--- /srv/reproducible-results/rbuild-debian/r-b-build.qgNELgi4/b1/pandas_2.2.3+dfsg-5_i386.changes +++ /srv/reproducible-results/rbuild-debian/r-b-build.qgNELgi4/b2/pandas_2.2.3+dfsg-5_i386.changes ├── Files │ @@ -1,5 +1,5 @@ │ │ - 32eff6634fc0411e7da020a249660f34 9245736 doc optional python-pandas-doc_2.2.3+dfsg-5_all.deb │ + 6ae5c1eb6205e08b8eeb765291606f73 9244968 doc optional python-pandas-doc_2.2.3+dfsg-5_all.deb │ 4aa27e4ce9f94e6a115a003aead89357 35948992 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-5_i386.deb │ fc76b9464cde48edc7b21e91ba744441 4263600 python optional python3-pandas-lib_2.2.3+dfsg-5_i386.deb │ 82393119d6d8cb1b1ef15e3b71c2d0a7 3096356 python optional python3-pandas_2.2.3+dfsg-5_all.deb ├── python-pandas-doc_2.2.3+dfsg-5_all.deb │ ├── file list │ │ @@ -1,3 +1,3 @@ │ │ -rw-r--r-- 0 0 0 4 2024-10-21 18:43:11.000000 debian-binary │ │ --rw-r--r-- 0 0 0 146932 2024-10-21 18:43:11.000000 control.tar.xz │ │ --rw-r--r-- 0 0 0 9098612 2024-10-21 18:43:11.000000 data.tar.xz │ │ +-rw-r--r-- 0 0 0 146936 2024-10-21 18:43:11.000000 control.tar.xz │ │ +-rw-r--r-- 0 0 0 9097840 2024-10-21 18:43:11.000000 data.tar.xz │ ├── control.tar.xz │ │ ├── control.tar │ │ │ ├── ./md5sums │ │ │ │ ├── ./md5sums │ │ │ │ │┄ Files differ │ ├── data.tar.xz │ │ ├── data.tar │ │ │ ├── file list │ │ │ │ @@ -6230,74 +6230,74 @@ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 209237 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 47718 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 47710 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 52348 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/release.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 269 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 16236 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/search.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 2359266 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 2359040 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ -rw-r--r-- 0 root (0) root (0) 259 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 244 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/style.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 255 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/text.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 256 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 277 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html │ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 170385 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/10min.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 282857 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 282860 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 434917 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 35684 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 216526 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 17366 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 65217 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 159345 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 80419 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 120041 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 120018 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 106902 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 299886 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 58768 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 394409 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 40816 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 1144274 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 207911 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 177680 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 111206 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 146554 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 145178 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 161712 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 114620 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 114623 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 64660 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 697282 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 87892 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 87816 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz │ │ │ │ -rw-r--r-- 0 root (0) root (0) 164343 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 99980 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 485612 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 203394 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 141000 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 270 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html │ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/ │ │ │ │ -rw-r--r-- 0 root (0) root (0) 106734 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 10079 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html.gz │ │ │ │ -rw-r--r-- 0 root (0) root (0) 83016 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 65522 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 81344 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.11.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 103349 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.12.0.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 221528 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 221530 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 88415 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 242763 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 82295 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 251323 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 67310 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 74157 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.2.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 144231 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.0.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 114326 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.1.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 114552 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 63689 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.2.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 229467 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.0.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 94013 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.1.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 221568 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.0.html │ │ │ │ --rw-r--r-- 0 root (0) root (0) 170454 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.1.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 230425 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.0.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 94057 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.17.1.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 223092 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.0.html │ │ │ │ +-rw-r--r-- 0 root (0) root (0) 170923 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.18.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 348365 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 44209 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.1.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 47554 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.19.2.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 405170 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.0.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 51932 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.2.