseudoprime (base 553174392) 560291719 passes MR +ok 242 - Pseudoprime (base 553174392) 561008251 passes MR +ok 243 - Pseudoprime (base 553174392) 563947141 passes MR +ok 244 - Pseudoprime (base 3613982119) 3626488471 passes MR +ok 245 - Pseudoprime (base 3613982119) 3630467017 passes MR +ok 246 - Pseudoprime (base 3613982119) 3643480501 passes MR +ok 247 - Pseudoprime (base 3613982119) 3651840727 passes MR +ok 248 - Pseudoprime (base 3613982119) 3653628247 passes MR +ok 249 - Pseudoprime (base 3613982119) 3654142177 passes MR +ok 250 - Pseudoprime (base 3613982119) 3672033223 passes MR +ok 251 - Pseudoprime (base 3613982119) 3672036061 passes MR +ok 252 - Pseudoprime (base 3613982119) 3675774019 passes MR +ok 253 - Pseudoprime (base 3613982119) 3687246109 passes MR +ok 254 - Pseudoprime (base 3613982119) 3690036017 passes MR +ok 255 - Pseudoprime (base 3613982119) 3720856369 passes MR +ok 256 - 989 is an almost extra strong Lucas pseudoprime (increment 1) +ok 257 - 3239 is an almost extra strong Lucas pseudoprime (increment 1) +ok 258 - 5777 is an almost extra strong Lucas pseudoprime (increment 1) +ok 259 - 10469 is an almost extra strong Lucas pseudoprime (increment 1) +ok 260 - 10877 is an almost extra strong Lucas pseudoprime (increment 1) +ok 261 - 27971 is an almost extra strong Lucas pseudoprime (increment 1) +ok 262 - 29681 is an almost extra strong Lucas pseudoprime (increment 1) +ok 263 - 30739 is an almost extra strong Lucas pseudoprime (increment 1) +ok 264 - 31631 is an almost extra strong Lucas pseudoprime (increment 1) +ok 265 - 39059 is an almost extra strong Lucas pseudoprime (increment 1) +ok 266 - 72389 is an almost extra strong Lucas pseudoprime (increment 1) +ok 267 - 73919 is an almost extra strong Lucas pseudoprime (increment 1) +ok 268 - 75077 is an almost extra strong Lucas pseudoprime (increment 1) +ok 269 - 100127 is an almost extra strong Lucas pseudoprime (increment 1) +ok 270 - 113573 is an almost extra strong Lucas pseudoprime (increment 1) +ok 271 - 125249 is an almost extra strong Lucas pseudoprime (increment 1) +ok 272 - 137549 is an almost extra strong Lucas pseudoprime (increment 1) +ok 273 - 137801 is an almost extra strong Lucas pseudoprime (increment 1) +ok 274 - 153931 is an almost extra strong Lucas pseudoprime (increment 1) +ok 275 - 154697 is an almost extra strong Lucas pseudoprime (increment 1) +ok 276 - 155819 is an almost extra strong Lucas pseudoprime (increment 1) +ok 277 - Pseudoprime (base 2) 2047 passes MR +ok 278 - Pseudoprime (base 2) 3277 passes MR +ok 279 - Pseudoprime (base 2) 4033 passes MR +ok 280 - Pseudoprime (base 2) 4681 passes MR +ok 281 - Pseudoprime (base 2) 8321 passes MR +ok 282 - Pseudoprime (base 2) 15841 passes MR +ok 283 - Pseudoprime (base 2) 29341 passes MR +ok 284 - Pseudoprime (base 2) 42799 passes MR +ok 285 - Pseudoprime (base 2) 49141 passes MR +ok 286 - Pseudoprime (base 2) 52633 passes MR +ok 287 - Pseudoprime (base 2) 65281 passes MR +ok 288 - Pseudoprime (base 2) 74665 passes MR +ok 289 - Pseudoprime (base 2) 80581 passes MR +ok 290 - Pseudoprime (base 2) 85489 passes MR +ok 291 - Pseudoprime (base 2) 88357 passes MR +ok 292 - Pseudoprime (base 2) 90751 passes MR +ok 293 - Pseudoprime (base 2) 1194649 passes MR +ok 294 - 323 is a Lucas-Selfridge pseudoprime +ok 295 - 377 is a Lucas-Selfridge pseudoprime +ok 296 - 1159 is a Lucas-Selfridge pseudoprime +ok 297 - 1829 is a Lucas-Selfridge pseudoprime +ok 298 - 3827 is a Lucas-Selfridge pseudoprime +ok 299 - 5459 is a Lucas-Selfridge pseudoprime +ok 300 - 5777 is a Lucas-Selfridge pseudoprime +ok 301 - 9071 is a Lucas-Selfridge pseudoprime +ok 302 - 9179 is a Lucas-Selfridge pseudoprime +ok 303 - 10877 is a Lucas-Selfridge pseudoprime +ok 304 - 11419 is a Lucas-Selfridge pseudoprime +ok 305 - 11663 is a Lucas-Selfridge pseudoprime +ok 306 - 13919 is a Lucas-Selfridge pseudoprime +ok 307 - 14839 is a Lucas-Selfridge pseudoprime +ok 308 - 16109 is a Lucas-Selfridge pseudoprime +ok 309 - 16211 is a Lucas-Selfridge pseudoprime +ok 310 - 18407 is a Lucas-Selfridge pseudoprime +ok 311 - 18971 is a Lucas-Selfridge pseudoprime +ok 312 - 19043 is a Lucas-Selfridge pseudoprime +ok 313 - 1729 is an Euler-Plumb pseudoprime +ok 314 - 1905 is an Euler-Plumb pseudoprime +ok 315 - 2047 is an Euler-Plumb pseudoprime +ok 316 - 2465 is an Euler-Plumb pseudoprime +ok 317 - 3277 is an Euler-Plumb pseudoprime +ok 318 - 4033 is an Euler-Plumb pseudoprime +ok 319 - 4681 is an Euler-Plumb pseudoprime +ok 320 - 8321 is an Euler-Plumb pseudoprime +ok 321 - 12801 is an Euler-Plumb pseudoprime +ok 322 - 15841 is an Euler-Plumb pseudoprime +ok 323 - 16705 is an Euler-Plumb pseudoprime +ok 324 - 18705 is an Euler-Plumb pseudoprime +ok 325 - 25761 is an Euler-Plumb pseudoprime +ok 326 - 29341 is an Euler-Plumb pseudoprime +ok 327 - 33153 is an Euler-Plumb pseudoprime +ok 328 - 34945 is an Euler-Plumb pseudoprime +ok 329 - 41041 is an Euler-Plumb pseudoprime +ok 330 - 42799 is an Euler-Plumb pseudoprime +ok 331 - 46657 is an Euler-Plumb pseudoprime +ok 332 - 49141 is an Euler-Plumb pseudoprime +ok 333 - 52633 is an Euler-Plumb pseudoprime +ok 334 - 65281 is an Euler-Plumb pseudoprime +ok 335 - 74665 is an Euler-Plumb pseudoprime +ok 336 - 75361 is an Euler-Plumb pseudoprime +ok 337 - 80581 is an Euler-Plumb pseudoprime +ok 338 - 85489 is an Euler-Plumb pseudoprime +ok 339 - 87249 is an Euler-Plumb pseudoprime +ok 340 - 88357 is an Euler-Plumb pseudoprime +ok 341 - 90751 is an Euler-Plumb pseudoprime +ok 342 - Pseudoprime (base 7) 25 passes MR +ok 343 - Pseudoprime (base 7) 325 passes MR +ok 344 - Pseudoprime (base 7) 703 passes MR +ok 345 - Pseudoprime (base 7) 2101 passes MR +ok 346 - Pseudoprime (base 7) 2353 passes MR +ok 347 - Pseudoprime (base 7) 4525 passes MR +ok 348 - Pseudoprime (base 7) 11041 passes MR +ok 349 - Pseudoprime (base 7) 14089 passes MR +ok 350 - Pseudoprime (base 7) 20197 passes MR +ok 351 - Pseudoprime (base 7) 29857 passes MR +ok 352 - Pseudoprime (base 7) 29891 passes MR +ok 353 - Pseudoprime (base 7) 39331 passes MR +ok 354 - Pseudoprime (base 7) 49241 passes MR +ok 355 - Pseudoprime (base 7) 58825 passes MR +ok 356 - Pseudoprime (base 7) 64681 passes MR +ok 357 - Pseudoprime (base 7) 76627 passes MR +ok 358 - Pseudoprime (base 7) 78937 passes MR +ok 359 - Pseudoprime (base 7) 79381 passes MR +ok 360 - Pseudoprime (base 7) 87673 passes MR +ok 361 - Pseudoprime (base 7) 88399 passes MR +ok 362 - Pseudoprime (base 7) 88831 passes MR +ok 363 - Pseudoprime (base 61) 217 passes MR +ok 364 - Pseudoprime (base 61) 341 passes MR +ok 365 - Pseudoprime (base 61) 1261 passes MR +ok 366 - Pseudoprime (base 61) 2701 passes MR +ok 367 - Pseudoprime (base 61) 3661 passes MR +ok 368 - Pseudoprime (base 61) 6541 passes MR +ok 369 - Pseudoprime (base 61) 6697 passes MR +ok 370 - Pseudoprime (base 61) 7613 passes MR +ok 371 - Pseudoprime (base 61) 13213 passes MR +ok 372 - Pseudoprime (base 61) 16213 passes MR +ok 373 - Pseudoprime (base 61) 22177 passes MR +ok 374 - Pseudoprime (base 61) 23653 passes MR +ok 375 - Pseudoprime (base 61) 23959 passes MR +ok 376 - Pseudoprime (base 61) 31417 passes MR +ok 377 - Pseudoprime (base 61) 50117 passes MR +ok 378 - Pseudoprime (base 61) 61777 passes MR +ok 379 - Pseudoprime (base 61) 63139 passes MR +ok 380 - Pseudoprime (base 61) 67721 passes MR +ok 381 - Pseudoprime (base 61) 76301 passes MR +ok 382 - Pseudoprime (base 61) 77421 passes MR +ok 383 - Pseudoprime (base 61) 79381 passes MR +ok 384 - Pseudoprime (base 61) 80041 passes MR +ok 385 - Pseudoprime (base 325) 341 passes MR +ok 386 - Pseudoprime (base 325) 343 passes MR +ok 387 - Pseudoprime (base 325) 697 passes MR +ok 388 - Pseudoprime (base 325) 1141 passes MR +ok 389 - Pseudoprime (base 325) 2059 passes MR +ok 390 - Pseudoprime (base 325) 2149 passes MR +ok 391 - Pseudoprime (base 325) 3097 passes MR +ok 392 - Pseudoprime (base 325) 3537 passes MR +ok 393 - Pseudoprime (base 325) 4033 passes MR +ok 394 - Pseudoprime (base 325) 4681 passes MR +ok 395 - Pseudoprime (base 325) 4941 passes MR +ok 396 - Pseudoprime (base 325) 5833 passes MR +ok 397 - Pseudoprime (base 325) 6517 passes MR +ok 398 - Pseudoprime (base 325) 7987 passes MR +ok 399 - Pseudoprime (base 325) 8911 passes MR +ok 400 - Pseudoprime (base 325) 12403 passes MR +ok 401 - Pseudoprime (base 325) 12913 passes MR +ok 402 - Pseudoprime (base 325) 15043 passes MR +ok 403 - Pseudoprime (base 325) 16021 passes MR +ok 404 - Pseudoprime (base 325) 20017 passes MR +ok 405 - Pseudoprime (base 325) 22261 passes MR +ok 406 - Pseudoprime (base 325) 23221 passes MR +ok 407 - Pseudoprime (base 325) 24649 passes MR +ok 408 - Pseudoprime (base 325) 24929 passes MR +ok 409 - Pseudoprime (base 325) 31841 passes MR +ok 410 - Pseudoprime (base 325) 35371 passes MR +ok 411 - Pseudoprime (base 325) 38503 passes MR +ok 412 - Pseudoprime (base 325) 43213 passes MR +ok 413 - Pseudoprime (base 325) 44173 passes MR +ok 414 - Pseudoprime (base 325) 47197 passes MR +ok 415 - Pseudoprime (base 325) 50041 passes MR +ok 416 - Pseudoprime (base 325) 55909 passes MR +ok 417 - Pseudoprime (base 325) 56033 passes MR +ok 418 - Pseudoprime (base 325) 58969 passes MR +ok 419 - Pseudoprime (base 325) 59089 passes MR +ok 420 - Pseudoprime (base 325) 61337 passes MR +ok 421 - Pseudoprime (base 325) 65441 passes MR +ok 422 - Pseudoprime (base 325) 68823 passes MR +ok 423 - Pseudoprime (base 325) 72641 passes MR +ok 424 - Pseudoprime (base 325) 76793 passes MR +ok 425 - Pseudoprime (base 325) 78409 passes MR +ok 426 - Pseudoprime (base 325) 85879 passes MR +ok 427 - Pseudoprime (base 9375) 11521 passes MR +ok 428 - Pseudoprime (base 9375) 14689 passes MR +ok 429 - Pseudoprime (base 9375) 17893 passes MR +ok 430 - Pseudoprime (base 9375) 18361 passes MR +ok 431 - Pseudoprime (base 9375) 20591 passes MR +ok 432 - Pseudoprime (base 9375) 28093 passes MR +ok 433 - Pseudoprime (base 9375) 32809 passes MR +ok 434 - Pseudoprime (base 9375) 37969 passes MR +ok 435 - Pseudoprime (base 9375) 44287 passes MR +ok 436 - Pseudoprime (base 9375) 60701 passes MR +ok 437 - Pseudoprime (base 9375) 70801 passes MR +ok 438 - Pseudoprime (base 9375) 79957 passes MR +ok 439 - Pseudoprime (base 9375) 88357 passes MR +ok 440 - Pseudoprime (base 9375) 88831 passes MR +ok 441 - Pseudoprime (base 9375) 94249 passes MR +ok 442 - Pseudoprime (base 9375) 96247 passes MR +ok 443 - Pseudoprime (base 9375) 99547 passes MR +ok 444 - 4181 is a Frobenius (1,-1) pseudoprime +ok 445 - 5777 is a Frobenius (1,-1) pseudoprime +ok 446 - 6721 is a Frobenius (1,-1) pseudoprime +ok 447 - 10877 is a Frobenius (1,-1) pseudoprime +ok 448 - 13201 is a Frobenius (1,-1) pseudoprime +ok 449 - 15251 is a Frobenius (1,-1) pseudoprime +ok 450 - 34561 is a Frobenius (1,-1) pseudoprime +ok 451 - 51841 is a Frobenius (1,-1) pseudoprime +ok 452 - 64079 is a Frobenius (1,-1) pseudoprime +ok 453 - 64681 is a Frobenius (1,-1) pseudoprime +ok 454 - 67861 is a Frobenius (1,-1) pseudoprime +ok 455 - 68251 is a Frobenius (1,-1) pseudoprime +ok 456 - 75077 is a Frobenius (1,-1) pseudoprime +ok 457 - 90061 is a Frobenius (1,-1) pseudoprime +ok 458 - 96049 is a Frobenius (1,-1) pseudoprime +ok 459 - 97921 is a Frobenius (1,-1) pseudoprime +ok 460 - 100127 is a Frobenius (1,-1) pseudoprime +ok 461 - 15 is an Euler pseudoprime to base 29 +ok 462 - 91 is an Euler pseudoprime to base 29 +ok 463 - 341 is an Euler pseudoprime to base 29 +ok 464 - 469 is an Euler pseudoprime to base 29 +ok 465 - 871 is an Euler pseudoprime to base 29 +ok 466 - 2257 is an Euler pseudoprime to base 29 +ok 467 - 4371 is an Euler pseudoprime to base 29 +ok 468 - 4411 is an Euler pseudoprime to base 29 +ok 469 - 5149 is an Euler pseudoprime to base 29 +ok 470 - 5185 is an Euler pseudoprime to base 29 +ok 471 - 6097 is an Euler pseudoprime to base 29 +ok 472 - 8401 is an Euler pseudoprime to base 29 +ok 473 - 8841 is an Euler pseudoprime to base 29 +ok 474 - 11581 is an Euler pseudoprime to base 29 +ok 475 - 12431 is an Euler pseudoprime to base 29 +ok 476 - 15577 is an Euler pseudoprime to base 29 +ok 477 - 15841 is an Euler pseudoprime to base 29 +ok 478 - 16471 is an Euler pseudoprime to base 29 +ok 479 - 19093 is an Euler pseudoprime to base 29 +ok 480 - 22281 is an Euler pseudoprime to base 29 +ok 481 - 25681 is an Euler pseudoprime to base 29 +ok 482 - 27613 is an Euler pseudoprime to base 29 +ok 483 - 28009 is an Euler pseudoprime to base 29 +ok 484 - 29539 is an Euler pseudoprime to base 29 +ok 485 - 31417 is an Euler pseudoprime to base 29 +ok 486 - 33001 is an Euler pseudoprime to base 29 +ok 487 - 41041 is an Euler pseudoprime to base 29 +ok 488 - 46657 is an Euler pseudoprime to base 29 +ok 489 - 48133 is an Euler pseudoprime to base 29 +ok 490 - 49141 is an Euler pseudoprime to base 29 +ok 491 - 54913 is an Euler pseudoprime to base 29 +ok 492 - 57889 is an Euler pseudoprime to base 29 +ok 493 - 79003 is an Euler pseudoprime to base 29 +ok 494 - 98301 is an Euler pseudoprime to base 29 +ok 495 - 5459 is a strong Lucas-Selfridge pseudoprime +ok 496 - 5777 is a strong Lucas-Selfridge pseudoprime +ok 497 - 10877 is a strong Lucas-Selfridge pseudoprime +ok 498 - 16109 is a strong Lucas-Selfridge pseudoprime +ok 499 - 18971 is a strong Lucas-Selfridge pseudoprime +ok 500 - 22499 is a strong Lucas-Selfridge pseudoprime +ok 501 - 24569 is a strong Lucas-Selfridge pseudoprime +ok 502 - 25199 is a strong Lucas-Selfridge pseudoprime +ok 503 - 40309 is a strong Lucas-Selfridge pseudoprime +ok 504 - 58519 is a strong Lucas-Selfridge pseudoprime +ok 505 - 75077 is a strong Lucas-Selfridge pseudoprime +ok 506 - 97439 is a strong Lucas-Selfridge pseudoprime +ok 507 - 100127 is a strong Lucas-Selfridge pseudoprime +ok 508 - 113573 is a strong Lucas-Selfridge pseudoprime +ok 509 - 115639 is a strong Lucas-Selfridge pseudoprime +ok 510 - 130139 is a strong Lucas-Selfridge pseudoprime +ok 511 - 561 is an Euler pseudoprime to base 2 +ok 512 - 1105 is an Euler pseudoprime to base 2 +ok 513 - 1729 is an Euler pseudoprime to base 2 +ok 514 - 1905 is an Euler pseudoprime to base 2 +ok 515 - 2047 is an Euler pseudoprime to base 2 +ok 516 - 2465 is an Euler pseudoprime to base 2 +ok 517 - 3277 is an Euler pseudoprime to base 2 +ok 518 - 4033 is an Euler pseudoprime to base 2 +ok 519 - 4681 is an Euler pseudoprime to base 2 +ok 520 - 6601 is an Euler pseudoprime to base 2 +ok 521 - 8321 is an Euler pseudoprime to base 2 +ok 522 - 8481 is an Euler pseudoprime to base 2 +ok 523 - 10585 is an Euler pseudoprime to base 2 +ok 524 - 12801 is an Euler pseudoprime to base 2 +ok 525 - 15841 is an Euler pseudoprime to base 2 +ok 526 - 16705 is an Euler pseudoprime to base 2 +ok 527 - 18705 is an Euler pseudoprime to base 2 +ok 528 - 25761 is an Euler pseudoprime to base 2 +ok 529 - 29341 is an Euler pseudoprime to base 2 +ok 530 - 30121 is an Euler pseudoprime to base 2 +ok 531 - 33153 is an Euler pseudoprime to base 2 +ok 532 - 34945 is an Euler pseudoprime to base 2 +ok 533 - 41041 is an Euler pseudoprime to base 2 +ok 534 - 42799 is an Euler pseudoprime to base 2 +ok 535 - 46657 is an Euler pseudoprime to base 2 +ok 536 - 49141 is an Euler pseudoprime to base 2 +ok 537 - 52633 is an Euler pseudoprime to base 2 +ok 538 - 62745 is an Euler pseudoprime to base 2 +ok 539 - 65281 is an Euler pseudoprime to base 2 +ok 540 - 74665 is an Euler pseudoprime to base 2 +ok 541 - 75361 is an Euler pseudoprime to base 2 +ok 542 - 80581 is an Euler pseudoprime to base 2 +ok 543 - 85489 is an Euler pseudoprime to base 2 +ok 544 - 87249 is an Euler pseudoprime to base 2 +ok 545 - 88357 is an Euler pseudoprime to base 2 +ok 546 - 90751 is an Euler pseudoprime to base 2 +ok 547 - 91 is a pseudoprime to base 3 +ok 548 - 121 is a pseudoprime to base 3 +ok 549 - 286 is a pseudoprime to base 3 +ok 550 - 671 is a pseudoprime to base 3 +ok 551 - 703 is a pseudoprime to base 3 +ok 552 - 949 is a pseudoprime to base 3 +ok 553 - 1105 is a pseudoprime to base 3 +ok 554 - 1541 is a pseudoprime to base 3 +ok 555 - 1729 is a pseudoprime to base 3 +ok 556 - 1891 is a pseudoprime to base 3 +ok 557 - 2465 is a pseudoprime to base 3 +ok 558 - 2665 is a pseudoprime to base 3 +ok 559 - 2701 is a pseudoprime to base 3 +ok 560 - 2821 is a pseudoprime to base 3 +ok 561 - 3281 is a pseudoprime to base 3 +ok 562 - 3367 is a pseudoprime to base 3 +ok 563 - 3751 is a pseudoprime to base 3 +ok 564 - 4961 is a pseudoprime to base 3 +ok 565 - 5551 is a pseudoprime to base 3 +ok 566 - 6601 is a pseudoprime to base 3 +ok 567 - 7381 is a pseudoprime to base 3 +ok 568 - 8401 is a pseudoprime to base 3 +ok 569 - 8911 is a pseudoprime to base 3 +ok 570 - 10585 is a pseudoprime to base 3 +ok 571 - 11011 is a pseudoprime to base 3 +ok 572 - 12403 is a pseudoprime to base 3 +ok 573 - 14383 is a pseudoprime to base 3 +ok 574 - 15203 is a pseudoprime to base 3 +ok 575 - 15457 is a pseudoprime to base 3 +ok 576 - 15841 is a pseudoprime to base 3 +ok 577 - 16471 is a pseudoprime to base 3 +ok 578 - 16531 is a pseudoprime to base 3 +ok 579 - 18721 is a pseudoprime to base 3 +ok 580 - 19345 is a pseudoprime to base 3 +ok 581 - 23521 is a pseudoprime to base 3 +ok 582 - 24046 is a pseudoprime to base 3 +ok 583 - 24661 is a pseudoprime to base 3 +ok 584 - 24727 is a pseudoprime to base 3 +ok 585 - 28009 is a pseudoprime to base 3 +ok 586 - 29161 is a pseudoprime to base 3 +ok 587 - 271441 is a Perrin pseudoprime +ok 588 - 904631 is a Perrin pseudoprime +ok 589 - 16532714 is a Perrin pseudoprime +ok 