│ │ │ │ │ │ │ │
│ │ │ │

Replaying Parts of a Simulation

│ │ │ │

When simulating a bio-realistic network, cells will recieve synaptic stimulation from both locally recurrent connections as-well-as feedforward connections from external inputs. Often when analyzing the results of a full network activity we would like to know the contribution of only a subset of the synaptic activity. For example, how much does the feedforward synapses, or only recurrent synapses between specific population of cells, contributed to the simulation results. Certain techniques, │ │ │ │ like running with only a subset of the full network, or using optogenetic/current-clamping to turn on-off subpoluations, can provide useful insights but also not tell the full story of a network simulation.

│ │ │ │

Instead we can used the BMTK “replay” input module to disentangle subsections of a simulation activity from the full network in BioNet/biophysically realistic simulations. The BMTK “replay” module let’s the user take a previous simulation, and replay a simulation but using only activity for only a subset of the synapses. This can be helpful in parameter tuning and optimization, and for very large networks can provide an efficient manner to replay small subsets of a full network.

│ │ │ │ -

9a81125318354547b33999360099aa87

│ │ │ │ +

0059088a2e0248c6972ca9d0b9c030ac

│ │ │ │
│ │ │ │
[1]:
│ │ │ │  
│ │ │ │
│ │ │ │
from bmtk.simulator import bionet
│ │ │ │  from bmtk.analyzer.spike_trains import plot_raster
│ │ │ │  
│ │ │ │ ├── html2text {} │ │ │ │ │ @@ -14,15 +14,15 @@ │ │ │ │ │ Instead we can used the BMTK “replay” input module to disentangle subsections │ │ │ │ │ of a simulation activity from the full network in BioNet/biophysically │ │ │ │ │ realistic simulations. The BMTK “replay” module let’s the user take a previous │ │ │ │ │ simulation, and replay a simulation but using only activity for only a subset │ │ │ │ │ of the synapses. This can be helpful in parameter tuning and optimization, and │ │ │ │ │ for very large networks can provide an efficient manner to replay small subsets │ │ │ │ │ of a full network. │ │ │ │ │ -[9a81125318354547b33999360099aa87] │ │ │ │ │ +[0059088a2e0248c6972ca9d0b9c030ac] │ │ │ │ │ [1]: │ │ │ │ │ from bmtk.simulator import bionet │ │ │ │ │ from bmtk.analyzer.spike_trains import plot_raster │ │ │ │ │ ********** IInniittiiaall SSiimmuullaattiioonn ((GGeenneerraattiinngg aa BBaasseelliinnee ffoorr SSyynnaappttiicc AAccttiivviittyy))_?¶ ********** │ │ │ │ │ First step is to take an existing network + simulation or build one from │ │ │ │ │ scratch. For more information on how to build and run BioNet simulations please │ │ │ │ │ see existing _t_u_t_o_r_i_a_l_s. For our example we copy the _b_i_o_n_e_t___4_5_0_c_e_l_l_ _e_x_a_m_p_l_e