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 42438 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.20.3.html │ │ │ │ -rw-r--r-- 0 root (0) root (0) 254142 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.21.0.html │ │ │ ├── ./usr/share/doc/python-pandas-doc/html/searchindex.js │ │ │ │ ├── js-beautify {} │ │ │ │ │ @@ -21485,24 +21485,24 @@ │ │ │ │ │ "000830": 2214, │ │ │ │ │ "000895": 2195, │ │ │ │ │ "000951": 2186, │ │ │ │ │ "000k": 1489, │ │ │ │ │ "000m": 1489, │ │ │ │ │ "000n": 1489, │ │ │ │ │ "000z": 2294, │ │ │ │ │ - "001": [532, 874, 1467, 2193, 2232, 2264], │ │ │ │ │ + "001": [532, 874, 1467, 2232, 2264], │ │ │ │ │ "001000": [917, 919, 922, 929, 1876, 2209], │ │ │ │ │ "001294": 2210, │ │ │ │ │ "001372": 2207, │ │ │ │ │ "001376": 2207, │ │ │ │ │ "001427": 2214, │ │ │ │ │ "001438": 2195, │ │ │ │ │ "001486": [102, 1158], │ │ │ │ │ "00180": 2294, │ │ │ │ │ - "002": 2264, │ │ │ │ │ + "002": [2193, 2264], │ │ │ │ │ "002000": 2232, │ │ │ │ │ "002040": 2235, │ │ │ │ │ "002118": [2230, 2231], │ │ │ │ │ "002653": 2207, │ │ │ │ │ "002846": 2229, │ │ │ │ │ "003": [2185, 2193, 2235], │ │ │ │ │ "003144": 2210, │ │ │ │ │ @@ -21510,35 +21510,36 @@ │ │ │ │ │ "003494": 15, │ │ │ │ │ "003507": [2209, 2218], │ │ │ │ │ "003556": 2207, │ │ │ │ │ "00360": 2294, │ │ │ │ │ "003733": 2207, │ │ │ │ │ "003932": 2216, │ │ │ │ │ "003945": 2210, │ │ │ │ │ - "004": [2186, 2227], │ │ │ │ │ + "004": [2186, 2193, 2227], │ │ │ │ │ "004000": 2232, │ │ │ │ │ "004005006": [287, 939], │ │ │ │ │ "004054": 2229, │ │ │ │ │ "004091": [2204, 2257], │ │ │ │ │ "004127": 2207, │ │ │ │ │ "004194": 2186, │ │ │ │ │ "004201": 2186, │ │ │ │ │ "004229": 2186, │ │ │ │ │ "004474": 2184, │ │ │ │ │ "004580": 2210, │ │ │ │ │ "00486": 30, │ │ │ │ │ "004956": 2207, │ │ │ │ │ - "005": 2209, │ │ │ │ │ + "005": [2193, 2209], │ │ │ │ │ "005000": 2218, │ │ │ │ │ "005361": 2207, │ │ │ │ │ "005383": 2220, │ │ │ │ │ "005446": 2219, │ │ │ │ │ "005462": 2191, │ │ │ │ │ "005977": 2199, │ │ │ │ │ "005979": 2186, │ │ │ │ │ + "006": 2193, │ │ │ │ │ "006123": 2207, │ │ │ │ │ "006154": [2185, 2197, 2199, 2202, 2204, 2215, 2257], │ │ │ │ │ "0062": 2191, │ │ │ │ │ "006349": 2195, │ │ │ │ │ "006438": 2215, │ │ │ │ │ "006549": [182, 760], │ │ │ │ │ "006695": 2186, │ │ │ │ │ @@ -21589,14 +21590,15 @@ │ │ │ │ │ "011374": 2195, │ │ │ │ │ "011470": 2207, │ │ │ │ │ "011736": 2186, │ │ │ │ │ "011829": 2207, │ │ │ │ │ "01183": 2229, │ │ │ │ │ "011860": [182, 760], │ │ │ │ │ "011975": 2207, │ │ │ │ │ + "012": 2193, │ │ │ │ │ "012108": 2207, │ │ │ │ │ "012299": 2207, │ │ │ │ │ "0123456789123456": [2164, 2165], │ │ │ │ │ "012549": 2207, │ │ │ │ │ "012694": 2199, │ │ │ │ │ "012922": 2219, │ │ │ │ │ "013086": 15, │ │ │ │ │ @@ -21617,30 +21619,28 @@ │ │ │ │ │ "014138": 2191, │ │ │ │ │ "014144": [102, 1158], │ │ │ │ │ "014648": 2186, │ │ │ │ │ "014752": 2235, │ │ │ │ │ "014805": 2202, │ │ │ │ │ "014871": [2185, 2197, 2199, 2202], │ │ │ │ │ "014888": 2207, │ │ │ │ │ - "015": 2193, │ │ │ │ │ "015083": 2186, │ │ │ │ │ "015420": 2195, │ │ │ │ │ "015458": 2207, │ │ │ │ │ "015696": [2220, 2228, 2230], │ │ │ │ │ "015906": 2186, │ │ │ │ │ "015962": [2184, 2214], │ │ │ │ │ "015988": 2186, │ │ │ │ │ "016009": 15, │ │ │ │ │ "016287": 2210, │ │ │ │ │ "016331": 2210, │ │ │ │ │ "016424": [16, 19], │ │ │ │ │ "016543e": 2195, │ │ │ │ │ "016692": [2184, 2195, 2214], │ │ │ │ │ "01685762652715874": [624, 1215], │ │ │ │ │ - "017": 2193, │ │ │ │ │ "017106": 2207, │ │ │ │ │ "017118": 2199, │ │ │ │ │ "017152": 2186, │ │ │ │ │ "017263": 2207, │ │ │ │ │ "017276": 2191, │ │ │ │ │ "017587": [2184, 2195, 2214], │ │ │ │ │ "017796": 2207, │ │ │ │ │ @@ -21662,15 +21662,14 @@ │ │ │ │ │ "01t03": 2210, │ │ │ │ │ "01t05": [909, 2210, 2235], │ │ │ │ │ "01t07": 1280, │ │ │ │ │ "01t10": 1005, │ │ │ │ │ "01t12": 953, │ │ │ │ │ "01t23": [893, 2186, 2246], │ │ │ │ │ "02": [13, 16, 17, 19, 26, 27, 29, 31, 79, 80, 82, 133, 182, 183, 202, 207, 208, 213, 218, 230, 261, 271, 276, 277, 278, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 301, 304, 305, 306, 307, 310, 312, 313, 314, 318, 319, 320, 321, 322, 323, 324, 326, 327, 329, 330, 331, 332, 345, 362, 363, 423, 519, 534, 536, 542, 543, 544, 545, 546, 547, 548, 549, 557, 558, 562, 563, 564, 565, 566, 575, 591, 592, 593, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 656, 657, 658, 659, 665, 666, 667, 673, 674, 675, 677, 678, 679, 680, 684, 685, 686, 688, 708, 760, 761, 781, 782, 788, 793, 804, 893, 899, 902, 903, 904, 919, 939, 940, 943, 945, 948, 949, 953, 957, 970, 997, 1014, 1051, 1075, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1344, 1393, 1452, 1498, 1500, 1506, 1542, 1620, 1699, 1815, 1947, 2054, 2127, 2145, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2220, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2265, 2271, 2283, 2294, 2298, 2301, 2307], │ │ │ │ │ - "020": 2193, │ │ │ │ │ "0200": [957, 969, 970, 997, 1498, 2210], │ │ │ │ │ "020161": [102, 1158], │ │ │ │ │ "020208": 2195, │ │ │ │ │ "020376": 2207, │ │ │ │ │ "020399": 2195, │ │ │ │ │ "020485": 2207, │ │ │ │ │ "020544": 2186, │ │ │ │ │ @@ -21682,15 +21681,15 @@ │ │ │ │ │ "021377": 2207, │ │ │ │ │ "021382": 2184, │ │ │ │ │ "021499": 2186, │ │ │ │ │ "02155": 30, │ │ │ │ │ "022070": 2184, │ │ │ │ │ "022196": 2207, │ │ │ │ │ "022777": 2207, │ │ │ │ │ - "023": [1447, 2193, 2200, 2232], │ │ │ │ │ + "023": [1447, 2200, 2232], │ │ │ │ │ "023100": 2195, │ │ │ │ │ "023167": 15, │ │ │ │ │ "023202": 2199, │ │ │ │ │ "023526": 2191, │ │ │ │ │ "023640": 2230, │ │ │ │ │ "023688": [15, 2185, 2191, 2197], │ │ │ │ │ "0237": 2204, │ │ │ │ │ @@ -21721,36 +21720,35 @@ │ │ │ │ │ "026437": 2197, │ │ │ │ │ "026458": 2216, │ │ │ │ │ "0266708": 2202, │ │ │ │ │ "026692": 2207, │ │ │ │ │ "0267": 2202, │ │ │ │ │ "027496": 2207, │ │ │ │ │ "027778": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275], │ │ │ │ │ - "028": 2193, │ │ │ │ │ "028096": 2210, │ │ │ │ │ "028152": 2207, │ │ │ │ │ "028166": 15, │ │ │ │ │ "028182": 2207, │ │ │ │ │ "028578": 2207, │ │ │ │ │ "028603": 2195, │ │ │ │ │ "028662": 28, │ │ │ │ │ "028665": 15, │ │ │ │ │ - "029": [2186, 2193, 2227], │ │ │ │ │ + "029": [2186, 2227], │ │ │ │ │ "029302": 2191, │ │ │ │ │ "029399": 2184, │ │ │ │ │ "029582": 2207, │ │ │ │ │ "029587": 2193, │ │ │ │ │ "029630": 2195, │ │ │ │ │ "029766": 2197, │ │ │ │ │ "02d": 2205, │ │ │ │ │ "02t00": [2199, 2210, 2235, 2261], │ │ │ │ │ "02t02": 2235, │ │ │ │ │ "02t05": [909, 2210], │ │ │ │ │ "03": [26, 27, 29, 31, 79, 80, 82, 121, 182, 207, 213, 218, 219, 230, 264, 278, 286, 287, 290, 291, 292, 294, 296, 298, 301, 302, 304, 305, 306, 307, 310, 313, 314, 318, 321, 322, 326, 330, 331, 332, 362, 420, 423, 512, 517, 518, 519, 522, 524, 530, 534, 536, 543, 544, 545, 546, 547, 548, 549, 551, 557, 558, 562, 563, 564, 565, 566, 591, 592, 593, 637, 640, 642, 643, 644, 646, 651, 652, 656, 657, 658, 659, 666, 667, 673, 675, 677, 680, 681, 685, 686, 688, 696, 760, 781, 788, 793, 799, 804, 904, 939, 941, 943, 944, 945, 948, 949, 953, 955, 956, 957, 958, 962, 970, 973, 983, 990, 992, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1013, 1014, 1018, 1051, 1075, 1145, 1169, 1192, 1226, 1253, 1269, 1270, 1276, 1280, 1289, 1344, 1393, 1447, 1452, 1489, 1498, 1500, 1506, 1542, 1699, 1741, 1793, 1815, 1982, 2000, 2108, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2222, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2261, 2264, 2271, 2283, 2298, 2302], │ │ │ │ │ - "030": [1447, 2193, 2200, 2232], │ │ │ │ │ + "030": [1447, 2200, 2232], │ │ │ │ │ "0300": 2271, │ │ │ │ │ "030000": 18, │ │ │ │ │ "030015": 2207, │ │ │ │ │ "030045": 2186, │ │ │ │ │ "030178": 2207, │ │ │ │ │ "030388": 2207, │ │ │ │ │ "030522": 2204, │ │ │ │ │ @@ -21800,14 +21798,15 @@ │ │ │ │ │ "036104": 2207, │ │ │ │ │ "036142": [2220, 2231], │ │ │ │ │ "0362": 2202, │ │ │ │ │ "0362196": 2202, │ │ │ │ │ "036235": 2205, │ │ │ │ │ "036660": 2199, │ │ │ │ │ "036854": 2199, │ │ │ │ │ + "037": 2193, │ │ │ │ │ "037181": 2191, │ │ │ │ │ "037528": 2235, │ │ │ │ │ "037651": 2207, │ │ │ │ │ "037772": 2214, │ │ │ │ │ "037882": [2184, 2214], │ │ │ │ │ "038": [1447, 2200, 2232], │ │ │ │ │ "038031": 2207, │ │ │ │ │ @@ -21857,15 +21856,14 @@ │ │ │ │ │ "044125": 2207, │ │ │ │ │ "044184": 2199, │ │ │ │ │ "0442": [2184, 2186], │ │ │ │ │ "044236": [16, 17, 18, 19, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2210, 2214, 2215, 2216, 2218, 2220, 2225, 2235, 2241, 2260], │ │ │ │ │ "044522": 586, │ │ │ │ │ "044546": 2207, │ │ │ │ │ "044933": 2207, │ │ │ │ │ - "045": 2193, │ │ │ │ │ "045691": 2191, │ │ │ │ │ "045759": 2207, │ │ │ │ │ "045976": 2214, │ │ │ │ │ "046": 2207, │ │ │ │ │ "046044": 2199, │ │ │ │ │ "046582": 2207, │ │ │ │ │ "046611": 2210, │ │ │ │ │ @@ -22033,15 +22031,15 @@ │ │ │ │ │ "069486": 2230, │ │ │ │ │ "069546": 2199, │ │ │ │ │ "069718": 2186, │ │ │ │ │ "069887": 2207, │ │ │ │ │ "069908": 2207, │ │ │ │ │ "069949": 2207, │ │ │ │ │ "06t00": 2261, │ │ │ │ │ - "07": [26, 27, 29, 30, 31, 187, 202, 207, 213, 230, 273, 277, 292, 294, 330, 332, 345, 644, 646, 685, 688, 763, 781, 788, 804, 900, 903, 1075, 1280, 1344, 1441, 1442, 1449, 1450, 1452, 1598, 1677, 1720, 2184, 2186, 2195, 2197, 2199, 2201, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2226, 2227, 2228, 2230, 2231, 2235, 2261, 2271, 2294, 2298], │ │ │ │ │ + "07": [26, 27, 29, 30, 31, 187, 202, 207, 213, 230, 273, 277, 292, 294, 330, 332, 345, 644, 646, 685, 688, 763, 781, 788, 804, 900, 903, 1075, 1280, 1344, 1441, 1442, 1449, 1450, 1452, 1598, 1677, 1720, 2184, 2186, 2193, 2195, 2197, 2199, 2201, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2226, 2227, 2228, 2230, 2231, 2235, 2261, 2271, 2294, 2298], │ │ │ │ │ "0700": 995, │ │ │ │ │ "070087": 2218, │ │ │ │ │ "070816": 2235, │ │ │ │ │ "071068": 2222, │ │ │ │ │ "071357": 2191, │ │ │ │ │ "071665": 2219, │ │ │ │ │ "0718": [2184, 2186], │ │ │ │ │ @@ -22101,14 +22099,15 @@ │ │ │ │ │ "079587": 2230, │ │ │ │ │ "079631": 2207, │ │ │ │ │ "0797": 2202, │ │ │ │ │ "079769": 2207, │ │ │ │ │ "079915": 2193, │ │ │ │ │ "07t00": 2261, │ │ │ │ │ "08": [29, 30, 107, 207, 213, 230, 264, 273, 277, 292, 294, 316, 326, 330, 332, 629, 644, 646, 670, 680, 685, 688, 781, 788, 804, 900, 903, 1075, 1145, 1164, 1221, 1274, 1289, 1344, 1441, 1442, 1449, 1450, 1452, 1495, 1497, 1506, 1598, 1657, 1677, 1699, 1720, 1741, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2201, 2204, 2205, 2207, 2209, 2210, 2212, 2214, 2215, 2218, 2220, 2222, 2226, 2228, 2230, 2231, 2232, 2235, 2246, 2249, 2261, 2271, 2294, 2307], │ │ │ │ │ + "080": 2193, │ │ │ │ │ "0800": [953, 2210], │ │ │ │ │ "080174": 2207, │ │ │ │ │ "080372": 2199, │ │ │ │ │ "080952": [2184, 2214], │ │ │ │ │ "081009": 2195, │ │ │ │ │ "081161": 2216, │ │ │ │ │ "081249": 2207, │ │ │ │ │ @@ -22254,20 +22253,20 @@ │ │ │ │ │ "0n": [1489, 2298], │ │ │ │ │ "0px": 2207, │ │ │ │ │ "0rc0": 13, │ │ │ │ │ "0th": [26, 249, 882, 1202, 2185, 2197, 2199, 2235], │ │ │ │ │ "0x00": 2294, │ │ │ │ │ "0x40": 2294, │ │ │ │ │ "0x7efd0c0b0690": 3, │ │ │ │ │ - "0xd85e7480": 2199, │ │ │ │ │ - "0xda900ac0": 2197, │ │ │ │ │ - "0xdabe9c18": 2195, │ │ │ │ │ - "0xdf9e1ba0": 2246, │ │ │ │ │ - "0xe14e70c0": 2230, │ │ │ │ │ - "0xe34c1d98": 2210, │ │ │ │ │ + "0xbf9116d8": 2230, │ │ │ │ │ + "0xd51e3150": 2199, │ │ │ │ │ + "0xd8815210": 2195, │ │ │ │ │ + "0xdcd10130": 2197, │ │ │ │ │ + "0xdebd7b70": 2246, │ │ │ │ │ + "0xf03ff1b8": 2210, │ │ │ │ │ "1": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309, 2310], │ │ │ │ │ "10": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308], │ │ │ │ │ "100": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307], │ │ │ │ │ "1000": [9, 10, 15, 16, 17, 18, 19, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294], │ │ │ │ │ "10000": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266], │ │ │ │ │ "100000": [1354, 1372, 2199, 2201, 2210], │ │ │ │ │ "1000000": [144, 2199, 2228], │ │ │ │ │ @@ -22347,15 +22346,15 @@ │ │ │ │ │ "10178": 2228, │ │ │ │ │ "1018": [2185, 2205], │ │ │ │ │ "10181": 2227, │ │ │ │ │ "10182": 2227, │ │ │ │ │ "101830": 2207, │ │ │ │ │ "10184": 2227, │ │ │ │ │ "10193": 2228, │ │ │ │ │ - "102": [1491, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2230, 2232, 2235, 2246, 2249], │ │ │ │ │ + "102": [1491, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2230, 2232, 2235, 2246, 2249], │ │ │ │ │ "1020": 2185, │ │ │ │ │ "10209": 2227, │ │ │ │ │ "1021": [2185, 2197, 2231], │ │ │ │ │ "10214": [2227, 2228], │ │ │ │ │ "10217": 2227, │ │ │ │ │ "10218": 2228, │ │ │ │ │ "1022": [16, 17, 18, 19, 2185, 2199, 2203, 2205, 2232, 2235, 2298], │ │ │ │ │ @@ -22665,15 +22664,15 @@ │ │ │ │ │ "10h": [2210, 2235], │ │ │ │ │ "10m": [16, 1447, 2200], │ │ │ │ │ "10min": 2230, │ │ │ │ │ "10t00": 2261, │ │ │ │ │ "10th": [2205, 2241], │ │ │ │ │ "10x": [1469, 1486, 1498, 2216, 2219, 2225, 2257], │ │ │ │ │ "11": [2, 10, 15, 17, 18, 19, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 108, 111, 113, 120, 127, 139, 140, 157, 162, 196, 213, 286, 288, 289, 293, 295, 296, 300, 316, 317, 318, 323, 324, 329, 330, 420, 423, 440, 509, 512, 518, 522, 524, 526, 530, 534, 536, 554, 556, 600, 635, 639, 641, 645, 647, 649, 650, 652, 670, 671, 673, 678, 679, 681, 684, 685, 703, 732, 771, 788, 799, 940, 943, 948, 985, 993, 1010, 1019, 1023, 1025, 1169, 1174, 1175, 1195, 1200, 1226, 1256, 1261, 1276, 1292, 1298, 1299, 1306, 1308, 1321, 1433, 1452, 1482, 1498, 1542, 1560, 1598, 1620, 1637, 1677, 1699, 1720, 1741, 1839, 1930, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2217, 2218, 2219, 2220, 2222, 2223, 2224, 2225, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2250, 2257, 2261, 2264, 2265, 2271, 2277, 2278, 2283, 2289, 2294, 2297, 2298, 2302, 2307], │ │ │ │ │ - "110": [213, 359, 360, 587, 588, 788, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2223, 2230, 2232, 2235, 2246], │ │ │ │ │ + "110": [213, 359, 360, 587, 588, 788, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2223, 2230, 2232, 2235, 2246], │ │ │ │ │ "1100": [2195, 2210], │ │ │ │ │ "11000": [2185, 2220], │ │ │ │ │ "11002": 2228, │ │ │ │ │ "11007": 2229, │ │ │ │ │ "1101": 2210, │ │ │ │ │ "11010": 2228, │ │ │ │ │ "11014": 2228, │ │ │ │ │ @@ -23375,15 +23374,15 @@ │ │ │ │ │ "12887": 2231, │ │ │ │ │ "12888": 2230, │ │ │ │ │ "1289": 2197, │ │ │ │ │ "128907": 2186, │ │ │ │ │ "12893": 2231, │ │ │ │ │ "12896": 2232, │ │ │ │ │ "128hr": 234, │ │ │ │ │ - "129": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2214, 2225, 2232, 2283], │ │ │ │ │ + "129": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2214, 2225, 2232, 2283], │ │ │ │ │ "1290": 2197, │ │ │ │ │ "12902": 2231, │ │ │ │ │ "12903": 2231, │ │ │ │ │ "12907": 2232, │ │ │ │ │ "12908": 2231, │ │ │ │ │ "1291": 2197, │ │ │ │ │ "12910": 2231, │ │ │ │ │ @@ -23633,15 +23632,15 @@ │ │ │ │ │ "1349720105200": 2210, │ │ │ │ │ "1349720105300": 2210, │ │ │ │ │ "1349720105400": 2210, │ │ │ │ │ "1349720105500": 2210, │ │ │ │ │ "1349806505": 2210, │ │ │ │ │ "1349892905": 2210, │ │ │ │ │ "1349979305": 2210, │ │ │ │ │ - "135": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2210, 2211, 2232, 2235, 2249, 2253], │ │ │ │ │ + "135": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2210, 2211, 2232, 2235, 2249, 2253], │ │ │ │ │ "13500": 2232, │ │ │ │ │ "1350065705": 2210, │ │ │ │ │ "13503": 2249, │ │ │ │ │ "13509": 2232, │ │ │ │ │ "13511": 2232, │ │ │ │ │ "135110": 2186, │ │ │ │ │ "13514": 2232, │ │ │ │ │ @@ -23740,14 +23739,15 @@ │ │ │ │ │ "13735": 2241, │ │ │ │ │ "13737": 2232, │ │ │ │ │ "1374": 2185, │ │ │ │ │ "13743": 2232, │ │ │ │ │ "13746": 2232, │ │ │ │ │ "137462": 2199, │ │ │ │ │ "13747": 2234, │ │ │ │ │ + "137472": 2228, │ │ │ │ │ "13749": 2232, │ │ │ │ │ "1375": 2185, │ │ │ │ │ "13750": 2232, │ │ │ │ │ "13754": 2233, │ │ │ │ │ "137570": 2186, │ │ │ │ │ "13763": 2232, │ │ │ │ │ "1377": 2185, │ │ │ │ │ @@ -23774,14 +23774,15 @@ │ │ │ │ │ "1382": [16, 17, 18, 19, 2199, 2235], │ │ │ │ │ "13822": 2232, │ │ │ │ │ "13823": 2238, │ │ │ │ │ "13828": 2277, │ │ │ │ │ "13831": 2294, │ │ │ │ │ "13834": 2232, │ │ │ │ │ "13844": 2232, │ │ │ │ │ + "138451": 2228, │ │ │ │ │ "13846": 2232, │ │ │ │ │ "13848": 2232, │ │ │ │ │ "13849": 2232, │ │ │ │ │ "13853": 2232, │ │ │ │ │ "13854": [2232, 2241], │ │ │ │ │ "13855": 2232, │ │ │ │ │ "13856": 2235, │ │ │ │ │ @@ -23919,15 +23920,15 @@ │ │ │ │ │ "14266": 2232, │ │ │ │ │ "142856": 2218, │ │ │ │ │ "1429": 2185, │ │ │ │ │ "14291": 2233, │ │ │ │ │ "142928": 2199, │ │ │ │ │ "14293": 2232, │ │ │ │ │ "14295": 2235, │ │ │ │ │ - "143": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2201, 2203, 2210, 2211, 2212, 2232, 2298], │ │ │ │ │ + "143": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2210, 2211, 2212, 2232, 2298], │ │ │ │ │ "1430": 2185, │ │ │ │ │ "14302": 2232, │ │ │ │ │ "14308": 2232, │ │ │ │ │ "1431": 2185, │ │ │ │ │ "14313": 2238, │ │ │ │ │ "14315": 2241, │ │ │ │ │ "14316": 2232, │ │ │ │ │ @@ -24406,15 +24407,15 @@ │ │ │ │ │ "15785": 2241, │ │ │ │ │ "15787": 2235, │ │ │ │ │ "157892": [15, 2185, 2186, 2191, 2197, 2199, 2202, 2215, 2216, 2218, 2219, 2235, 2241, 2264], │ │ │ │ │ "157898": 2207, │ │ │ │ │ "1579": [2184, 2186, 2191, 2194], │ │ │ │ │ "15793": 2238, │ │ │ │ │ "15797": 2235, │ │ │ │ │ - "158": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2201, 2210, 2211, 2256], │ │ │ │ │ + "158": [2185, 2186, 2188, 2195, 2197, 2199, 2201, 2210, 2211, 2256], │ │ │ │ │ "1580": [2184, 2186, 2194], │ │ │ │ │ "15800": 2241, │ │ │ │ │ "158091": 15, │ │ │ │ │ "158131": 2186, │ │ │ │ │ "15819": 2236, │ │ │ │ │ "15822": 2235, │ │ │ │ │ "15828": 2235, │ │ │ │ │ @@ -24495,15 +24496,15 @@ │ │ │ │ │ "16063": 2294, │ │ │ │ │ "16071": 2235, │ │ │ │ │ "16073": 2241, │ │ │ │ │ "16078": 2238, │ │ │ │ │ "160910": 2207, │ │ │ │ │ "160915": 2186, │ │ │ │ │ "16098": 2193, │ │ │ │ │ - "161": [2185, 2186, 2188, 2195, 2197, 2199, 2201, 2210, 2211], │ │ │ │ │ + "161": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2201, 2210, 2211], │ │ │ │ │ "161007": 2207, │ │ │ │ │ "161099": 2193, │ │ │ │ │ "16111": 2235, │ │ │ │ │ "16112": 2238, │ │ │ │ │ "161137": 2235, │ │ │ │ │ "16120": 2235, │ │ │ │ │ "16122": 2238, │ │ │ │ │ @@ -24590,15 +24591,15 @@ │ │ │ │ │ "16468": 2241, │ │ │ │ │ "16469": 2283, │ │ │ │ │ "16471": 2238, │ │ │ │ │ "16472": 2236, │ │ │ │ │ "16488": 2249, │ │ │ │ │ "16493": 2236, │ │ │ │ │ "16496": 2236, │ │ │ │ │ - "165": [144, 2185, 2186, 2188, 2195, 2197, 2199, 2201, 2210, 2211], │ │ │ │ │ + "165": [144, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2201, 