590 - 24658561 is a Perrin pseudoprime +ok 591 - 27422714 is a Perrin pseudoprime +ok 592 - 27664033 is a Perrin pseudoprime +ok 593 - 46672291 is a Perrin pseudoprime +ok 594 - 102690901 is a Perrin pseudoprime +ok 595 - 130944133 is a Perrin pseudoprime +ok 596 - 196075949 is a Perrin pseudoprime +ok 597 - 214038533 is a Perrin pseudoprime +ok 598 - 517697641 is a Perrin pseudoprime +ok 599 - 545670533 is a Perrin pseudoprime +ok 600 - 801123451 is a Perrin pseudoprime +ok 601 - Pseudoprime (base 19) 9 passes MR +ok 602 - Pseudoprime (base 19) 49 passes MR +ok 603 - Pseudoprime (base 19) 169 passes MR +ok 604 - Pseudoprime (base 19) 343 passes MR +ok 605 - Pseudoprime (base 19) 1849 passes MR +ok 606 - Pseudoprime (base 19) 2353 passes MR +ok 607 - Pseudoprime (base 19) 2701 passes MR +ok 608 - Pseudoprime (base 19) 4033 passes MR +ok 609 - Pseudoprime (base 19) 4681 passes MR +ok 610 - Pseudoprime (base 19) 6541 passes MR +ok 611 - Pseudoprime (base 19) 6697 passes MR +ok 612 - Pseudoprime (base 19) 7957 passes MR +ok 613 - Pseudoprime (base 19) 9997 passes MR +ok 614 - Pseudoprime (base 19) 12403 passes MR +ok 615 - Pseudoprime (base 19) 13213 passes MR +ok 616 - Pseudoprime (base 19) 13747 passes MR +ok 617 - Pseudoprime (base 19) 15251 passes MR +ok 618 - Pseudoprime (base 19) 16531 passes MR +ok 619 - Pseudoprime (base 19) 18769 passes MR +ok 620 - Pseudoprime (base 19) 19729 passes MR +ok 621 - Pseudoprime (base 19) 24761 passes MR +ok 622 - Pseudoprime (base 19) 30589 passes MR +ok 623 - Pseudoprime (base 19) 31621 passes MR +ok 624 - Pseudoprime (base 19) 31861 passes MR +ok 625 - Pseudoprime (base 19) 32477 passes MR +ok 626 - Pseudoprime (base 19) 41003 passes MR +ok 627 - Pseudoprime (base 19) 49771 passes MR +ok 628 - Pseudoprime (base 19) 63139 passes MR +ok 629 - Pseudoprime (base 19) 64681 passes MR +ok 630 - Pseudoprime (base 19) 65161 passes MR +ok 631 - Pseudoprime (base 19) 66421 passes MR +ok 632 - Pseudoprime (base 19) 68257 passes MR +ok 633 - Pseudoprime (base 19) 73555 passes MR +ok 634 - Pseudoprime (base 19) 96049 passes MR +ok 635 - 13333 is a Frobenius (3,-5) pseudoprime +ok 636 - 44801 is a Frobenius (3,-5) pseudoprime +ok 637 - 486157 is a Frobenius (3,-5) pseudoprime +ok 638 - 1615681 is a Frobenius (3,-5) pseudoprime +ok 639 - 3125281 is a Frobenius (3,-5) pseudoprime +ok 640 - 4219129 is a Frobenius (3,-5) pseudoprime +ok 641 - 9006401 is a Frobenius (3,-5) pseudoprime +ok 642 - 12589081 is a Frobenius (3,-5) pseudoprime +ok 643 - 13404751 is a Frobenius (3,-5) pseudoprime +ok 644 - 15576571 is a Frobenius (3,-5) pseudoprime +ok 645 - 16719781 is a Frobenius (3,-5) pseudoprime +ok 646 - Pseudoprime (base 17) 9 passes MR +ok 647 - Pseudoprime (base 17) 91 passes MR +ok 648 - Pseudoprime (base 17) 145 passes MR +ok 649 - Pseudoprime (base 17) 781 passes MR +ok 650 - Pseudoprime (base 17) 1111 passes MR +ok 651 - Pseudoprime (base 17) 2821 passes MR +ok 652 - Pseudoprime (base 17) 4033 passes MR +ok 653 - Pseudoprime (base 17) 4187 passes MR +ok 654 - Pseudoprime (base 17) 5365 passes MR +ok 655 - Pseudoprime (base 17) 5833 passes MR +ok 656 - Pseudoprime (base 17) 6697 passes MR +ok 657 - Pseudoprime (base 17) 7171 passes MR +ok 658 - Pseudoprime (base 17) 15805 passes MR +ok 659 - Pseudoprime (base 17) 19729 passes MR +ok 660 - Pseudoprime (base 17) 21781 passes MR +ok 661 - Pseudoprime (base 17) 22791 passes MR +ok 662 - Pseudoprime (base 17) 24211 passes MR +ok 663 - Pseudoprime (base 17) 26245 passes MR +ok 664 - Pseudoprime (base 17) 31621 passes MR +ok 665 - Pseudoprime (base 17) 33001 passes MR +ok 666 - Pseudoprime (base 17) 33227 passes MR +ok 667 - Pseudoprime (base 17) 34441 passes MR +ok 668 - Pseudoprime (base 17) 35371 passes MR +ok 669 - Pseudoprime (base 17) 38081 passes MR +ok 670 - Pseudoprime (base 17) 42127 passes MR +ok 671 - Pseudoprime (base 17) 49771 passes MR +ok 672 - Pseudoprime (base 17) 71071 passes MR +ok 673 - Pseudoprime (base 17) 74665 passes MR +ok 674 - Pseudoprime (base 17) 77293 passes MR +ok 675 - Pseudoprime (base 17) 78881 passes MR +ok 676 - Pseudoprime (base 17) 88831 passes MR +ok 677 - Pseudoprime (base 17) 96433 passes MR +ok 678 - Pseudoprime (base 17) 97921 passes MR +ok 679 - Pseudoprime (base 17) 98671 passes MR +ok 680 - Pseudoprime (base 5) 781 passes MR +ok 681 - Pseudoprime (base 5) 1541 passes MR +ok 682 - Pseudoprime (base 5) 5461 passes MR +ok 683 - Pseudoprime (base 5) 5611 passes MR +ok 684 - Pseudoprime (base 5) 7813 passes MR +ok 685 - Pseudoprime (base 5) 13021 passes MR +ok 686 - Pseudoprime (base 5) 14981 passes MR +ok 687 - Pseudoprime (base 5) 15751 passes MR +ok 688 - Pseudoprime (base 5) 24211 passes MR +ok 689 - Pseudoprime (base 5) 25351 passes MR +ok 690 - Pseudoprime (base 5) 29539 passes MR +ok 691 - Pseudoprime (base 5) 38081 passes MR +ok 692 - Pseudoprime (base 5) 40501 passes MR +ok 693 - Pseudoprime (base 5) 44801 passes MR +ok 694 - Pseudoprime (base 5) 53971 passes MR +ok 695 - Pseudoprime (base 5) 79381 passes MR +ok 696 - Pseudoprime (base 29) 15 passes MR +ok 697 - Pseudoprime (base 29) 91 passes MR +ok 698 - Pseudoprime (base 29) 341 passes MR +ok 699 - Pseudoprime (base 29) 469 passes MR +ok 700 - Pseudoprime (base 29) 871 passes MR +ok 701 - Pseudoprime (base 29) 2257 passes MR +ok 702 - Pseudoprime (base 29) 4371 passes MR +ok 703 - Pseudoprime (base 29) 4411 passes MR +ok 704 - Pseudoprime (base 29) 5149 passes MR +ok 705 - Pseudoprime (base 29) 6097 passes MR +ok 706 - Pseudoprime (base 29) 8401 passes MR +ok 707 - Pseudoprime (base 29) 11581 passes MR +ok 708 - Pseudoprime (base 29) 12431 passes MR +ok 709 - Pseudoprime (base 29) 15577 passes MR +ok 710 - Pseudoprime (base 29) 16471 passes MR +ok 711 - Pseudoprime (base 29) 19093 passes MR +ok 712 - Pseudoprime (base 29) 25681 passes MR +ok 713 - Pseudoprime (base 29) 28009 passes MR +ok 714 - Pseudoprime (base 29) 29539 passes MR +ok 715 - Pseudoprime (base 29) 31417 passes MR +ok 716 - Pseudoprime (base 29) 33001 passes MR +ok 717 - Pseudoprime (base 29) 48133 passes MR +ok 718 - Pseudoprime (base 29) 49141 passes MR +ok 719 - Pseudoprime (base 29) 54913 passes MR +ok 720 - Pseudoprime (base 29) 79003 passes MR +ok 721 - Pseudoprime (base 1005905886) 1005905887 passes MR +ok 722 - Pseudoprime (base 1005905886) 1007713171 passes MR +ok 723 - Pseudoprime (base 1005905886) 1008793699 passes MR +ok 724 - Pseudoprime (base 1005905886) 1010415421 passes MR +ok 725 - Pseudoprime (base 1005905886) 1010487061 passes MR +ok 726 - Pseudoprime (base 1005905886) 1010836369 passes MR +ok 727 - Pseudoprime (base 1005905886) 1012732873 passes MR +ok 728 - Pseudoprime (base 1005905886) 1015269391 passes MR +ok 729 - Pseudoprime (base 1005905886) 1016250247 passes MR +ok 730 - Pseudoprime (base 1005905886) 1018405741 passes MR +ok 731 - Pseudoprime (base 1005905886) 1020182041 passes MR +ok 732 - Pseudoprime (base 11) 133 passes MR +ok 733 - Pseudoprime (base 11) 793 passes MR +ok 734 - Pseudoprime (base 11) 2047 passes MR +ok 735 - Pseudoprime (base 11) 4577 passes MR +ok 736 - Pseudoprime (base 11) 5041 passes MR +ok 737 - Pseudoprime (base 11) 12403 passes MR +ok 738 - Pseudoprime (base 11) 13333 passes MR +ok 739 - Pseudoprime (base 11) 14521 passes MR +ok 740 - Pseudoprime (base 11) 17711 passes MR +ok 741 - Pseudoprime (base 11) 23377 passes MR +ok 742 - Pseudoprime (base 11) 43213 passes MR +ok 743 - Pseudoprime (base 11) 43739 passes MR +ok 744 - Pseudoprime (base 11) 47611 passes MR +ok 745 - Pseudoprime (base 11) 48283 passes MR +ok 746 - Pseudoprime (base 11) 49601 passes MR +ok 747 - Pseudoprime (base 11) 50737 passes MR +ok 748 - Pseudoprime (base 11) 50997 passes MR +ok 749 - Pseudoprime (base 11) 56057 passes MR +ok 750 - Pseudoprime (base 11) 58969 passes MR +ok 751 - Pseudoprime (base 11) 68137 passes MR +ok 752 - Pseudoprime (base 11) 74089 passes MR +ok 753 - Pseudoprime (base 11) 85879 passes MR +ok 754 - Pseudoprime (base 11) 86347 passes MR +ok 755 - Pseudoprime (base 11) 87913 passes MR +ok 756 - Pseudoprime (base 11) 88831 passes MR +ok 757 - 989 is an extra strong Lucas pseudoprime +ok 758 - 3239 is an extra strong Lucas pseudoprime +ok 759 - 5777 is an extra strong Lucas pseudoprime +ok 760 - 10877 is an extra strong Lucas pseudoprime +ok 761 - 27971 is an extra strong Lucas pseudoprime +ok 762 - 29681 is an extra strong Lucas pseudoprime +ok 763 - 30739 is an extra strong Lucas pseudoprime +ok 764 - 31631 is an extra strong Lucas pseudoprime +ok 765 - 39059 is an extra strong Lucas pseudoprime +ok 766 - 72389 is an extra strong Lucas pseudoprime +ok 767 - 73919 is an extra strong Lucas pseudoprime +ok 768 - 75077 is an extra strong Lucas pseudoprime +ok 769 - 100127 is an extra strong Lucas pseudoprime +ok 770 - 113573 is an extra strong Lucas pseudoprime +ok 771 - 125249 is an extra strong Lucas pseudoprime +ok 772 - 137549 is an extra strong Lucas pseudoprime +ok 773 - 137801 is an extra strong Lucas pseudoprime +ok 774 - 153931 is an extra strong Lucas pseudoprime +ok 775 - 155819 is an extra strong Lucas pseudoprime +ok 776 - Pseudoprime (base 37) 9 passes MR +ok 777 - Pseudoprime (base 37) 451 passes MR +ok 778 - Pseudoprime (base 37) 469 passes MR +ok 779 - Pseudoprime (base 37) 589 passes MR +ok 780 - Pseudoprime (base 37) 685 passes MR +ok 781 - Pseudoprime (base 37) 817 passes MR +ok 782 - Pseudoprime (base 37) 1333 passes MR +ok 783 - Pseudoprime (base 37) 3781 passes MR +ok 784 - Pseudoprime (base 37) 8905 passes MR +ok 785 - Pseudoprime (base 37) 9271 passes MR +ok 786 - Pseudoprime (base 37) 18631 passes MR +ok 787 - Pseudoprime (base 37) 19517 passes MR +ok 788 - Pseudoprime (base 37) 20591 passes MR +ok 789 - Pseudoprime (base 37) 25327 passes MR +ok 790 - Pseudoprime (base 37) 34237 passes MR +ok 791 - Pseudoprime (base 37) 45551 passes MR +ok 792 - Pseudoprime (base 37) 46981 passes MR +ok 793 - Pseudoprime (base 37) 47587 passes MR +ok 794 - Pseudoprime (base 37) 48133 passes MR +ok 795 - Pseudoprime (base 37) 59563 passes MR +ok 796 - Pseudoprime (base 37) 61337 passes MR +ok 797 - Pseudoprime (base 37) 68101 passes MR +ok 798 - Pseudoprime (base 37) 68251 passes MR +ok 799 - Pseudoprime (base 37) 73633 passes MR +ok 800 - Pseudoprime (base 37) 79381 passes MR +ok 801 - Pseudoprime (base 37) 79501 passes MR +ok 802 - Pseudoprime (base 37) 83333 passes MR +ok 803 - Pseudoprime (base 37) 84151 passes MR +ok 804 - Pseudoprime (base 37) 96727 passes MR +ok 805 - Pseudoprime (base 28178) 28179 passes MR +ok 806 - Pseudoprime (base 28178) 29381 passes MR +ok 807 - Pseudoprime (base 28178) 30353 passes MR +ok 808 - Pseudoprime (base 28178) 34441 passes MR +ok 809 - Pseudoprime (base 28178) 35371 passes MR +ok 810 - Pseudoprime (base 28178) 37051 passes MR +ok 811 - Pseudoprime (base 28178) 38503 passes MR +ok 812 - Pseudoprime (base 28178) 43387 passes MR +ok 813 - Pseudoprime (base 28178) 50557 passes MR +ok 814 - Pseudoprime (base 28178) 51491 passes MR +ok 815 - Pseudoprime (base 28178) 57553 passes MR +ok 816 - Pseudoprime (base 28178) 79003 passes MR +ok 817 - Pseudoprime (base 28178) 82801 passes MR +ok 818 - Pseudoprime (base 28178) 83333 passes MR +ok 819 - Pseudoprime (base 28178) 87249 passes MR +ok 820 - Pseudoprime (base 28178) 88507 passes MR +ok 821 - Pseudoprime (base 28178) 97921 passes MR +ok 822 - Pseudoprime (base 28178) 99811 passes MR +ok 823 - 121 is an Euler pseudoprime to base 3 +ok 824 - 703 is an Euler pseudoprime to base 3 +ok 825 - 1729 is an Euler pseudoprime to base 3 +ok 826 - 1891 is an Euler pseudoprime to base 3 +ok 827 - 2821 is an Euler pseudoprime to base 3 +ok 828 - 3281 is an Euler pseudoprime to base 3 +ok 829 - 7381 is an Euler pseudoprime to base 3 +ok 830 - 8401 is an Euler pseudoprime to base 3 +ok 831 - 8911 is an Euler pseudoprime to base 3 +ok 832 - 10585 is an Euler pseudoprime to base 3 +ok 833 - 12403 is an Euler pseudoprime to base 3 +ok 834 - 15457 is an Euler pseudoprime to base 3 +ok 835 - 15841 is an Euler pseudoprime to base 3 +ok 836 - 16531 is an Euler pseudoprime to base 3 +ok 837 - 18721 is an Euler pseudoprime to base 3 +ok 838 - 19345 is an Euler pseudoprime to base 3 +ok 839 - 23521 is an Euler pseudoprime to base 3 +ok 840 - 24661 is an Euler pseudoprime to base 3 +ok 841 - 28009 is an Euler pseudoprime to base 3 +ok 842 - 29341 is an Euler pseudoprime to base 3 +ok 843 - 31621 is an Euler pseudoprime to base 3 +ok 844 - 41041 is an Euler pseudoprime to base 3 +ok 845 - 44287 is an Euler pseudoprime to base 3 +ok 846 - 46657 is an Euler pseudoprime to base 3 +ok 847 - 47197 is an Euler pseudoprime to base 3 +ok 848 - 49141 is an Euler pseudoprime to base 3 +ok 849 - 50881 is an Euler pseudoprime to base 3 +ok 850 - 52633 is an Euler pseudoprime to base 3 +ok 851 - 55969 is an Euler pseudoprime to base 3 +ok 852 - 63139 is an Euler pseudoprime to base 3 +ok 853 - 63973 is an Euler pseudoprime to base 3 +ok 854 - 74593 is an Euler pseudoprime to base 3 +ok 855 - 75361 is an Euler pseudoprime to base 3 +ok 856 - 79003 is an Euler pseudoprime to base 3 +ok 857 - 82513 is an Euler pseudoprime to base 3 +ok 858 - 87913 is an Euler pseudoprime to base 3 +ok 859 - 88573 is an Euler pseudoprime to base 3 +ok 860 - 93961 is an Euler pseudoprime to base 3 +ok 861 - 97567 is an Euler pseudoprime to base 3 +ok 862 - Pseudoprime (base 450775) 465991 passes MR +ok 863 - Pseudoprime (base 450775) 468931 passes MR +ok 864 - Pseudoprime (base 450775) 485357 passes MR +ok 865 - Pseudoprime (base 450775) 505441 passes MR +ok 866 - Pseudoprime (base 450775) 536851 passes MR +ok 867 - Pseudoprime (base 450775) 556421 passes MR +ok 868 - Pseudoprime (base 450775) 578771 passes MR +ok 869 - Pseudoprime (base 450775) 585631 passes MR +ok 870 - Pseudoprime (base 450775) 586249 passes MR +ok 871 - Pseudoprime (base 450775) 606361 passes MR +ok 872 - Pseudoprime (base 450775) 631651 passes MR +ok 873 - Pseudoprime (base 450775) 638731 passes MR +ok 874 - Pseudoprime (base 450775) 641683 passes MR +ok 875 - Pseudoprime (base 450775) 645679 passes MR +ok 876 - Pseudoprime (base 642735) 653251 passes MR +ok 877 - Pseudoprime (base 642735) 653333 passes MR +ok 878 - Pseudoprime (base 642735) 663181 passes MR +ok 879 - Pseudoprime (base 642735) 676651 passes MR +ok 880 - Pseudoprime (base 642735) 714653 passes MR +ok 881 - Pseudoprime (base 642735) 759277 passes MR +ok 882 - Pseudoprime (base 642735) 794683 passes MR +ok 883 - Pseudoprime (base 642735) 805141 passes MR +ok 884 - Pseudoprime (base 642735) 844097 passes MR +ok 885 - Pseudoprime (base 642735) 872191 passes MR +ok 886 - Pseudoprime (base 642735) 874171 passes MR +ok 887 - Pseudoprime (base 642735) 894671 passes MR +ok 888 - Pseudoprime (base 31) 15 passes MR +ok 889 - Pseudoprime (base 31) 49 passes MR +ok 890 - Pseudoprime (base 31) 133 passes MR +ok 891 - Pseudoprime (base 31) 481 passes MR +ok 892 - Pseudoprime (base 31) 931 passes MR +ok 893 - Pseudoprime (base 31) 6241 passes MR +ok 894 - Pseudoprime (base 31) 8911 passes MR +ok 895 - Pseudoprime (base 31) 9131 passes MR +ok 896 - Pseudoprime (base 31) 10963 passes MR +ok 897 - Pseudoprime (base 31) 11041 passes MR +ok 898 - Pseudoprime (base 31) 14191 passes MR +ok 899 - Pseudoprime (base 31) 17767 passes MR +ok 900 - Pseudoprime (base 31) 29341 passes MR +ok 901 - Pseudoprime (base 31) 56033 passes MR +ok 902 - Pseudoprime (base 31) 58969 passes MR +ok 903 - Pseudoprime (base 31) 68251 passes MR +ok 904 - Pseudoprime (base 31) 79003 passes MR +ok 905 - Pseudoprime (base 31) 83333 passes MR +ok 906 - Pseudoprime (base 31) 87061 passes MR +ok 907 - Pseudoprime (base 31) 88183 passes MR +ok 908 - Pseudoprime (base 75088) 75089 passes MR +ok 909 - Pseudoprime (base 75088) 79381 passes MR +ok 910 - Pseudoprime (base 75088) 81317 passes MR +ok 911 - Pseudoprime (base 75088) 91001 passes MR +ok 912 - Pseudoprime (base 75088) 100101 passes MR +ok 913 - Pseudoprime (base 75088) 111361 passes MR +ok 914 - Pseudoprime (base 75088) 114211 passes MR +ok 915 - Pseudoprime (base 75088) 136927 passes MR +ok 916 - Pseudoprime (base 75088) 148289 passes MR +ok 917 - Pseudoprime (base 75088) 169641 passes MR +ok 918 - Pseudoprime (base 75088) 176661 passes MR +ok 919 - Pseudoprime (base 75088) 191407 passes MR +ok 920 - Pseudoprime (base 75088) 195649 passes MR +ok 921 - Pseudoprime (base 9780504) 9780505 passes MR +ok 922 - Pseudoprime (base 9780504) 9784915 passes MR +ok 923 - Pseudoprime (base 9780504) 9826489 passes MR +ok 924 - Pseudoprime (base 9780504) 9882457 passes MR +ok 925 - Pseudoprime (base 9780504) 9974791 passes MR +ok 926 - Pseudoprime (base 9780504) 10017517 passes MR +ok 927 - Pseudoprime (base 9780504) 10018081 passes MR +ok 928 - Pseudoprime (base 9780504) 10084177 passes MR +ok 929 - Pseudoprime (base 9780504) 10188481 passes MR +ok 930 - Pseudoprime (base 9780504) 10247357 passes MR +ok 931 - Pseudoprime (base 9780504) 10267951 passes MR +ok 932 - Pseudoprime (base 9780504) 10392241 passes MR +ok 933 - Pseudoprime (base 9780504) 10427209 passes MR +ok 934 - Pseudoprime (base 9780504) 10511201 passes MR ok 935 - MR base 2 matches is_prime for 2-4032 (excl 2047,3277) ok 936 - spsp( 3, 3) ok 937 - spsp( 11, 11) @@ -2151,14 +2195,14 @@ ok 957 - 5781 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 958 - 9000 is not a prime and not a strong Lucas-Selfridge pseudoprime ok 959 - 14381 is not a prime and not a strong Lucas-Selfridge pseudoprime -ok 960 - Lucas sequence 323 3 1 81 -ok 961 - Lucas