2210, 2211], │ │ │ │ │ "16503": 2238, │ │ │ │ │ "1651": 2217, │ │ │ │ │ "16511": 2236, │ │ │ │ │ "16515": 2236, │ │ │ │ │ "16519": 2236, │ │ │ │ │ "16524": 2237, │ │ │ │ │ "165258": 2207, │ │ │ │ │ @@ -24929,15 +24930,15 @@ │ │ │ │ │ "17574": 2238, │ │ │ │ │ "17575": 2238, │ │ │ │ │ "175829": 2229, │ │ │ │ │ "1759": 2199, │ │ │ │ │ "17594": 2241, │ │ │ │ │ "17596": 2238, │ │ │ │ │ "175988": 2207, │ │ │ │ │ - "176": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2231, 2253, 2283], │ │ │ │ │ + "176": [2185, 2186, 2188, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2218, 2231, 2253, 2283], │ │ │ │ │ "1760": 2199, │ │ │ │ │ "17602": 2241, │ │ │ │ │ "17605": 2265, │ │ │ │ │ "17607": 2238, │ │ │ │ │ "1761": 2199, │ │ │ │ │ "17610": 2241, │ │ │ │ │ "17613": 2238, │ │ │ │ │ @@ -25500,15 +25501,15 @@ │ │ │ │ │ "195563": 2235, │ │ │ │ │ "19565": 2241, │ │ │ │ │ "19566": 2241, │ │ │ │ │ "19577": 2246, │ │ │ │ │ "19582": 2241, │ │ │ │ │ "19589": 2246, │ │ │ │ │ "19595": 2246, │ │ │ │ │ - "196": [2185, 2186, 2188, 2191, 2194, 2195, 2197, 2199, 2210, 2211], │ │ │ │ │ + "196": [2185, 2186, 2188, 2191, 2193, 2194, 2195, 2197, 2199, 2210, 2211], │ │ │ │ │ "1960": [1498, 2210, 2235], │ │ │ │ │ "19602": 2271, │ │ │ │ │ "19603": 2241, │ │ │ │ │ "196087": 2220, │ │ │ │ │ "19612": 2241, │ │ │ │ │ "196155": 2207, │ │ │ │ │ "19617": 2249, │ │ │ │ │ @@ -25747,17 +25748,18 @@ │ │ │ │ │ "2020q1": 1008, │ │ │ │ │ "2021": [288, 296, 318, 639, 652, 673, 940, 943, 948, 957, 970, 997, 1542, 2201, 2207, 2213, 2277, 2289, 2294], │ │ │ │ │ "2022": [5, 22, 523, 525, 528, 537, 982, 1185, 1246, 1288, 1491, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1542, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1560, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1578, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1598, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1620, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1637, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1657, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1677, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1699, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1720, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1758, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1776, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1793, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1815, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1839, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1857, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1876, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1894, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1912, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1930, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1947, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1964, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1982, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2018, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2036, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2054, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2108, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2127, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2145, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2186, 2203, 2213, 2227, 2298, 2302, 2307], │ │ │ │ │ "2022a": 2294, │ │ │ │ │ "2023": [34, 270, 298, 301, 320, 363, 511, 519, 526, 533, 543, 544, 545, 546, 547, 548, 549, 551, 554, 555, 556, 557, 558, 560, 563, 564, 565, 566, 567, 651, 894, 898, 954, 959, 960, 982, 984, 1000, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1024, 1122, 1141, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1501, 1620, 1930, 2090, 2127, 2145, 2213], │ │ │ │ │ "202380": 2207, │ │ │ │ │ "20239": [2241, 2265], │ │ │ │ │ - "2024": [36, 270, 544, 546, 555, 567, 894, 898, 2127, 2213, 2228], │ │ │ │ │ + "2024": [36, 270, 544, 546, 555, 567, 894, 898, 2127, 2213], │ │ │ │ │ "2025": [544, 546, 555, 567, 894, 898, 2228], │ │ │ │ │ "20251": 2307, │ │ │ │ │ + "2026": 2228, │ │ │ │ │ "202602": 2205, │ │ │ │ │ "202646": 2230, │ │ │ │ │ "20271": 2241, │ │ │ │ │ "202872": [2184, 2214], │ │ │ │ │ "202946": 2207, │ │ │ │ │ "203": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2231, 2253], │ │ │ │ │ "2030": 2265, │ │ │ │ │ @@ -25951,15 +25953,15 @@ │ │ │ │ │ "20994": 2242, │ │ │ │ │ "20995": 2265, │ │ │ │ │ "20_000": 1485, │ │ │ │ │ "20px": 1423, │ │ │ │ │ "20th": 31, │ │ │ │ │ "20x": [2199, 2225, 2228, 2307], │ │ │ │ │ "21": [3, 15, 17, 18, 19, 22, 24, 25, 28, 29, 30, 31, 32, 36, 101, 108, 213, 219, 242, 283, 345, 586, 788, 817, 910, 987, 1198, 1397, 1430, 1437, 1438, 1439, 1657, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2240, 2241, 2246, 2249, 2265, 2271, 2274, 2277, 2283, 2289, 2294, 2298, 2302, 2307], │ │ │ │ │ - "210": [134, 709, 1433, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211, 2212], │ │ │ │ │ + "210": [134, 709, 1433, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2212], │ │ │ │ │ "21002": 2243, │ │ │ │ │ "21003": 2277, │ │ │ │ │ "2101": 2264, │ │ │ │ │ "21015": 2242, │ │ │ │ │ "21020": 2277, │ │ │ │ │ "2102402": 2205, │ │ │ │ │ "21025": 2242, │ │ │ │ │ @@ -26302,15 +26304,15 @@ │ │ │ │ │ "22376": 2246, │ │ │ │ │ "22383": 2246, │ │ │ │ │ "22386": 2246, │ │ │ │ │ "22387": 2246, │ │ │ │ │ "22389": 2246, │ │ │ │ │ "22390": 2246, │ │ │ │ │ "22397": 2246, │ │ │ │ │ - "224": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210], │ │ │ │ │ + "224": [2185, 2186, 2188, 2195, 2197, 2199, 2210], │ │ │ │ │ "224000": 2195, │ │ │ │ │ "224077": 2207, │ │ │ │ │ "22420": 2246, │ │ │ │ │ "224283": 2197, │ │ │ │ │ "22435": 2289, │ │ │ │ │ "224364": 2186, │ │ │ │ │ "22441": 2246, │ │ │ │ │ @@ -26651,15 +26653,15 @@ │ │ │ │ │ "23980": 2246, │ │ │ │ │ "239885": 2186, │ │ │ │ │ "23990": [2246, 2265], │ │ │ │ │ "23998": 2289, │ │ │ │ │ "239990": 2235, │ │ │ │ │ "23h30min": [213, 345, 788, 2210], │ │ │ │ │ "24": [3, 15, 17, 18, 19, 25, 29, 30, 31, 32, 35, 101, 133, 134, 198, 208, 213, 214, 249, 271, 282, 341, 345, 407, 411, 532, 632, 708, 745, 751, 782, 788, 882, 899, 938, 1198, 1202, 1263, 1344, 1397, 1430, 1491, 1506, 1524, 1542, 1560, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2222, 2223, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2249, 2265, 2271, 2277, 2283, 2287, 2289, 2294, 2297, 2298, 2302, 2307], │ │ │ │ │ - "240": [1302, 1433, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2220, 2231, 2238, 2246, 2298], │ │ │ │ │ + "240": [1302, 1433, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220, 2231, 2238, 2246, 2298], │ │ │ │ │ "24008": 2223, │ │ │ │ │ "24009288": 2199, │ │ │ │ │ "24011": 2249, │ │ │ │ │ "24014": 2249, │ │ │ │ │ "24023": 2246, │ │ │ │ │ "24024": 2246, │ │ │ │ │ "24025": 2246, │ │ │ │ │ @@ -26749,26 +26751,25 @@ │ │ │ │ │ "2439": [196, 771], │ │ │ │ │ "24398": 2246, │ │ │ │ │ "244": [268, 745, 2185, 2186, 2188, 2195, 2197, 2199, 2203, 2210, 2220, 2222, 2224, 2246, 2254, 2298], │ │ │ │ │ "24405": 2246, │ │ │ │ │ "24408": 2246, │ │ │ │ │ "244140625": 2298, │ │ │ │ │ "24415": 2246, │ │ │ │ │ - "244151": 2228, │ │ │ │ │ "24416": 2249, │ │ │ │ │ "24435": [2283, 2298], │ │ │ │ │ "244413": 2199, │ │ │ │ │ "2445": 2202, │ │ │ │ │ "24458940": 2199, │ │ │ │ │ "24466": 2246, │ │ │ │ │ "244688": 2199, │ │ │ │ │ "24471": [2246, 2249], │ │ │ │ │ "24486": 2265, │ │ │ │ │ "24491": 2246, │ │ │ │ │ - "245": [1403, 2185, 2186, 2188, 2195, 2197, 2199, 2203, 2210, 2220, 2298], │ │ │ │ │ + "245": [1403, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2203, 2210, 2220, 2298], │ │ │ │ │ "24510": 2246, │ │ │ │ │ "245166": 2197, │ │ │ │ │ "24518": 2298, │ │ │ │ │ "245334": 2210, │ │ │ │ │ "2454": 2193, │ │ │ │ │ "24548": 2246, │ │ │ │ │ "2455": 2193, │ │ │ │ │ @@ -26784,15 +26785,14 @@ │ │ │ │ │ "24596": 2265, │ │ │ │ │ "246": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2203, 2210, 2220, 2298], │ │ │ │ │ "2460": 2193, │ │ │ │ │ "2461": 2193, │ │ │ │ │ "246288": 2207, │ │ │ │ │ "24630": 2246, │ │ │ │ │ "24653": 2249, │ │ │ │ │ - "246569": 2228, │ │ │ │ │ "246622": 2207, │ │ │ │ │ "246648": 2207, │ │ │ │ │ "24675": 2246, │ │ │ │ │ "24694": [2246, 2265], │ │ │ │ │ "247": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220], │ │ │ │ │ "24704": 2246, │ │ │ │ │ "24710": 2246, │ │ │ │ │ @@ -26917,15 +26917,15 @@ │ │ │ │ │ "2519": 2204, │ │ │ │ │ "251905": [2185, 2191, 2197], │ │ │ │ │ "25191": 2249, │ │ │ │ │ "25193": 2248, │ │ │ │ │ "25196": 2248, │ │ │ │ │ "251983": 2207, │ │ │ │ │ "251986": 2195, │ │ │ │ │ - "252": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2220], │ │ │ │ │ + "252": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220], │ │ │ │ │ "252000": [2185, 2220], │ │ │ │ │ "25211": 2249, │ │ │ │ │ "25220": 2249, │ │ │ │ │ "252244": 2207, │ │ │ │ │ "25231": 2249, │ │ │ │ │ "252395": [182, 760], │ │ │ │ │ "25241": 2249, │ │ │ │ │ @@ -27268,15 +27268,15 @@ │ │ │ │ │ "268413": 2207, │ │ │ │ │ "2685": 2221, │ │ │ │ │ "268520": [2184, 2195, 2214], │ │ │ │ │ "2686": 2215, │ │ │ │ │ "2687": 2215, │ │ │ │ │ "2689": 2215, │ │ │ │ │ "268968": 2207, │ │ │ │ │ - "269": [2186, 2188, 2195, 2197, 2199, 2210, 2218], │ │ │ │ │ + "269": [2186, 2188, 2195, 2197, 2199, 2210], │ │ │ │ │ "2690": 2215, │ │ │ │ │ "26916": 2249, │ │ │ │ │ "26919": 2283, │ │ │ │ │ "2692": 2215, │ │ │ │ │ "269219": [242, 817], │ │ │ │ │ "26934": 2249, │ │ │ │ │ "26939": 2265, │ │ │ │ │ @@ -27432,15 +27432,14 @@ │ │ │ │ │ "276183": 2257, │ │ │ │ │ "2762": [2184, 2186, 2191], │ │ │ │ │ "276232": [15, 2184, 2185, 2186, 2191, 2197, 2199, 2202, 2210, 2214, 2215, 2216, 2218, 2225, 2231, 2241, 2264], │ │ │ │ │ "27636": 2250, │ │ │ │ │ "276386": 2207, │ │ │ │ │ "27642": 2250, │ │ │ │ │ "276464": 2230, │ │ │ │ │ - "2765": 2193, │ │ │ │ │ "27656": [2294, 2298], │ │ │ │ │ "27660": 2265, │ │ │ │ │ "2766617129497566": 2257, │ │ │ │ │ "276662": [2185, 2197, 2199, 2202, 2215, 2257], │ │ │ │ │ "27668": 2265, │ │ │ │ │ "2767": 2191, │ │ │ │ │ "27676": 2265, │ │ │ │ │ @@ -27556,15 +27555,15 @@ │ │ │ │ │ "28286": 2265, │ │ │ │ │ "282863": [16, 17, 18, 19, 2184, 2185, 2191, 2193, 2195, 2197, 2199, 2202, 2204, 2206, 2208, 2210, 2214, 2215, 2216, 2218, 2220, 2225, 2231, 2235, 2241, 2260], │ │ │ │ │ "2828633443286633": [2186, 2191], │ │ │ │ │ "28289": 2265, │ │ │ │ │ "2829": [2184, 2186, 2191], │ │ │ │ │ "282978": [2166, 2218, 2229], │ │ │ │ │ "28299": 2265, │ │ │ │ │ - "283": [16, 17, 18, 19, 2186, 2195, 2197, 2199, 2210, 2231, 2235], │ │ │ │ │ + "283": [16, 17, 18, 19, 2186, 2193, 2195, 2197, 2199, 2210, 2231, 2235], │ │ │ │ │ "28301": 2265, │ │ │ │ │ "28303": 2277, │ │ │ │ │ "28306": 2271, │ │ │ │ │ "28315": 2265, │ │ │ │ │ "283157": 2186, │ │ │ │ │ "28317": 2265, │ │ │ │ │ "283199": 2207, │ │ │ │ │ @@ -27643,15 +27642,15 @@ │ │ │ │ │ "28766": 2265, │ │ │ │ │ "28769": 2265, │ │ │ │ │ "287725": 2185, │ │ │ │ │ "28779": 2265, │ │ │ │ │ "28787": 2265, │ │ │ │ │ "28791": 2265, │ │ │ │ │ "28795": 2265, │ │ │ │ │ - "288": [2185, 2186, 2197, 2199, 2210, 2257], │ │ │ │ │ + "288": [2186, 2197, 2199, 2210, 2257], │ │ │ │ │ "28805": 2265, │ │ │ │ │ "288098": 2207, │ │ │ │ │ "2881": 2238, │ │ │ │ │ "288112": 2186, │ │ │ │ │ "28814": 2265, │ │ │ │ │ "288256": 2207, │ │ │ │ │ "288374": 2207, │ │ │ │ │ @@ -28023,15 +28022,15 @@ │ │ │ │ │ "3075": 2216, │ │ │ │ │ "30758": 2265, │ │ │ │ │ "3076": 2216, │ │ │ │ │ "307606": 2207, │ │ │ │ │ "30763": 2265, │ │ │ │ │ "307719": 2207, │ │ │ │ │ "307764": 2207, │ │ │ │ │ - "308": [2186, 2197, 2199, 2210], │ │ │ │ │ + "308": [2185, 2186, 2197, 2199, 2210], │ │ │ │ │ "308013": 2193, │ │ │ │ │ "30806": 2265, │ │ │ │ │ "30821": 2265, │ │ │ │ │ "30841": 2265, │ │ │ │ │ "308611": 2207, │ │ │ │ │ "3087": 2257, │ │ │ │ │ "30871": 2271, │ │ │ │ │ @@ -28780,15 +28779,15 @@ │ │ │ │ │ "34463": 2294, │ │ │ │ │ "34464": 2271, │ │ │ │ │ "34467": 2270, │ │ │ │ │ "34479": [2298, 2302], │ │ │ │ │ "34483": 2289, │ │ │ │ │ "34486": 2271, │ │ │ │ │ "34488": 2284, │ │ │ │ │ - "345": [617, 2185, 2186, 2194, 2197, 2199, 2210], │ │ │ │ │ + "345": [617, 2186, 2194, 2197, 2199, 2210], │ │ │ │ │ "34511": 2277, │ │ │ │ │ "34520": 2271, │ │ │ │ │ "34522": [2271, 2298], │ │ │ │ │ "34526": 2271, │ │ │ │ │ "34529": 2271, │ │ │ │ │ "34530": 2270, │ │ │ │ │ "345352": [2185, 2191, 2197, 2199], │ │ │ │ │ @@ -28987,15 +28986,15 @@ │ │ │ │ │ "35566": 2277, │ │ │ │ │ "35574": 2272, │ │ │ │ │ "35579": 2277, │ │ │ │ │ "35584": 2277, │ │ │ │ │ "35588": 2272, │ │ │ │ │ "35596": 2277, │ │ │ │ │ "35598": 2272, │ │ │ │ │ - "356": [78, 162, 2185, 2186, 2197, 2199, 2210, 2298], │ │ │ │ │ + "356": [78, 162, 2186, 2197, 2199, 2210, 2298], │ │ │ │ │ "35606": 2272, │ │ │ │ │ "35607": 2277, │ │ │ │ │ "3561": 2217, │ │ │ │ │ "35612": 2283, │ │ │ │ │ "35614": 2277, │ │ │ │ │ "3562": 2217, │ │ │ │ │ "35625": 2277, │ │ │ │ │ @@ -29130,15 +29129,15 @@ │ │ │ │ │ "3616": 2217, │ │ │ │ │ "361719": 2197, │ │ │ │ │ "361733": 2207, │ │ │ │ │ "36176": 2277, │ │ │ │ │ "36179": [2277, 2298], │ │ │ │ │ "36189": 2274, │ │ │ │ │ "36197": 2273, │ │ │ │ │ - "362": [1193, 1254, 2186, 2197, 2199, 2210, 2255, 2298], │ │ │ │ │ + "362": [1193, 1254, 2186, 2197, 2199, 2205, 2210, 2255, 2298], │ │ │ │ │ "36204": 2277, │ │ │ │ │ "36210": 2277, │ │ │ │ │ "36212": 2277, │ │ │ │ │ "362228": 2210, │ │ │ │ │ "36226": 30, │ │ │ │ │ "36240": 2277, │ │ │ │ │ "36241": 2274, │ │ │ │ │ @@ -29392,15 +29391,14 @@ │ │ │ │ │ "37517": 2277, │ │ │ │ │ "37528": 2277, │ │ │ │ │ "375291": 2207, │ │ │ │ │ "37541": 2277, │ │ │ │ │ "37544": 2277, │ │ │ │ │ "37545": [2277, 2298], │ │ │ │ │ "37550": 2289, │ │ │ │ │ - "3755110320": 2246, │ │ │ │ │ "375636": 2207, │ │ │ │ │ "37566": 2277, │ │ │ │ │ "375703": 2199, │ │ │ │ │ "37591": 2277, │ │ │ │ │ "376": [2186, 2197, 2199, 2210, 2255], │ │ │ │ │ "37601": [2277, 2298], │ │ │ │ │ "37605": 2289, │ │ │ │ │ @@ -29413,15 +29411,14 @@ │ │ │ │ │ "37635": 2277, │ │ │ │ │ "37641": 2276, │ │ │ │ │ "37643": [2277, 2283, 2294], │ │ │ │ │ "3765": 2218, │ │ │ │ │ "37667": 2277, │ │ │ │ │ "376750": 2228, │ │ │ │ │ "37682": 2283, │ │ │ │ │ - "3768968736": 2246, │ │ │ │ │ "377": [2186, 2197, 2199, 2210], │ │ │ │ │ "377021": 2207, │ │ │ │ │ "37705": 2277, │ │ │ │ │ "37711": 2276, │ │ │ │ │ "37722": 2277, │ │ │ │ │ "377245": 15, │ │ │ │ │ "37725": 2277, │ │ │ │ │ @@ -29430,15 +29427,15 @@ │ │ │ │ │ "37748": 2277, │ │ │ │ │ "37750": 2289, │ │ │ │ │ "377535": 2186, │ │ │ │ │ "37755": 2276, │ │ │ │ │ "37758": 2277, │ │ │ │ │ "377642": 2210, │ │ │ │ │ "37768": 2277, │ │ │ │ │ - "3777": 2218, │ │ │ │ │ + "3777": [2193, 2218], │ │ │ │ │ "37782": 2302, │ │ │ │ │ "377887": 2207, │ │ │ │ │ "37799": 2277, │ │ │ │ │ "378": [2186, 2197, 2199, 2207, 2210, 2231], │ │ │ │ │ "3780": 2222, │ │ │ │ │ "37804": 2283, │ │ │ │ │ "378163": 2207, │ │ │ │ │ @@ -29506,14 +29503,16 @@ │ │ │ │ │ "3812": [2185, 2191, 2194], │ │ │ │ │ "38122": 2277, │ │ │ │ │ "38125": 2277, │ │ │ │ │ "3813": [2185, 2191, 2194], │ │ │ │ │ "3813531": 2202, │ │ │ │ │ "38136": 2277, │ │ │ │ │ "3814": [2185, 2191, 2194, 2202], │ │ │ │ │ + "3814127136": 2246, │ │ │ │ │ + "3814128672": 2246, │ │ │ │ │ "381463": 2207, │ │ │ │ │ "3815": [2185, 2191, 2194], │ │ │ │ │ "3816": [2185, 2191, 2194], │ │ │ │ │ "38166": 2277, │ │ │ │ │ "38167": 2277, │ │ │ │ │ "3817": [2185, 2191, 2194], │ │ │ │ │ "38172": 2289, │ │ │ │ │ @@ -30078,15 +30077,15 @@ │ │ │ │ │ "40754": 2289, │ │ │ │ │ "4076": 2220, │ │ │ │ │ "40767": 2283, │ │ │ │ │ "40769": 2283, │ │ │ │ │ "407749": 2199, │ │ │ │ │ "4078": 2218, │ │ │ │ │ "407930": 2207, │ │ │ │ │ - "408": [1397, 2186, 2199, 2210], │ │ │ │ │ + "408": [1397, 2186, 2199, 2205, 2210], │ │ │ │ │ "4080": 2218, │ │ │ │ │ "40809": 2283, │ │ │ │ │ "40810": 2294, │ │ │ │ │ "40817": 2289, │ │ │ │ │ "408204": [2185, 2197], │ │ │ │ │ "40821": 2283, │ │ │ │ │ "40830": 2289, │ │ │ │ │ @@ -30461,15 +30460,15 @@ │ │ │ │ │ "42465": 2289, │ │ │ │ │ "42476": 2289, │ │ │ │ │ "424779": 2207, │ │ │ │ │ "42482": 2298, │ │ │ │ │ "424844": 2207, │ │ │ │ │ "424860e": 2195, │ │ │ │ │ "424972": [2184, 2185, 2186, 2191, 2197, 2199, 2202, 2210, 2214, 2215, 2216, 2218, 2225, 2226, 2231, 2241], │ │ │ │ │ - "425": [2184, 2186, 2191, 2193, 2199, 2210, 2256], │ │ │ │ │ + "425": [2184, 2186, 2191, 2199, 2210, 2256], │ │ │ │ │ "42501": 2285, │ │ │ │ │ "42505": 2288, │ │ │ │ │ "42511": 2289, │ │ │ │ │ "42530": [2285, 2289], │ │ │ │ │ "42537": [2284, 2285], │ │ │ │ │ "42540766452641154071740215577757643572": 2241, │ │ │ │ │ "425439": 2222, │ │ │ │ │ @@ -31270,15 +31269,15 @@ │ │ │ │ │ "457835": 2207, │ │ │ │ │ "457863": 1259, │ │ │ │ │ "45791": 2294, │ │ │ │ │ "45793": 2294, │ │ │ │ │ "45795": 2298, │ │ │ │ │ "45796": 2294, │ │ │ │ │ "45798": 2294, │ │ │ │ │ - "458": [2199, 2210], │ │ │ │ │ + "458": [2193, 2199, 2210], │ │ │ │ │ "4580": 2218, │ │ │ │ │ "45804": 2290, │ │ │ │ │ "45806": 2294, │ │ │ │ │ "45809": 2294, │ │ │ │ │ "4581": 2232, │ │ │ │ │ "45810": 2298, │ │ │ │ │ "4582": 2227, │ │ │ │ │ @@ -31426,15 +31425,15 @@ │ │ │ │ │ "46471": 2298, │ │ │ │ │ "46476": [2294, 2298], │ │ │ │ │ "464776": 2210, │ │ │ │ │ "46479": 2294, │ │ │ │ │ "4648": [2199, 2218], │ │ │ │ │ "464804": 2207, │ │ │ │ │ "46485": 2294, │ │ │ │ │ - "465": [2199, 2210], │ │ │ │ │ + "465": [2199, 2210, 2218], │ │ │ │ │ "4651": 2218, │ │ │ │ │ "46518": [2294, 2298], │ │ │ │ │ "46519": 2294, │ │ │ │ │ "465222": 2199, │ │ │ │ │ "46527": 2294, │ │ │ │ │ "46551": 2294, │ │ │ │ │ "465520": 2207, │ │ │ │ │ @@ -31652,15 +31651,15 @@ │ │ │ │ │ "47753": 2294, │ │ │ │ │ "47761": 2298, │ │ │ │ │ "47762": 2293, │ │ │ │ │ "47772": 2307, │ │ │ │ │ "477769": 2197, │ │ │ │ │ "47787": 2294, │ │ │ │ │ "477996": 2207, │ │ │ │ │ - "478": [2184, 2193, 2199, 2205, 2210], │ │ │ │ │ + "478": [2184, 2199, 2205, 2210], │ │ │ │ │ "47809": 2294, │ │ │ │ │ "47812": 2294, │ │ │ │ │ "478155": 2207, │ │ │ │ │ "47819": 2298, │ │ │ │ │ "478240": 2207, │ │ │ │ │ "47834": 2298, │ │ │ │ │ "47836": 2294, │ │ │ │ │ @@ -31786,15 +31785,15 @@ │ │ │ │ │ "485506": 2207, │ │ │ │ │ "48567": 2298, │ │ │ │ │ "485748": 2230, │ │ │ │ │ "48577": 2302, │ │ │ │ │ "485855": 2197, │ │ │ │ │ "48595": 2298, │ │ │ │ │ "485998": 2201, │ │ │ │ │ - "486": [2199, 2210], │ │ │ │ │ + "486": [2193, 2199, 2210], │ │ │ │ │ "48604": 2298, │ │ │ │ │ "48606": 2298, │ │ │ │ │ "48607": 2298, │ │ │ │ │ "48608": 2295, │ │ │ │ │ "48609": 2298, │ │ │ │ │ "48611": 2298, │ │ │ │ │ "4862": 2225, │ │ │ │ │ @@ -32209,15 +32208,15 @@ │ │ │ │ │ "505601": 2186, │ │ │ │ │ "50563": 2298, │ │ │ │ │ "505723": 2197, │ │ │ │ │ "505754": 2195, │ │ │ │ │ "50585": 2298, │ │ │ │ │ "50587": 2298, │ │ │ │ │ "505895": 2195, │ │ │ │ │ - "506": [2184, 2192, 2199], │ │ │ │ │ + "506": [2184, 2192, 2193, 2199], │ │ │ │ │ "50601": 2298, │ │ │ │ │ "50613": 2298, │ │ │ │ │ "50616": 2298, │ │ │ │ │ "50617": 2302, │ │ │ │ │ "506193": 2207, │ │ │ │ │ "50620": 2298, │ │ │ │ │ "50623": 2298, │ │ │ │ │ @@ -33609,15 +33608,15 @@ │ │ │ │ │ "5900": 2199, │ │ │ │ │ "59000000": [176, 179, 754, 757, 1242, 1243], │ │ │ │ │ "590204": 2210, │ │ │ │ │ "5905": 2219, │ │ │ │ │ "590584": 2210, │ │ │ │ │ "590715": [1148, 1149], │ │ │ │ │ "590871": 2207, │ │ │ │ │ - "591": [2193, 2199], │ │ │ │ │ + "591": 2199, │ │ │ │ │ "591165": 2207, │ │ │ │ │ "5912": 2219, │ │ │ │ │ "591395": 2207, │ │ │ │ │ "5914": 2219, │ │ │ │ │ "591431": [2184, 2214], │ │ │ │ │ "591538": 2197, │ │ │ │ │ "5917": 2220, │ │ │ │ │ @@ -33795,15 +33794,15 @@ │ │ │ │ │ "6121": 2219, │ │ │ │ │ "612245": [2191, 2225], │ │ │ │ │ "6124": 2220, │ │ │ │ │ "612452": 2230, │ │ │ │ │ "6125": 2219, │ │ │ │ │ "6127": 2220, │ │ │ │ │ "6129": 2219, │ │ │ │ │ - "613": [2193, 2199], │ │ │ │ │ + "613": 2199, │ │ │ │ │ "613172": 2186, │ │ │ │ │ "6134": 2220, │ │ │ │ │ "6136": 2219, │ │ │ │ │ "613616": 2202, │ │ │ │ │ "613897": 2230, │ │ │ │ │ "613898": 2207, │ │ │ │ │ "614": [2199, 2232], │ │ │ │ │ @@ -33868,15 +33867,15 @@ │ │ │ │ │ "62036035": [624, 1215], │ │ │ │ │ "620399": 2199, │ │ │ │ │ "620498": 2207, │ │ │ │ │ "6205": 2220, │ │ │ │ │ "620544": 2191, │ │ │ │ │ "620765": 2207, │ │ │ │ │ "6209": 2219, │ │ │ │ │ - "621": [2185, 2199], │ │ │ │ │ + "621": 2199, │ │ │ │ │ "621034": 2186, │ │ │ │ │ "6212": 2219, │ │ │ │ │ "6214": 2218, │ │ │ │ │ "621452": 2207, │ │ │ │ │ "621592": 2207, │ │ │ │ │ "622": [16, 17, 18, 19, 2197, 2199, 2202, 2203, 2231, 2235, 2298], │ │ │ │ │ "622109": 2230, │ │ │ │ │ @@ -33940,21 +33939,19 @@ │ │ │ │ │ "6289": 2220, │ │ │ │ │ "628992": 2257, │ │ │ │ │ "629": 2199, │ │ │ │ │ "6290": 2220, │ │ │ │ │ "629003": 2207, │ │ │ │ │ "629165": 2230, │ │ │ │ │ "6292": [2220, 2230], │ │ │ │ │ - "6295": 2203, │ │ │ │ │ "629546": 2219, │ │ │ │ │ - "6296": [2203, 2220], │ │ │ │ │ + "6296": 2220, │ │ │ │ │ "629675": 2185, │ │ │ │ │ - "6297": [2203, 2220], │ │ │ │ │ - "6298": 2203, │ │ │ │ │ - "6299": [2203, 2220], │ │ │ │ │ + "6297": 2220, │ │ │ │ │ + "6299": 2220, │ │ │ │ │ "63": [15, 17, 19, 213, 788, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2227, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ "630": 2199, │ │ │ │ │ "630110": 15, │ │ │ │ │ "630256": 2207, │ │ │ │ │ "630482": 2207, │ │ │ │ │ "631": 2199, │ │ │ │ │ "631095": 2195, │ │ │ │ │ @@ -34104,15 +34101,14 @@ │ │ │ │ │ "6496": [2221, 2222], │ │ │ │ │ "649646": 2207, │ │ │ │ │ "649682": 28, │ │ │ │ │ "649711": 2212, │ │ │ │ │ "649727": 2191, │ │ │ │ │ "649748": 2186, │ │ │ │ │ "64bit": 2298, │ │ │ │ │ - "64ec62289cb4": 2203, │ │ │ │ │ "65": [17, 19, 259, 890, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2255, 2271], │ │ │ │ │ "650": [2199, 2298], │ │ │ │ │ "65000000": [176, 179, 754, 757, 1242, 1243], │ │ │ │ │ "6504": 2220, │ │ │ │ │ "650762": 2199, │ │ │ │ │ "650776": 2202, │ │ │ │ │ "650794": [121, 696], │ │ │ │ │ @@ -34375,15 +34371,15 @@ │ │ │ │ │ "679430": 2207, │ │ │ │ │ "6796": [2185, 2197], │ │ │ │ │ "6797": [2185, 2197], │ │ │ │ │ "6798": 2185, │ │ │ │ │ "679894": 2207, │ │ │ │ │ "6799": 2185, │ │ │ │ │ "68": [17, 19, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2227, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ - "680": [2185, 2197, 2205], │ │ │ │ │ + "680": [2185, 2197], │ │ │ │ │ "6800": 2185, │ │ │ │ │ "6801": 2185, │ │ │ │ │ "680188": 2207, │ │ │ │ │ "6802": [2185, 2220], │ │ │ │ │ "6803": 2185, │ │ │ │ │ "6804": 2185, │ │ │ │ │ "680539": 2207, │ │ │ │ │ @@ -34415,15 +34411,15 @@ │ │ │ │ │ "683333": 2222, │ │ │ │ │ "6834": 2220, │ │ │ │ │ "683463": 2230, │ │ │ │ │ "683536": 2197, │ │ │ │ │ "683763": 2186, │ │ │ │ │ "683774": 2207, │ │ │ │ │ "683847": 2195, │ │ │ │ │ - "684": [2197, 2205], │ │ │ │ │ + "684": 2197, │ │ │ │ │ "684267": 2207, │ │ │ │ │ "684360": 2195, │ │ │ │ │ "684640": 2186, │ │ │ │ │ "6847": 2220, │ │ │ │ │ "684718": 2197, │ │ │ │ │ "685": [2186, 2197, 2227], │ │ │ │ │ "685094": 2207, │ │ │ │ │ @@ -34967,15 +34963,14 @@ │ │ │ │ │ "752239": 2207, │ │ │ │ │ "7523": 2221, │ │ │ │ │ "752332": 2186, │ │ │ │ │ "752441": 2207, │ │ │ │ │ "7528": 2222, │ │ │ │ │ "752861": 2195, │ │ │ │ │ "7529": 2221, │ │ │ │ │ - "753": 2193, │ │ │ │ │ "7534": 2221, │ │ │ │ │ "753444": 2207, │ │ │ │ │ "753606": 2199, │ │ │ │ │ "753611": 2207, │ │ │ │ │ "753623": 2191, │ │ │ │ │ "753747": 2207, │ │ │ │ │ "7539": 2221, │ │ │ │ │ @@ -35032,23 +35027,22 @@ │ │ │ │ │ "7611": 2221, │ │ │ │ │ "761130": 2214, │ │ │ │ │ "7612": 2249, │ │ │ │ │ "7615": 2229, │ │ │ │ │ "761594": 2207, │ │ │ │ │ "761726": 2204, │ │ │ │ │ "7618": 2222, │ │ │ │ │ - "762": 2298, │ │ │ │ │ + "762": [2193, 2298], │ │ │ │ │ "762034": 15, │ │ │ │ │ "762052": 2207, │ │ │ │ │ "7621": 2224, │ │ │ │ │ "762533": 2207, │ │ │ │ │ "7626": 2234, │ │ │ │ │ "7627": 2221, │ │ │ │ │ "7629": 2226, │ │ │ │ │ - "763": 2218, │ │ │ │ │ "7630": 2232, │ │ │ │ │ "763006": 2191, │ │ │ │ │ "763108": 2207, │ │ │ │ │ "763605": 2191, │ │ │ │ │ "763783": 2207, │ │ │ │ │ "764": 2207, │ │ │ │ │ "7640": 2235, │ │ │ │ │ @@ -35062,25 +35056,24 @@ │ │ │ │ │ "766822": 2207, │ │ │ │ │ "767": [268, 2265], │ │ │ │ │ "767101": 2185, │ │ │ │ │ "767252": 2184, │ │ │ │ │ "767440": 2186, │ │ │ │ │ "767769": 2204, │ │ │ │ │ "7678": 2221, │ │ │ │ │ - "768": 2193, │ │ │ │ │ "768061": 2207, │ │ │ │ │ "7683": 2222, │ │ │ │ │ "768681": 2207, │ │ │ │ │ "7687": [2246, 2271], │ │ │ │ │ "7692": 2228, │ │ │ │ │ "769691": 2207, │ │ │ │ │ "7697": 2222, │ │ │ │ │ "769804": [2185, 2191, 2197, 2199, 2202, 2204], │ │ │ │ │ "77": [15, 81, 1447, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ - "770": [2193, 2207], │ │ │ │ │ + "770": [2193, 2205, 2207], │ │ │ │ │ "7701": 2221, │ │ │ │ │ "770309": 2207, │ │ │ │ │ "7704": 2222, │ │ │ │ │ "770555": 2204, │ │ │ │ │ "770743": 2207, │ │ │ │ │ "7708": 2222, │ │ │ │ │ "770933": 2207, │ │ │ │ │ @@ -35388,15 +35381,15 @@ │ │ │ │ │ "807291": 2195, │ │ │ │ │ "8073": 2222, │ │ │ │ │ "8074": 2241, │ │ │ │ │ "8075": 2222, │ │ │ │ │ "807545": 2207, │ │ │ │ │ "8076": 2222, │ │ │ │ │ "8079": 2222, │ │ │ │ │ - "808": [2193, 2298], │ │ │ │ │ + "808": 2298, │ │ │ │ │ "8080": [13, 2222], │ │ │ │ │ "8081": 2222, │ │ │ │ │ "808277e": 2191, │ │ │ │ │ "808286": 2185, │ │ │ │ │ "808798": 2207, │ │ │ │ │ "808838": 2197, │ │ │ │ │ "808927": 2207, │ │ │ │ │ @@ -35474,15 +35467,15 @@ │ │ │ │ │ "819": [2186, 2227], │ │ │ │ │ "8190": 2222, │ │ │ │ │ "819059": 2207, │ │ │ │ │ "8193": 2271, │ │ │ │ │ "819476": 2207, │ │ │ │ │ "819492": 2207, │ │ │ │ │ "8199": 2222, │ │ │ │ │ - "82": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ + "82": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271], │ │ │ │ │ "820": 2199, │ │ │ │ │ "820223": 2191, │ │ │ │ │ "820408": 2215, │ │ │ │ │ "820750": 2199, │ │ │ │ │ "8208": 2222, │ │ │ │ │ "820801": 2230, │ │ │ │ │ "8209": 2222, │ │ │ │ │ @@ -35559,15 +35552,14 @@ │ │ │ │ │ "832585": 2204, │ │ │ │ │ "8327": 2226, │ │ │ │ │ "832706": 2207, │ │ │ │ │ "833069": 2207, │ │ │ │ │ "833175": 2207, │ │ │ │ │ "833468": 2207, │ │ │ │ │ "833491": 2207, │ │ │ │ │ - "834": 2193, │ │ │ │ │ "8341": 2230, │ │ │ │ │ "8345": 2222, │ │ │ │ │ "834518": 2199, │ │ │ │ │ "834659": 2207, │ │ │ │ │ "8349": 2222, │ │ │ │ │ "834997": 2207, │ │ │ │ │ "835": [2186, 2227], │ │ │ │ │ @@ -35593,15 +35585,15 @@ │ │ │ │ │ "838": 2199, │ │ │ │ │ "838161": 2207, │ │ │ │ │ "838166": 2207, │ │ │ │ │ "838258": 2207, │ │ │ │ │ "838665": 2207, │ │ │ │ │ "8387": 2222, │ │ │ │ │ "839002": 