sequence 323 5 -1 81 -ok 962 - Lucas sequence 49001 25 117 24501 -ok 963 - Lucas sequence 323 4 1 324 -ok 964 - Lucas sequence 323 1 1 324 -ok 965 - Lucas sequence 18971 10001 -1 4743 -ok 966 - Lucas sequence 323 3 1 324 -ok 967 - Lucas sequence 323 4 5 324 +ok 960 - Lucas sequence 18971 10001 -1 4743 +ok 961 - Lucas sequence 323 4 5 324 +ok 962 - Lucas sequence 323 3 1 81 +ok 963 - Lucas sequence 323 1 1 324 +ok 964 - Lucas sequence 323 3 1 324 +ok 965 - Lucas sequence 323 4 1 324 +ok 966 - Lucas sequence 323 5 -1 81 +ok 967 - Lucas sequence 49001 25 117 24501 ok 968 - Fibonacci(1001) ok 969 - Lucas(1001) ok 970 - lucasu(9,-1,3671) @@ -2294,11 +2338,11 @@ ok 4 - euler_phi(123457) == 123456 ok 5 - euler_phi(123456) == 41088 ok 6 - euler_phi(123456789) == 82260072 -ok 7 - Jordan's Totient J_1 -ok 8 - Jordan's Totient J_5 -ok 9 - Jordan's Totient J_7 -ok 10 - Jordan's Totient J_4 -ok 11 - Jordan's Totient J_2 +ok 7 - Jordan's Totient J_5 +ok 8 - Jordan's Totient J_2 +ok 9 - Jordan's Totient J_4 +ok 10 - Jordan's Totient J_1 +ok 11 - Jordan's Totient J_7 ok 12 - Jordan's Totient J_6 ok 13 - Jordan's Totient J_3 ok 14 - carmichael_lambda with range: 0, 69 @@ -2362,27 +2406,27 @@ ok 72 - liouville(3639860654) = -1 ok 73 - liouville(1807253903626380) = -1 ok 74 - liouville(12063177829788352512) = -1 -ok 75 - exp_mangoldt(8) == 2 -ok 76 - exp_mangoldt(0) == 1 -ok 77 - exp_mangoldt(823543) == 7 -ok 78 - exp_mangoldt(399981) == 1 -ok 79 - exp_mangoldt(11) == 11 -ok 80 - exp_mangoldt(10) == 1 -ok 81 - exp_mangoldt(4) == 2 -ok 82 - exp_mangoldt(27) == 3 -ok 83 - exp_mangoldt(130321) == 19 -ok 84 - exp_mangoldt(83521) == 17 -ok 85 - exp_mangoldt(399982) == 1 -ok 86 - exp_mangoldt(399983) == 399983 -ok 87 - exp_mangoldt(7) == 7 -ok 88 - exp_mangoldt(9) == 3 -ok 89 - exp_mangoldt(3) == 3 -ok 90 - exp_mangoldt(6) == 1 -ok 91 - exp_mangoldt(-13) == 1 -ok 92 - exp_mangoldt(2) == 2 +ok 75 - exp_mangoldt(27) == 3 +ok 76 - exp_mangoldt(1) == 1 +ok 77 - exp_mangoldt(399983) == 399983 +ok 78 - exp_mangoldt(4) == 2 +ok 79 - exp_mangoldt(8) == 2 +ok 80 - exp_mangoldt(6) == 1 +ok 81 - exp_mangoldt(3) == 3 +ok 82 - exp_mangoldt(83521) == 17 +ok 83 - exp_mangoldt(10) == 1 +ok 84 - exp_mangoldt(823543) == 7 +ok 85 - exp_mangoldt(11) == 11 +ok 86 - exp_mangoldt(-13) == 1 +ok 87 - exp_mangoldt(0) == 1 +ok 88 - exp_mangoldt(399982) == 1 +ok 89 - exp_mangoldt(130321) == 19 +ok 90 - exp_mangoldt(399981) == 1 +ok 91 - exp_mangoldt(9) == 3 +ok 92 - exp_mangoldt(5) == 5 ok 93 - exp_mangoldt(25) == 5 -ok 94 - exp_mangoldt(5) == 5 -ok 95 - exp_mangoldt(1) == 1 +ok 94 - exp_mangoldt(7) == 7 +ok 95 - exp_mangoldt(2) == 2 ok 96 - znorder(1, 35) = 1 ok 97 - znorder(2, 35) = 12 ok 98 - znorder(4, 35) = 6 @@ -2406,30 +2450,30 @@ ok 116 - znorder(7410, 2147475467) = 39409 ok 117 - znorder(31407, 2147475467) = 266 ok 118 - znorder(2, 2405286912458753) = 1073741824 -ok 119 - znprimroot(89637484042681) == 335 -ok 120 - znprimroot(3) == 2 -ok 121 - znprimroot(1520874431) == 17 -ok 122 - znprimroot(1685283601) == 164 -ok 123 - znprimroot(10) == 3 -ok 124 - znprimroot(8) == -ok 125 - znprimroot(5109721) == 94 -ok 126 - znprimroot(1) == 0 -ok 127 - znprimroot(5) == 2 -ok 128 - znprimroot(6) == 5 -ok 129 - znprimroot(2) == 1 -ok 130 - znprimroot(7) == 3 -ok 131 - znprimroot(9223372036854775837) == 5 -ok 132 - znprimroot(1407827621) == 2 -ok 133 - znprimroot(9) == 2 -ok 134 - znprimroot(-11) == 2 -ok 135 - znprimroot(100000001) == -ok 136 - znprimroot(2232881419280027) == 6 -ok 137 - znprimroot(17551561) == 97 -ok 138 - znprimroot(1729) == -ok 139 - znprimroot(4) == 3 -ok 140 - znprimroot(14123555781055773271) == 6 -ok 141 - znprimroot(0) == -ok 142 - znprimroot(90441961) == 113 +ok 119 - znprimroot(1407827621) == 2 +ok 120 - znprimroot(-11) == 2 +ok 121 - znprimroot(8) == +ok 122 - znprimroot(10) == 3 +ok 123 - znprimroot(100000001) == +ok 124 - znprimroot(2232881419280027) == 6 +ok 125 - znprimroot(14123555781055773271) == 6 +ok 126 - znprimroot(0) == +ok 127 - znprimroot(89637484042681) == 335 +ok 128 - znprimroot(9) == 2 +ok 129 - znprimroot(5) == 2 +ok 130 - znprimroot(1729) == +ok 131 - znprimroot(1685283601) == 164 +ok 132 - znprimroot(5109721) == 94 +ok 133 - znprimroot(7) == 3 +ok 134 - znprimroot(9223372036854775837) == 5 +ok 135 - znprimroot(2) == 1 +ok 136 - znprimroot(17551561) == 97 +ok 137 - znprimroot(1) == 0 +ok 138 - znprimroot(4) == 3 +ok 139 - znprimroot(3) == 2 +ok 140 - znprimroot(6) == 5 +ok 141 - znprimroot(90441961) == 113 +ok 142 - znprimroot(1520874431) == 17 ok 143 - znprimroot("-100000898") == 31 ok 144 - 3 is not a primitive root mod 10^30+57 ok 145 - 5 is a primitive root mod 10^30+57 @@ -2444,17 +2488,17 @@ ok 154 - liouville(9082348072348972344232348972353) ok 155 - znorder(17,100000000000000000000000065) ok 156 - znprimroot(9218092345892375982375972365235234234238) -ok 157 - Ramanujan Tau(243) = 13400796651732 -ok 158 - Ramanujan Tau(16089) = 12655813883111729342208 -ok 159 - Ramanujan Tau(1) = 1 -ok 160 - Ramanujan Tau(5) = 4830 -ok 161 - Ramanujan Tau(3) = 252 -ok 162 - Ramanujan Tau(53) = -1596055698 -ok 163 - Ramanujan Tau(2) = -24 -ok 164 - Ramanujan Tau(0) = 0 -ok 165 - Ramanujan Tau(106) = 38305336752 -ok 166 - Ramanujan Tau(4) = -1472 -ok 167 - Ramanujan Tau(83456) = 130596522071273977247956992 +ok 157 - Ramanujan Tau(53) = -1596055698 +ok 158 - Ramanujan Tau(83456) = 130596522071273977247956992 +ok 159 - Ramanujan Tau(3) = 252 +ok 160 - Ramanujan Tau(16089) = 12655813883111729342208 +ok 161 - Ramanujan Tau(1) = 1 +ok 162 - Ramanujan Tau(4) = -1472 +ok 163 - Ramanujan Tau(243) = 13400796651732 +ok 164 - Ramanujan Tau(106) = 38305336752 +ok 165 - Ramanujan Tau(2) = -24 +ok 166 - Ramanujan Tau(0) = 0 +ok 167 - Ramanujan Tau(5) = 4830 ok 168 - crt() = 0 ok 169 - crt([4 5]) = 4 ok 170 - crt([77 11]) = 0 @@ -2653,10 +2697,10 @@ ok 49 - partitions(48) ok 50 - partitions(49) ok 51 - partitions(50) -ok 52 - partitions(500) +ok 52 - partitions(4497) ok 53 - partitions(1000) -ok 54 - partitions(100) -ok 55 - partitions(4497) +ok 54 - partitions(500) +ok 55 - partitions(100) ok t/23-gcd.t ................... 1..159 @@ -3076,14 +3120,14 @@ t/26-riemann.t ............... 1..31 ok 1 - Zeta(2 .. 20) with 46 digits -ok 2 - R(20) = 7.52719634941220484077584239013039997938974169722 -ok 3 - R(1234) = 201.089189397887171164417491080355409507577355431 -ok 4 - R(1234567) = 95364.7282332640388293270946571187905178500286859 -ok 5 - R(12345678) = 809199.447325079489265130526492437800991704424795 -ok 6 - R(12345) = 1477.18529486278566013620706299851975937829102453 -ok 7 - R(123456) = 11602.3885324491433573165310800667605102847042681 -ok 8 - R(123456789) = 7027403.22117008872413898789377520747800808475988 -ok 9 - R(123) = 30.2234556285623332613428945094834980032607831334 +ok 2 - R(12345) = 1477.18529486278566013620706299851975937829102453 +ok 3 - R(123456) = 11602.3885324491433573165310800667605102847042681 +ok 4 - R(123456789) = 7027403.22117008872413898789377520747800808475988 +ok 5 - R(1234567) = 95364.7282332640388293270946571187905178500286859 +ok 6 - R(1234) = 201.089189397887171164417491080355409507577355431 +ok 7 - R(12345678) = 809199.447325079489265130526492437800991704424795 +ok 8 - R(123) = 30.2234556285623332613428945094834980032607831334 +ok 9 - R(20) = 7.52719634941220484077584239013039997938974169722 ok 10 - R(10^50) ok 11 - R(10^150) ok 12 - Zeta(1) is undef @@ -3136,15 +3180,15 @@ ok 12 - Pattern [4 6 10 12 16] 5 in range 0 .. 100000 ok 13 - Pattern [2 8 12 14 18 20] 2 in range 0 .. 100000 ok 14 - Pattern [2 6 8 12 18 20] 1 in range 0 .. 100000 -ok 15 - Pattern [2] 41 in range 1000000000000000000000 .. 1000000000000000074668 -ok 16 - Pattern [2 6] 2 in range 1000000000000000000000 .. 1000000000000000074668 -ok 17 - Pattern [4 6] 1 in range 1000000000000000000000 .. 1000000000000000074668 -ok 18 - Pattern [2 6 8] 0 in range 1000000000000000000000 .. 1000000000000000074668 -ok 19 - Pattern [2 6 8 12] 0 in range 1000000000000000000000 .. 1000000000000000074668 -ok 20 - Pattern [4 6 10 12] 0 in range 1000000000000000000000 .. 1000000000000000074668 -ok 21 - Pattern [4 6 10 12 16] 0 in range 1000000000000000000000 .. 1000000000000000074668 -ok 22 - Pattern [2 8 12 14 18 20] 0 in range 1000000000000000000000 .. 1000000000000000074668 -ok 23 - Pattern [2 6 8 12 18 20] 0 in range 1000000000000000000000 .. 1000000000000000074668 +ok 15 - Pattern [2] 61 in range 1000000000000000000000 .. 1000000000000000104068 +ok 16 - Pattern [2 6] 6 in range 1000000000000000000000 .. 1000000000000000104068 +ok 17 - Pattern [4 6] 3 in range 1000000000000000000000 .. 1000000000000000104068 +ok 18 - Pattern [2 6 8] 1 in range 1000000000000000000000 .. 1000000000000000104068 +ok 19 - Pattern [2 6 8 12] 0 in range 1000000000000000000000 .. 1000000000000000104068 +ok 20 - Pattern [4 6 10 12] 0 in range 1000000000000000000000 .. 1000000000000000104068 +ok 21 - Pattern [4 6 10 12 16] 0 in range 1000000000000000000000 .. 1000000000000000104068 +ok 22 - Pattern [2 8 12 14 18 20] 0 in range 1000000000000000000000 .. 1000000000000000104068 +ok 23 - Pattern [2 6 8 12 18 20] 0 in range 1000000000000000000000 .. 1000000000000000104068 ok 24 - Window around A022006 high cluster finds the cluster ok 25 - Window around A022007 high cluster finds the cluster ok 26 - Window around A022008 high cluster finds the cluster @@ -3168,8 +3212,8 @@ 1..6 ok 1 - irand values are 32-bit ok 2 - irand values are integers -ok 3 - irand64 all bits on in 7 iterations -ok 4 - irand64 all bits off in 7 iterations +ok 3 - irand64 all bits on in 10 iterations +ok 4 - irand64 all bits off in 10 iterations ok 5 - drand values between 0 and 1-eps ok 6 - drand supplies at least 21 bits (got 53) ok @@ -3179,59 +3223,59 @@ ok 2 - primes(1294268492,1294268778) should return undef ok 3 - primes(2,1) should return undef ok 4 - primes(0,1) should return undef -ok 5 - primes(0,0) should return undef -ok 6 - primes(3842610774,3842611108) should return undef +ok 5 - primes(3842610774,3842611108) should return undef +ok 6 - primes(0,0) should return undef ok 7 - Prime in range 3-5 is indeed prime ok 8 - random_prime(3,5) >= 3 ok 9 - random_prime(3,5) <= 5 -ok 10 - Prime in range 16706143-16706143 is indeed prime -ok 11 - random_prime(16706143,16706143) >= 16706143 -ok 12 - random_prime(16706143,16706143) <= 16706143 -ok 13 - Prime in range 2-2 is indeed prime -ok 14 - random_prime(2,2) >= 2 -ok 15 - random_prime(2,2) <= 2 -ok 16 - Prime in range 2-3 is indeed prime -ok 17 - random_prime(2,3) >= 2 -ok 18 - random_prime(2,3) <= 3 -ok 19 - Prime in range 16706142-16706144 is indeed prime -ok 20 - random_prime(16706142,16706144) >= 16706143 -ok 21 - random_prime(16706142,16706144) <= 16706143 -ok 22 - Prime in range 3842610773-3842611109 is indeed prime -ok 23 - random_prime(3842610773,3842611109) >= 3842610773 -ok 24 - random_prime(3842610773,3842611109) <= 3842611109 -ok 25 - Prime in range 3842610772-3842611110 is indeed prime -ok 26 - random_prime(3842610772,3842611110) >= 3842610773 -ok 27 - random_prime(3842610772,3842611110) <= 3842611109 -ok 28 - Prime in range 0-2 is indeed prime -ok 29 - random_prime(0,2) >= 2 -ok 30 - random_prime(0,2) <= 2 -ok 31 - Prime in range 8-12 is indeed prime -ok 32 - random_prime(8,12) >= 11 -ok 33 - random_prime(8,12) <= 11 -ok 34 - Prime in range 10-12 is indeed prime -ok 35 - random_prime(10,12) >= 11 -ok 36 - random_prime(10,12) <= 11 -ok 37 - Prime in range 10-20 is indeed prime -ok 38 - random_prime(10,20) >= 11 -ok 39 - random_prime(10,20) <= 19 -ok 40 - All returned values for 5678-9876 were prime -ok 41 - All returned values for 5678-9876 were in the range -ok 42 - All returned values for 17051687-17051899 were prime -ok 43 - All returned values for 17051687-17051899 were in the range -ok 44 - All returned values for 2-20 were prime -ok 45 - All returned values for 2-20 were in the range -ok 46 - All returned values for 3-7 were prime -ok 47 - All returned values for 3-7 were in the range -ok 48 - All returned values for 27764-88493 were prime -ok 49 - All returned values for 27764-88493 were in the range -ok 50 - All returned values for 17051688-17051898 were prime -ok 51 - All returned values for 17051688-17051898 were in the range -ok 52 - All returned values for 27767-88493 were prime -ok 53 - All returned values for 27767-88493 were in the range -ok 54 - All returned values for 20-100 were prime -ok 55 - All returned values for 20-100 were in the range -ok 56 - All returned values for 27767-88498 were prime -ok 57 - All returned values for 27767-88498 were in the range +ok 10 - Prime in range 3842610772-3842611110 is indeed prime +ok 11 - random_prime(3842610772,3842611110) >= 3842610773 +ok 12 - random_prime(3842610772,3842611110) <= 3842611109 +ok 13 - Prime in range 16706143-16706143 is indeed prime +ok 14 - random_prime(16706143,16706143) >= 16706143 +ok 15 - random_prime(16706143,16706143) <= 16706143 +ok 16 - Prime in range 8-12 is indeed prime +ok 17 - random_prime(8,12) >= 11 +ok 18 - random_prime(8,12) <= 11 +ok 19 - Prime in range 2-2 is indeed prime +ok 20 - random_prime(2,2) >= 2 +ok 21 - random_prime(2,2) <= 2 +ok 22 - Prime in range 0-2 is indeed prime +ok 23 - random_prime(0,2) >= 2 +ok 24 - random_prime(0,2) <= 2 +ok 25 - Prime in range 2-3 is indeed prime +ok 26 - random_prime(2,3) >= 2 +ok 27 - random_prime(2,3) <= 3 +ok 28 - Prime in range 16706142-16706144 is indeed prime +ok 29 - random_prime(16706142,16706144) >= 16706143 +ok 30 - random_prime(16706142,16706144) <= 16706143 +ok 31 - Prime in range 10-12 is indeed prime +ok 32 - random_prime(10,12) >= 11 +ok 33 - random_prime(10,12) <= 11 +ok 34 - Prime in range 10-20 is indeed prime +ok 35 - random_prime(10,20) >= 11 +ok 36 - random_prime(10,20) <= 19 +ok 37 - Prime in range 3842610773-3842611109 is indeed prime +ok 38 - random_prime(3842610773,3842611109) >= 3842610773 +ok 39 - random_prime(3842610773,3842611109) <= 3842611109 +ok 40 - All returned values for 27767-88498 were prime +ok 41 - All returned values for 27767-88498 were in the range +ok 42 - All returned values for 3-7 were prime +ok 43 - All returned values for 3-7 were in the range +ok 44 - All returned values for 20-100 were prime +ok 45 - All returned values for 20-100 were in the range +ok 46 - All returned values for 27767-88493 were prime +ok 47 - All returned values for 27767-88493 were in the range +ok 48 - All returned values for 17051688-17051898 were prime +ok 49 - All returned values for 17051688-17051898 were in the range +ok 50 - All returned values for 17051687-17051899 were prime +ok 51 - All returned values for 17051687-17051899 were in the range +ok 52 - All returned values for 27764-88493 were prime +ok 53 - All returned values for 27764-88493 were in the range +ok 54 - All returned values for 2-20 were prime +ok 55 - All returned values for 2-20 were in the range +ok 56 - All returned values for 5678-9876 were prime +ok 57 - All returned values for 5678-9876 were in the range ok 58 - All returned values for 27764-88498 were prime ok 59 - All returned values for 27764-88498 were in the range ok 60 - All returned values for 2 were prime @@ -3258,98 +3302,98 @@ ok 81 - All returned values for 1000000 were in the range ok 82 - All returned values for 4294967295 were prime ok 83 - All returned values for 4294967295 were in the range -ok 84 - 1-digit random prime '5' is in range and prime -ok 85 - 2-digit random prime '67' is in range and prime -ok 86 - 3-digit random prime '197' is in range and prime -ok 87 - 4-digit random prime '8629' is in range and prime -ok 88 - 5-digit random prime '92789' is in range and prime -ok 89 - 6-digit random prime '655013' is in range and prime -ok 90 - 7-digit random prime '6305333' is in range and prime -ok 91 - 8-digit random prime '85133731' is in range and prime -ok 92 - 9-digit random prime '390235247' is in range and prime -ok 93 - 10-digit random prime '3142660421' is in range and prime -ok 94 - 11-digit random prime '15056600719' is in range and prime -ok 95 - 12-digit random prime '790955748139' is in range and prime -ok 96 - 13-digit random prime '6133346729707' is in range and prime -ok 97 - 14-digit random prime '44985607494767' is in range and prime -ok 98 - 15-digit random prime '760828651411943' is in range and prime -ok 99 - 16-digit random prime '6723963953862307' is in range and prime -ok 100 - 17-digit random prime '21990994663166653' is in range and prime -ok 101 - 18-digit random prime '279435406161458597' is in range and prime -ok 102 - 19-digit random prime '6093508799908274471' is in range and prime -ok 103 - 20-digit random prime '46664789455804865749' is in range and prime -ok 104 - 21-digit random prime '991543018878706407329' is in range and prime -ok 105 - 22-digit random prime '4246571129392043401603' is in range and prime -ok 106 - 23-digit random prime '56779511185975724852269' is in range and prime -ok 107 - 24-digit random prime '823244290411450846258757' is in range and prime -ok 108 - 25-digit random prime '3569129747854563771415289' is in range and prime +ok 84 - 1-digit random prime '3' is in range and prime +ok 85 - 2-digit random prime '17' is in range and prime +ok 86 - 3-digit random prime '599' is in range and prime +ok 87 - 4-digit random prime '4111' is in range and prime +ok 88 - 5-digit random prime '15139' is in range and prime +ok 89 - 6-digit random prime '163637' is in range and prime +ok 90 - 7-digit random prime '3620819' is in range and prime +ok 91 - 