2207, │ │ │ │ │ - "84": [31, 228, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246], │ │ │ │ │ + "84": [31, 228, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246], │ │ │ │ │ "8400": 2222, │ │ │ │ │ "840123": 2215, │ │ │ │ │ "840255": 2228, │ │ │ │ │ "840449": 15, │ │ │ │ │ "840607": 2186, │ │ │ │ │ "840870": 2197, │ │ │ │ │ "840938": 2207, │ │ │ │ │ @@ -36110,15 +36102,15 @@ │ │ │ │ │ "9093": 2271, │ │ │ │ │ "909316": 2230, │ │ │ │ │ "9094": 2225, │ │ │ │ │ "909500": 2195, │ │ │ │ │ "9096": 2225, │ │ │ │ │ "909872": 2185, │ │ │ │ │ "9099": 2225, │ │ │ │ │ - "91": [15, 182, 760, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2294, 2298], │ │ │ │ │ + "91": [15, 182, 760, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2294, 2298], │ │ │ │ │ "9100": 2225, │ │ │ │ │ "910199": 2199, │ │ │ │ │ "910400": 28, │ │ │ │ │ "911055": 2195, │ │ │ │ │ "911128": 2207, │ │ │ │ │ "911385": 2207, │ │ │ │ │ "9114": 2232, │ │ │ │ │ @@ -36806,15 +36798,15 @@ │ │ │ │ │ "__eq__": [1031, 1068, 2186, 2246, 2289, 2307], │ │ │ │ │ "__finalize__": [2192, 2194, 2197, 2199, 2218, 2220, 2298], │ │ │ │ │ "__floordiv__": [2241, 2307], │ │ │ │ │ "__from_arrow__": [10, 1068, 2299, 2302], │ │ │ │ │ "__fspath__": 2238, │ │ │ │ │ "__func__": 2202, │ │ │ │ │ "__getattr__": [2199, 2218], │ │ │ │ │ - "__getattribute__": [10, 2203, 2294], │ │ │ │ │ + "__getattribute__": [10, 2294], │ │ │ │ │ "__getitem__": [2, 203, 1031, 1064, 1387, 2185, 2191, 2193, 2194, 2197, 2217, 2225, 2226, 2246, 2249, 2254, 2257, 2265, 2271, 2274, 2277, 2283, 2286, 2289, 2294, 2295, 2297, 2298, 2300, 2301, 2302, 2306, 2307, 2308], │ │ │ │ │ "__getstate__": 2218, │ │ │ │ │ "__git_version__": 2246, │ │ │ │ │ "__globally__": 2190, │ │ │ │ │ "__gt__": 2188, │ │ │ │ │ "__hash__": [1068, 2246, 2302], │ │ │ │ │ "__index_level_": 9, │ │ │ │ │ @@ -36848,15 +36840,14 @@ │ │ │ │ │ "__str__": 2217, │ │ │ │ │ "__sub__": 2241, │ │ │ │ │ "__subclasses__": 2186, │ │ │ │ │ "__truediv__": 2307, │ │ │ │ │ "__unicode__": [2217, 2220, 2249], │ │ │ │ │ "__version__": [5, 2199], │ │ │ │ │ "__xor__": 2298, │ │ │ │ │ - "_accessor": 2203, │ │ │ │ │ "_accumul": [1031, 2298], │ │ │ │ │ "_add_arithmetic_op": 10, │ │ │ │ │ "_add_comparison_op": 10, │ │ │ │ │ "_add_offset": 2210, │ │ │ │ │ "_add_timedeltalike_scalar": 2210, │ │ │ │ │ "_allows_duplicate_label": 2192, │ │ │ │ │ "_array_strptime_with_fallback": 2210, │ │ │ │ │ @@ -36870,15 +36861,14 @@ │ │ │ │ │ "_bootstrap": [2199, 2203, 2212, 2298], │ │ │ │ │ "_buffer": [16, 17, 18, 19, 2199, 2235], │ │ │ │ │ "_built_with_meson": 5, │ │ │ │ │ "_cacheabl": 2246, │ │ │ │ │ "_call_chain": [16, 17, 18, 19, 2199, 2235], │ │ │ │ │ "_call_with_frames_remov": 2199, │ │ │ │ │ "_caller": 153, │ │ │ │ │ - "_can_hold_identifiers_and_holds_nam": 2203, │ │ │ │ │ "_check_deprecated_callable_usag": [2185, 2197], │ │ │ │ │ "_check_for_loc": 2193, │ │ │ │ │ "_check_indexing_error": [2185, 2191, 2194], │ │ │ │ │ "_check_is_chained_assignment_poss": 2197, │ │ │ │ │ "_check_setitem_copi": 2197, │ │ │ │ │ "_check_tokenize_statu": 2199, │ │ │ │ │ "_cmp_method": 2186, │ │ │ │ │ @@ -36963,15 +36953,14 @@ │ │ │ │ │ "_hash": 2235, │ │ │ │ │ "_hash_pandas_object": 1043, │ │ │ │ │ "_ilocindex": 2197, │ │ │ │ │ "_import_class": 2199, │ │ │ │ │ "_indexed_sam": [2186, 2218], │ │ │ │ │ "_indexslic": 440, │ │ │ │ │ "_inferred_dtyp": [2208, 2249], │ │ │ │ │ - "_info_axi": 2203, │ │ │ │ │ "_internal_nam": 10, │ │ │ │ │ "_internal_names_set": 10, │ │ │ │ │ "_is_boolean": [1056, 1068, 1081], │ │ │ │ │ "_is_copi": 2197, │ │ │ │ │ "_is_mixed_typ": 2197, │ │ │ │ │ "_is_numer": [1068, 2246, 2298], │ │ │ │ │ "_is_scalar_access": [2185, 2197], │ │ │ │ │ @@ -37612,15 +37601,15 @@ │ │ │ │ │ "attende": 0, │ │ │ │ │ "attent": [3, 10, 2197, 2205, 2207, 2214, 2216], │ │ │ │ │ "attr": [227, 705, 802, 1394, 1423, 1475, 1487, 2169, 2180, 2192, 2199, 2203, 2241, 2265, 2277, 2289, 2298, 2302, 2307], │ │ │ │ │ "attr_col": [272, 2199], │ │ │ │ │ "attribut": [4, 9, 10, 15, 24, 25, 31, 37, 38, 39, 46, 49, 63, 85, 107, 142, 153, 203, 210, 230, 249, 257, 266, 267, 272, 280, 286, 334, 337, 341, 342, 343, 344, 354, 386, 423, 441, 442, 443, 444, 445, 457, 459, 478, 487, 494, 509, 510, 514, 516, 532, 538, 540, 568, 573, 596, 629, 783, 784, 804, 882, 896, 914, 915, 916, 927, 930, 938, 953, 1027, 1028, 1029, 1030, 1031, 1068, 1069, 1071, 1072, 1078, 1081, 1090, 1091, 1117, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1140, 1141, 1142, 1143, 1144, 1164, 1168, 1202, 1203, 1221, 1263, 1264, 1342, 1345, 1347, 1374, 1387, 1391, 1394, 1395, 1396, 1402, 1403, 1404, 1405, 1413, 1414, 1420, 1421, 1422, 1424, 1432, 1433, 1435, 1436, 1475, 1487, 1488, 1490, 1494, 1495, 1496, 1506, 1524, 1542, 1560, 1578, 1598, 1620, 1637, 1657, 1677, 1699, 1720, 1741, 1758, 1776, 1793, 1815, 1839, 1857, 1876, 1894, 1912, 1930, 1947, 1964, 1982, 2000, 2018, 2036, 2054, 2072, 2090, 2108, 2127, 2145, 2167, 2172, 2184, 2185, 2192, 2193, 2196, 2199, 2202, 2203, 2204, 2206, 2208, 2210, 2211, 2214, 2216, 2217, 2218, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2239, 2241, 2242, 2246, 2249, 2251, 2253, 2254, 2257, 2259, 2263, 2265, 2271, 2273, 2277, 2278, 2280, 2283, 2289, 2292, 2293, 2295, 2297, 2298, 2302, 2307], │ │ │ │ │ "attribute2": [1395, 1396, 1413, 1414], │ │ │ │ │ "attributeconflictwarn": [2217, 2294], │ │ │ │ │ - "attributeerror": [10, 845, 1069, 1071, 1072, 2203, 2220, 2221, 2222, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2239, 2241, 2246, 2247, 2249, 2250, 2265, 2266, 2269, 2271, 2274, 2275, 2276, 2278, 2279, 2281, 2283, 2286, 2289, 2290, 2294, 2295, 2298, 2301, 2302, 2307, 2308], │ │ │ │ │ + "attributeerror": [10, 845, 1069, 1071, 1072, 2220, 2221, 2222, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2235, 2238, 2239, 2241, 2246, 2247, 2249, 2250, 2265, 2266, 2269, 2271, 2274, 2275, 2276, 2278, 2279, 2281, 2283, 2286, 2289, 2290, 2294, 2295, 2298, 2301, 2302, 2307, 2308], │ │ │ │ │ "attrs_onli": [1487, 2199], │ │ │ │ │ "audienc": 2207, │ │ │ │ │ "audit": [16, 17, 18, 19, 2199, 2222, 2235], │ │ │ │ │ "aug": [1699, 1720, 2210, 2213], │ │ │ │ │ "augment": [2225, 2231, 2277], │ │ │ │ │ "augspurg": [35, 2247, 2248], │ │ │ │ │ "august": [586, 2210, 2213], │ │ │ │ │ @@ -37741,15 +37730,15 @@ │ │ │ │ │ "barboursvil": 2199, │ │ │ │ │ "bare": [2, 2199, 2222, 2241, 2277], │ │ │ │ │ "barf": 2217, │ │ │ │ │ "barh": [26, 186, 188, 762, 764, 1188, 1249, 2211, 2220, 2221, 2228, 2260, 2294], │ │ │ │ │ "bark": 1365, │ │ │ │ │ "barplot": 2222, │ │ │ │ │ "barycentr": [146, 720, 1280, 2201, 2218], │ │ │ │ │ - "base": [1, 3, 4, 5, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 32, 34, 49, 65, 83, 84, 88, 107, 111, 112, 121, 127, 136, 137, 138, 141, 142, 144, 147, 157, 160, 184, 187, 212, 213, 218, 224, 240, 248, 253, 276, 278, 279, 285, 286, 288, 296, 318, 328, 331, 345, 352, 415, 433, 445, 459, 478, 540, 568, 573, 594, 595, 600, 629, 633, 639, 652, 673, 686, 696, 703, 712, 714, 717, 718, 732, 738, 754, 757, 763, 787, 788, 793, 816, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 881, 886, 902, 904, 905, 913, 938, 940, 943, 948, 952, 1031, 1040, 1052, 1068, 1073, 1075, 1119, 1125, 1141, 1148, 1149, 1164, 1173, 1193, 1207, 1208, 1221, 1242, 1243, 1254, 1265, 1269, 1270, 1286, 1342, 1343, 1398, 1423, 1431, 1444, 1453, 1467, 1470, 1474, 1475, 1498, 1519, 1537, 1556, 1574, 1593, 1614, 1633, 1650, 1672, 1693, 1715, 1736, 1754, 1772, 1789, 1808, 1830, 1853, 1870, 1890, 1908, 1926, 1943, 1960, 1978, 1995, 2013, 2032, 2050, 2068, 2086, 2103, 2121, 2141, 2159, 2163, 2166, 2183, 2184, 2185, 2187, 2188, 2191, 2192, 2194, 2195, 2196, 2199, 2200, 2201, 2203, 2207, 2208, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2240, 2241, 2246, 2249, 2253, 2255, 2261, 2264, 2265, 2274, 2277, 2283, 2291, 2298, 2302], │ │ │ │ │ + "base": [1, 3, 4, 5, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 32, 34, 49, 65, 83, 84, 88, 107, 111, 112, 121, 127, 136, 137, 138, 141, 142, 144, 147, 157, 160, 184, 187, 212, 213, 218, 224, 240, 248, 253, 276, 278, 279, 285, 286, 288, 296, 318, 328, 331, 345, 352, 415, 433, 445, 459, 478, 540, 568, 573, 594, 595, 600, 629, 633, 639, 652, 673, 686, 696, 703, 712, 714, 717, 718, 732, 738, 754, 757, 763, 787, 788, 793, 816, 823, 836, 837, 838, 839, 840, 841, 842, 843, 844, 881, 886, 902, 904, 905, 913, 938, 940, 943, 948, 952, 1031, 1040, 1052, 1068, 1073, 1075, 1119, 1125, 1141, 1148, 1149, 1164, 1173, 1193, 1207, 1208, 1221, 1242, 1243, 1254, 1265, 1269, 1270, 1286, 1342, 1343, 1398, 1423, 1431, 1444, 1453, 1467, 1470, 1474, 1475, 1498, 1519, 1537, 1556, 1574, 1593, 1614, 1633, 1650, 1672, 1693, 1715, 1736, 1754, 1772, 1789, 1808, 1830, 1853, 1870, 1890, 1908, 1926, 1943, 1960, 1978, 1995, 2013, 2032, 2050, 