8-digit random prime '60277247' is in range and prime +ok 92 - 9-digit random prime '549199597' is in range and prime +ok 93 - 10-digit random prime '9128275313' is in range and prime +ok 94 - 11-digit random prime '53847182743' is in range and prime +ok 95 - 12-digit random prime '354926636173' is in range and prime +ok 96 - 13-digit random prime '2477015062187' is in range and prime +ok 97 - 14-digit random prime '82553237568667' is in range and prime +ok 98 - 15-digit random prime '594613746805703' is in range and prime +ok 99 - 16-digit random prime '4502149483896733' is in range and prime +ok 100 - 17-digit random prime '40853552293466587' is in range and prime +ok 101 - 18-digit random prime '947855306832325447' is in range and prime +ok 102 - 19-digit random prime '8659241309656152011' is in range and prime +ok 103 - 20-digit random prime '87686759637765040211' is in range and prime +ok 104 - 21-digit random prime '208632057287198815033' is in range and prime +ok 105 - 22-digit random prime '2326718323687341979667' is in range and prime +ok 106 - 23-digit random prime '54892810336217761766849' is in range and prime +ok 107 - 24-digit random prime '161057047926585375929069' is in range and prime +ok 108 - 25-digit random prime '1956456685692720436510847' is in range and prime ok 109 - 2-bit random random 2-bit prime '3' is in range and prime -ok 110 - 3-bit random random 3-bit prime '5' is in range and prime -ok 111 - 4-bit random random 4-bit prime '13' is in range and prime -ok 112 - 5-bit random random 5-bit prime '23' is in range and prime -ok 113 - 6-bit random random 6-bit prime '41' is in range and prime -ok 114 - 10-bit random random 10-bit prime '607' is in range and prime -ok 115 - 30-bit random random 30-bit prime '537376513' is in range and prime -ok 116 - 31-bit random random 31-bit prime '1305922139' is in range and prime -ok 117 - 32-bit random random 32-bit prime '2485060811' is in range and prime -ok 118 - 33-bit random random 33-bit prime '5359892203' is in range and prime -ok 119 - 34-bit random random 34-bit prime '14609291771' is in range and prime -ok 120 - 62-bit random random 62-bit prime '4572653103271059641' is in range and prime -ok 121 - 63-bit random random 63-bit prime '8153997123261888013' is in range and prime -ok 122 - 64-bit random random 64-bit prime '10344677196464349139' is in range and prime -ok 123 - 65-bit random random 65-bit prime '32096300603853928889' is in range and prime -ok 124 - 66-bit random random 66-bit prime '73240968545465527661' is in range and prime -ok 125 - 126-bit random random 126-bit prime '46358695855046130757040896977529787131' is in range and prime -ok 126 - 127-bit random random 127-bit prime '126966467095074949313947199979473621473' is in range and prime -ok 127 - 128-bit random random 128-bit prime '335458410656903589069398487957269322457' is in range and prime -ok 128 - 129-bit random random 129-bit prime '461450762578170997060341708822656050121' is in range and prime -ok 129 - 130-bit random random 130-bit prime '718195163524572153134573713598791552783' is in range and prime -ok 130 - 128-bit random random 128-bit strong prime '317215769357687474306781008196933816851' is in range and prime -ok 131 - 255-bit random random 255-bit strong prime '37621666899073915102062366355451039118519462599020564886450993699691954274513' is in range and prime -ok 132 - 256-bit random random 256-bit strong prime '70469856485011395666985862676734773173244012592243317728356182545133269571883' is in range and prime -ok 133 - 512-bit random random 512-bit strong prime '12940124617646464149430594566451330136281778222394059988272139648232652498971082810980177720945500290735847962855856461585739786242385327184353420424882313' is in range and prime -ok 134 - 2-bit random random 2-bit proven (Maurer) prime '3' is in range and prime -ok 135 - 2-bit random random 2-bit proven (Shawe-Taylor) prime '3' is in range and prime +ok 110 - 3-bit random random 3-bit prime '7' is in range and prime +ok 111 - 4-bit random random 4-bit prime '11' is in range and prime +ok 112 - 5-bit random random 5-bit prime '19' is in range and prime +ok 113 - 6-bit random random 6-bit prime '47' is in range and prime +ok 114 - 10-bit random random 10-bit prime '829' is in range and prime +ok 115 - 30-bit random random 30-bit prime '863884757' is in range and prime +ok 116 - 31-bit random random 31-bit prime '1613446423' is in range and prime +ok 117 - 32-bit random random 32-bit prime '3040991351' is in range and prime +ok 118 - 33-bit random random 33-bit prime '6618256627' is in range and prime +ok 119 - 34-bit random random 34-bit prime '13843839839' is in range and prime +ok 120 - 62-bit random random 62-bit prime '3428256626256403771' is in range and prime +ok 121 - 63-bit random random 63-bit prime '6822950804276059493' is in range and prime +ok 122 - 64-bit random random 64-bit prime '16967388316802914909' is in range and prime +ok 123 - 65-bit random random 65-bit prime '31657011596055179071' is in range and prime +ok 124 - 66-bit random random 66-bit prime '54786877319890912661' is in range and prime +ok 125 - 126-bit random random 126-bit prime '44368038535093442944070646947974601633' is in range and prime +ok 126 - 127-bit random random 127-bit prime '90677055640415488763023633823783280217' is in range and prime +ok 127 - 128-bit random random 128-bit prime '211585365530878330397693858306733025703' is in range and prime +ok 128 - 129-bit random random 129-bit prime '527814946117801156291746053839165558319' is in range and prime +ok 129 - 130-bit random random 130-bit prime '1032039833288898013569158994675092503049' is in range and prime +ok 130 - 128-bit random random 128-bit strong prime '275763258267729686789671984207081237123' is in range and prime +ok 131 - 255-bit random random 255-bit strong prime '42524411137238101063926389807056052618062735775060939506585486547574242814601' is in range and prime +ok 132 - 256-bit random random 256-bit strong prime '103308175082571711898754334068593867908758624083106510618341295342795451821927' is in range and prime +ok 133 - 512-bit random random 512-bit strong prime '7689573495844632242396276210413729316200517581687873669533010983056787018883515212879169944175612641590195099774307189480565779887917765421878475013587331' is in range and prime +ok 134 - 2-bit random random 2-bit proven (Maurer) prime '2' is in range and prime +ok 135 - 2-bit random random 2-bit proven (Shawe-Taylor) prime '2' is in range and prime ok 136 - 3-bit random random 3-bit proven (Maurer) prime '5' is in range and prime -ok 137 - 3-bit random random 3-bit proven (Shawe-Taylor) prime '5' is in range and prime +ok 137 - 3-bit random random 3-bit proven (Shawe-Taylor) prime '7' is in range and prime ok 138 - 4-bit random random 4-bit proven (Maurer) prime '13' is in range and prime ok 139 - 4-bit random random 4-bit proven (Shawe-Taylor) prime '11' is in range and prime ok 140 - 5-bit random random 5-bit proven (Maurer) prime '29' is in range and prime ok 141 - 5-bit random random 5-bit proven (Shawe-Taylor) prime '31' is in range and prime -ok 142 - 6-bit random random 6-bit proven (Maurer) prime '37' is in range and prime -ok 143 - 6-bit random random 6-bit proven (Shawe-Taylor) prime '61' is in range and prime -ok 144 - 10-bit random random 10-bit proven (Maurer) prime '563' is in range and prime -ok 145 - 10-bit random random 10-bit proven (Shawe-Taylor) prime '977' is in range and prime -ok 146 - 30-bit random random 30-bit proven (Maurer) prime '578770853' is in range and prime -ok 147 - 30-bit random random 30-bit proven (Shawe-Taylor) prime '897649679' is in range and prime -ok 148 - 31-bit random random 31-bit proven (Maurer) prime '1159373539' is in range and prime -ok 149 - 31-bit random random 31-bit proven (Shawe-Taylor) prime '1855090273' is in range and prime -ok 150 - 32-bit random random 32-bit proven (Maurer) prime '2743907461' is in range and prime -ok 151 - 32-bit random random 32-bit proven (Shawe-Taylor) prime '4104695137' is in range and prime -ok 152 - 33-bit random random 33-bit proven (Maurer) prime '7994303411' is in range and prime -ok 153 - 33-bit random random 33-bit proven (Shawe-Taylor) prime '6873021119' is in range and prime -ok 154 - 34-bit random random 34-bit proven (Maurer) prime '16194463157' is in range and prime -ok 155 - 34-bit random random 34-bit proven (Shawe-Taylor) prime '15950682301' is in range and prime -ok 156 - 62-bit random random 62-bit proven (Maurer) prime '2803819627787071183' is in range and prime -ok 157 - 62-bit random random 62-bit proven (Shawe-Taylor) prime '3045866566492772977' is in range and prime -ok 158 - 63-bit random random 63-bit proven (Maurer) prime '6648518026394151977' is in range and prime -ok 159 - 63-bit random random 63-bit proven (Shawe-Taylor) prime '6717719223073912723' is in range and prime -ok 160 - 64-bit random random 64-bit proven (Maurer) prime '10049284195334073509' is in range and prime -ok 161 - 64-bit random random 64-bit proven (Shawe-Taylor) prime '10710166595358653237' is in range and prime -ok 162 - 65-bit random random 65-bit proven (Maurer) prime '21611310875365541249' is in range and prime -ok 163 - 65-bit random random 65-bit proven (Shawe-Taylor) prime '28890921779164999019' is in range and prime -ok 164 - 66-bit random random 66-bit proven (Maurer) prime '44605378777205370269' is in range and prime -ok 165 - 66-bit random random 66-bit proven (Shawe-Taylor) prime '62348646913448861579' is in range and prime -ok 166 - 126-bit random random 126-bit proven (Maurer) prime '62109345469297899667900136313313750823' is in range and prime -ok 167 - 126-bit random random 126-bit proven (Shawe-Taylor) prime '69700736741074787060824418129630965123' is in range and prime -ok 168 - 127-bit random random 127-bit proven (Maurer) prime '92606379496208367620577514529037851873' is in range and prime -ok 169 - 127-bit random random 127-bit proven (Shawe-Taylor) prime '147149134166546448507435824512337433107' is in range and prime -ok 170 - 128-bit random random 128-bit proven (Maurer) prime '254336034574627365590750793176861273513' is in range and prime -ok 171 - 128-bit random random 128-bit proven (Shawe-Taylor) prime '242995797499667781308106864123844428403' is in range and prime -ok 172 - 129-bit random random 129-bit proven (Maurer) prime '490186662225513223460567073617164212061' is in range and prime -ok 173 - 129-bit random random 129-bit proven (Shawe-Taylor) prime '669186263053822523249611084442738160967' is in range and prime -ok 174 - 130-bit random random 130-bit proven (Maurer) prime '1092505843457487792416893658251120851349' is in range and prime -ok 175 - 130-bit random random 130-bit proven (Shawe-Taylor) prime '967705406593609307005516955676715680911' is in range and prime +ok 142 - 6-bit random random 6-bit proven (Maurer) prime '61' is in range and prime +ok 143 - 6-bit random random 6-bit proven (Shawe-Taylor) prime '43' is in range and prime +ok 144 - 10-bit random random 10-bit proven (Maurer) prime '1009' is in range and prime +ok 145 - 10-bit random random 10-bit proven (Shawe-Taylor) prime '797' is in range and prime +ok 146 - 30-bit random random 30-bit proven (Maurer) prime '771879803' is in range and prime +ok 147 - 30-bit random random 30-bit proven (Shawe-Taylor) prime '616482521' is in range and prime +ok 148 - 31-bit random random 31-bit proven (Maurer) prime '1568493697' is in range and prime +ok 149 - 31-bit random random 31-bit proven (Shawe-Taylor) prime '1588376969' is in range and prime +ok 150 - 32-bit random random 32-bit proven (Maurer) prime '4033655207' is in range and prime +ok 151 - 32-bit random random 32-bit proven (Shawe-Taylor) prime '3335518037' is in range and prime +ok 152 - 33-bit random random 33-bit proven (Maurer) prime '6031434469' is in range and prime +ok 153 - 33-bit random random 33-bit proven (Shawe-Taylor) prime '5209965379' is in range and prime +ok 154 - 34-bit random random 34-bit proven (Maurer) prime '10146111163' is in range and prime +ok 155 - 34-bit random random 34-bit proven (Shawe-Taylor) prime '12304054601' is in range and prime +ok 156 - 62-bit random random 62-bit proven (Maurer) prime '2693154226088736911' is in range and prime +ok 157 - 62-bit random random 62-bit proven (Shawe-Taylor) prime '4182226802796355727' is in range and prime +ok 158 - 63-bit random random 63-bit proven (Maurer) prime '7230072893759753399' is in range and prime +ok 159 - 63-bit random random 63-bit proven (Shawe-Taylor) prime '5207312490146575331' is in range and prime +ok 160 - 64-bit random random 64-bit proven (Maurer) prime '11024351583356673949' is in range and prime +ok 161 - 64-bit random random 64-bit proven (Shawe-Taylor) prime '15683964459485498849' is in range and prime +ok 162 - 65-bit random random 65-bit proven (Maurer) prime '32532621365245604147' is in range and prime +ok 163 - 65-bit random random 65-bit proven (Shawe-Taylor) prime '35492187719790585143' is in range and prime +ok 164 - 66-bit random random 66-bit proven (Maurer) prime '47119244723166972233' is in range and prime +ok 165 - 66-bit random random 66-bit proven (Shawe-Taylor) prime '45928767654737599003' is in range and prime +ok 166 - 126-bit random random 126-bit proven (Maurer) prime '66662383938397968348133070407191514807' is in range and prime +ok 167 - 126-bit random random 126-bit proven (Shawe-Taylor) prime '75735874031332996931465694340178935309' is in range and prime +ok 168 - 127-bit random random 127-bit proven (Maurer) prime '124528631159411351726733934462454551243' is in range and prime +ok 169 - 127-bit random random 127-bit proven (Shawe-Taylor) prime '117455330060899388101800321551741459497' is in range and prime +ok 170 - 128-bit random random 128-bit proven (Maurer) prime '285307789386909763603764631944713040467' is in range and prime +ok 171 - 128-bit random random 128-bit proven (Shawe-Taylor) prime '334645368238494425631894295575292199047' is in range and prime +ok 172 - 129-bit random random 129-bit proven (Maurer) prime '396603219641718479228448536617526022277' is in range and prime +ok 173 - 129-bit random random 129-bit proven (Shawe-Taylor) prime '585232741648993047736646391125216692823' is in range and prime +ok 174 - 130-bit random random 130-bit proven (Maurer) prime '1293284201508831889984426666883744608553' is in range and prime +ok 175 - 130-bit random random 130-bit proven (Shawe-Taylor) prime '1077654474851978873207399387691131609029' is in range and prime ok 176 - random 20-bit prime with seeded rng ok 177 - random 9-digit with seeded rng ok 178 - random Maurer prime @@ -3554,19 +3598,19 @@ ok 144 - scalar factor(6) should be 2 ok 145 - scalar factor(30107) should be 4 ok 146 - scalar factor(174636000) should be 15 -ok 147 - sigma_{0..3}(23948) -ok 148 - sigma_{0..3}(8) -ok 149 - sigma_{0..3}(3) -ok 150 - sigma_{0..3}(189) -ok 151 - sigma_{0..3}(2394823486) -ok 152 - sigma_{0..3}(46) -ok 153 - sigma_{0..3}(1) -ok 154 - sigma_{0..3}(0) -ok 155 - sigma_{0..3}(5) -ok 156 - sigma_{0..3}(2) -ok 157 - sigma_{0..3}(7) -ok 158 - sigma_{0..3}(4) -ok 159 - sigma_{0..3}(6) +ok 147 - sigma_{0..3}(6) +ok 148 - sigma_{0..3}(7) +ok 149 - sigma_{0..3}(1) +ok 150 - sigma_{0..3}(0) +ok 151 - sigma_{0..3}(2) +ok 152 - sigma_{0..3}(8) +ok 153 - sigma_{0..3}(5) +ok 154 - sigma_{0..3}(2394823486) +ok 155 - sigma_{0..3}(46) +ok 156 - sigma_{0..3}(4) +ok 157 - sigma_{0..3}(23948) +ok 158 - sigma_{0..3}(189) +ok 159 - sigma_{0..3}(3) ok 160 - divisors(1) in list context ok 161 - divisors(9283540924) ok 162 - scalar divisors(9283540924) = 12 @@ -3580,7 +3624,7 @@ t/92-release-pod-coverage.t .. skipped: these tests are for release candidate testing t/93-release-spelling.t ...... skipped: these tests are for release candidate testing All tests successful. -Files=36, Tests=3156, 12 wallclock secs ( 0.54 usr 0.14 sys + 11.07 cusr 0.57 csys = 12.32 CPU) +Files=36, Tests=3156, 7 wallclock secs ( 0.24 usr 0.00 sys + 6.62 cusr 0.12 csys = 6.98 CPU) Result: PASS make[1]: Leaving directory '/build/libmath-prime-util-gmp-perl-0.51' create-stamp debian/debhelper-build-stamp @@ -3589,7 +3633,7 @@ dh_testroot dh_prep dh_auto_install - make -j10 install DESTDIR=/build/libmath-prime-util-gmp-perl-0.51/debian/libmath-prime-util-gmp-perl AM_UPDATE_INFO_DIR=no PREFIX=/usr + make -j18 install DESTDIR=/build/libmath-prime-util-gmp-perl-0.51/debian/libmath-prime-util-gmp-perl AM_UPDATE_INFO_DIR=no PREFIX=/usr make[1]: Entering directory '/build/libmath-prime-util-gmp-perl-0.51' "/usr/bin/perl" -MExtUtils::Command::MM -e 'cp_nonempty' -- GMP.bs blib/arch/auto/Math/Prime/Util/GMP/GMP.bs 644 Manifying 1 pod document @@ -3628,12 +3672,14 @@ dpkg-source --after-build . dpkg-buildpackage: info: binary-only upload (no source included) I: copying local configuration +I: user script /srv/workspace/pbuilder/4067/tmp/hooks/B01_cleanup starting +I: user script /srv/workspace/pbuilder/4067/tmp/hooks/B01_cleanup finished I: unmounting dev/ptmx filesystem I: unmounting dev/pts filesystem I: unmounting dev/shm filesystem I: unmounting proc filesystem I: unmounting sys filesystem I: cleaning the build env -I: removing directory /srv/workspace/pbuilder/6510 and its subdirectories -I: Current time: Wed Jun 19 05:54:15 -12 2019 -I: pbuilder-time-stamp: 1560966855 +I: removing directory /srv/workspace/pbuilder/4067 and its subdirectories +I: Current time: Wed Jul 22 14:17:44 +14 2020 +I: pbuilder-time-stamp: 1595377064