2068, 2086, 2103, 2121, 2141, 2159, 2163, 2166, 2183, 2184, 2185, 2187, 2188, 2191, 2192, 2193, 2194, 2195, 2196, 2199, 2200, 2201, 2203, 2207, 2208, 2210, 2211, 2212, 2213, 2214, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2236, 2238, 2240, 2241, 2246, 2249, 2253, 2255, 2261, 2264, 2265, 2274, 2277, 2283, 2291, 2298, 2302], │ │ │ │ │ "base_dtyp": 2199, │ │ │ │ │ "base_pars": 2199, │ │ │ │ │ "base_typ": [2194, 2201, 2203, 2294, 2302, 2307], │ │ │ │ │ "basebal": [15, 2186, 2191, 2197, 2227, 2231], │ │ │ │ │ "baseblockmanag": [2197, 2199, 2298], │ │ │ │ │ "basebooleanreducetest": 2307, │ │ │ │ │ "basebuff": [16, 17, 18, 19, 2199, 2235], │ │ │ │ │ @@ -38277,15 +38266,15 @@ │ │ │ │ │ "cheat": [21, 2234], │ │ │ │ │ "check": [1, 2, 4, 5, 6, 8, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 30, 32, 36, 62, 75, 80, 81, 147, 153, 163, 169, 228, 256, 284, 346, 384, 386, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 420, 445, 447, 448, 453, 454, 455, 461, 469, 473, 478, 500, 501, 584, 592, 603, 615, 741, 799, 836, 837, 838, 839, 840, 841, 842, 843, 844, 888, 912, 976, 977, 978, 979, 1076, 1079, 1081, 1082, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1093, 1095, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1110, 1111, 1112, 1113, 1114, 1115, 1127, 1136, 1141, 1146, 1184, 1345, 1354, 1370, 1391, 1441, 1442, 1446, 1449, 1450, 1475, 1482, 1483, 1488, 1490, 1493, 1494, 1495, 1496, 1499, 1512, 1530, 1548, 1566, 1586, 1607, 1626, 1643, 1665, 1686, 1707, 1728, 1747, 1765, 1782, 1801, 1823, 1846, 1863, 1883, 1901, 1919, 1936, 1953, 1971, 1988, 2006, 2025, 2043, 2061, 2079, 2096, 2114, 2133, 2151, 2168, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2211, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2253, 2255, 2261, 2265, 2271, 2277, 2279, 2283, 2289, 2294, 2298, 2302, 2307, 2308], │ │ │ │ │ "check_array_index": 2172, │ │ │ │ │ "check_categor": [1494, 1495, 1496, 2242], │ │ │ │ │ "check_category_ord": 1496, │ │ │ │ │ "check_column_typ": 1494, │ │ │ │ │ "check_datetimelike_compat": [1494, 1496], │ │ │ │ │ - "check_dict_or_set_index": [2193, 2197], │ │ │ │ │ + "check_dict_or_set_index": 2197, │ │ │ │ │ "check_dtyp": [1493, 1494, 1496, 2271, 2272, 2299], │ │ │ │ │ "check_dtype_backend": 2199, │ │ │ │ │ "check_exact": [1493, 1494, 1495, 1496, 2272, 2277, 2307, 2308], │ │ │ │ │ "check_extens": 2294, │ │ │ │ │ "check_flag": [1494, 1496, 2290], │ │ │ │ │ "check_frame_typ": 1494, │ │ │ │ │ "check_freq": [1494, 1496, 2278], │ │ │ │ │ @@ -40274,15 +40263,15 @@ │ │ │ │ │ "get_indexer_non_uniqu": [379, 2192, 2197, 2238, 2243, 2246, 2249, 2265, 2277, 2289], │ │ │ │ │ "get_indexer_nonuniqu": 2302, │ │ │ │ │ "get_ipython": 2193, │ │ │ │ │ "get_item": [2191, 2194], │ │ │ │ │ "get_jit_argu": 2212, │ │ │ │ │ "get_letter_typ": 2195, │ │ │ │ │ "get_level_valu": [1416, 2185, 2218, 2220, 2228, 2232, 2241, 2246, 2253, 2256], │ │ │ │ │ - "get_loc": [2, 362, 383, 426, 492, 2185, 2191, 2194, 2197, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2273, 2277, 2283, 2289, 2298, 2299], │ │ │ │ │ + "get_loc": [2, 362, 383, 426, 492, 2185, 2191, 2193, 2194, 2197, 2225, 2228, 2231, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2273, 2277, 2283, 2289, 2298, 2299], │ │ │ │ │ "get_loc_level": 2246, │ │ │ │ │ "get_local": 2265, │ │ │ │ │ "get_local_scop": 2193, │ │ │ │ │ "get_method": [16, 17, 18, 19, 2199, 2235], │ │ │ │ │ "get_near_stock_pric": [2216, 2223], │ │ │ │ │ "get_offset": [2265, 2298], │ │ │ │ │ "get_offset_nam": [2230, 2238], │ │ │ │ │ @@ -40841,15 +40830,15 @@ │ │ │ │ │ "inject": [120, 1387], │ │ │ │ │ "inkwarg": 2199, │ │ │ │ │ "inlin": [3, 2196, 2199, 2207, 2218, 2229, 2246], │ │ │ │ │ "inner": [16, 17, 19, 25, 30, 74, 96, 110, 153, 169, 241, 279, 404, 583, 619, 821, 1146, 1446, 1448, 2186, 2193, 2200, 2204, 2208, 2220, 2246, 2254, 2283, 2289, 2307], │ │ │ │ │ "inner_join": [16, 17, 19], │ │ │ │ │ "innermost": [247, 880, 1478, 2231], │ │ │ │ │ "inplac": [16, 17, 18, 19, 87, 89, 92, 111, 112, 114, 120, 124, 125, 146, 163, 181, 203, 209, 210, 212, 214, 228, 233, 234, 284, 370, 418, 421, 483, 500, 598, 601, 616, 633, 634, 636, 700, 701, 720, 741, 759, 783, 784, 787, 789, 807, 808, 912, 1166, 1167, 1223, 1224, 1280, 1387, 2190, 2192, 2214, 2215, 2218, 2220, 2221, 2222, 2228, 2229, 2230, 2231, 2235, 2238, 2241, 2246, 2265, 2271, 2273, 2275, 2276, 2277, 2278, 2289, 2290, 2291, 2292, 2293, 2295, 2297, 2298, 2302, 2307], │ │ │ │ │ - "input": [2, 3, 10, 13, 20, 24, 30, 31, 34, 49, 56, 63, 68, 69, 76, 78, 81, 85, 91, 92, 94, 97, 99, 100, 107, 108, 109, 120, 126, 129, 131, 134, 141, 143, 160, 162, 163, 171, 173, 183, 197, 199, 204, 206, 211, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 227, 230, 233, 234, 244, 246, 256, 259, 264, 270, 273, 275, 278, 281, 284, 286, 346, 351, 354, 378, 380, 405, 415, 425, 426, 459, 465, 489, 499, 540, 573, 577, 578, 585, 596, 603, 616, 617, 620, 622, 629, 630, 631, 694, 702, 706, 707, 709, 710, 713, 717, 719, 734, 738, 739, 740, 741, 747, 749, 750, 753, 761, 773, 777, 780, 785, 787, 788, 790, 791, 792, 793, 795, 796, 797, 802, 804, 856, 877, 878, 888, 890, 893, 900, 901, 904, 912, 916, 927, 930, 938, 953, 1031, 1076, 1078, 1090, 1116, 1117, 1118, 1121, 1123, 1124, 1125, 1152, 1154, 1155, 1156, 1164, 1202, 1203, 1204, 1211, 1213, 1221, 1230, 1264, 1298, 1299, 1305, 1306, 1308, 1322, 1323, 1325, 1342, 1343, 1354, 1389, 1390, 1392, 1393, 1395, 1396, 1397, 1398, 1403, 1404, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1417, 1418, 1430, 1433, 1441, 1442, 1449, 1450, 1458, 1467, 1469, 1470, 1475, 1482, 1486, 1487, 1498, 1499, 1500, 2163, 2172, 2184, 2185, 2186, 2187, 2188, 2191, 2193, 2194, 2195, 2196, 2197, 2199, 2200, 2201, 2203, 2204, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2234, 2235, 2236, 2238, 2241, 2242, 2246, 2249, 2250, 2257, 2263, 2264, 2265, 2267, 2269, 2271, 2272, 2273, 2274, 2275, 2277, 2278, 2283, 2284, 2287, 2289, 2291, 2292, 2293, 2294, 2298, 2299, 2302, 2306, 2307, 2308, 2309], │ │ │ │ │ + "input": [2, 3, 10, 13, 20, 24, 30, 31, 34, 49, 56, 63, 68, 69, 76, 78, 81, 85, 91, 92, 94, 97, 99, 100, 107, 108, 109, 120, 126, 129, 131, 134, 141, 143, 160, 162, 163, 171, 173, 183, 197, 199, 204, 206, 211, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 227, 230, 233, 234, 244, 246, 256, 259, 264, 270, 273, 275, 278, 281, 284, 286, 346, 351, 354, 378, 380, 405, 415, 425, 426, 459, 465, 489, 499, 540, 573, 577, 578, 585, 596, 603, 616, 617, 620, 622, 629, 630, 631, 694, 702, 706, 707, 709, 710, 713, 717, 719, 734, 738, 739, 740, 741, 747, 749, 750, 753, 761, 773, 777, 780, 785, 787, 788, 790, 791, 792, 793, 795, 796, 797, 802, 804, 856, 877, 878, 888, 890, 893, 900, 901, 904, 912, 916, 927, 930, 938, 953, 1031, 1076, 1078, 1090, 1116, 1117, 1118, 1121, 1123, 1124, 1125, 1152, 1154, 1155, 1156, 1164, 1202, 1203, 1204, 1211, 1213, 1221, 1230, 1264, 1298, 1299, 1305, 1306, 1308, 1322, 1323, 1325, 1342, 1343, 1354, 1389, 1390, 1392, 1393, 1395, 1396, 1397, 1398, 1403, 1404, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1417, 1418, 1430, 1433, 1441, 1442, 1449, 1450, 1458, 1467, 1469, 1470, 1475, 1482, 1486, 1487, 1498, 1499, 1500, 2163, 2172, 2184, 2185, 2186, 2187, 2188, 2191, 2193, 2194, 2195, 2196, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2227, 2228, 2230, 2231, 2232, 2233, 2234, 2235, 2236, 2238, 2241, 2242, 2246, 2249, 2250, 2257, 2263, 2264, 2265, 2267, 2269, 2271, 2272, 2273, 2274, 2275, 2277, 2278, 2283, 2284, 2287, 2289, 2291, 2292, 2293, 2294, 2298, 2299, 2302, 2306, 2307, 2308, 2309], │ │ │ │ │ "input_arrai": 2199, │ │ │ │ │ "insec": 873, │ │ │ │ │ "insensit": [533, 857, 1469, 1486, 2202, 2221, 2277], │ │ │ │ │ "insert": [2, 34, 63, 214, 255, 258, 267, 420, 789, 799, 821, 889, 896, 1061, 1345, 1391, 1416, 1488, 1490, 2185, 2186, 2191, 2193, 2195, 2196, 2202, 2207, 2217, 2218, 2219, 2220, 2221, 2222, 2225, 2226, 2228, 2229, 2233, 2238, 2242, 2246, 2249, 2265, 2271, 2277, 2283, 2289, 2293, 2294, 2298, 2302, 2304, 2306, 2307], │ │ │ │ │ "insert_on_conflict_noth": [267, 896], │ │ │ │ │ "insert_on_conflict_upd": [267, 896], │ │ │ │ │ "insid": [2, 8, 13, 22, 25, 77, 89, 124, 146, 203, 251, 259, 375, 466, 601, 700, 720, 884, 890, 1031, 1054, 1118, 1280, 1469, 1486, 1498, 2186, 2193, 2194, 2196, 2197, 2199, 2201, 2227, 2241, 2246, 2249, 2261, 2263, 2264, 2265, 2271, 2307], │ │ │ │ │ @@ -40975,15 +40964,15 @@ │ │ │ │ │ "ip": [10, 2241], │ │ │ │ │ "ipaddress": 10, │ │ │ │ │ "iparrai": 2241, │ │ │ │ │ "ipc": 2199, │ │ │ │ │ "ipi": 2202, │ │ │ │ │ "ipv4address": 10, │ │ │ │ │ "ipv6": [10, 1031], │ │ │ │ │ - "ipython": [4, 26, 257, 1069, 1071, 1072, 1345, 1391, 1488, 1490, 2184, 2186, 2193, 2194, 2196, 2197, 2199, 2203, 2207, 2219, 2222, 2227, 2230, 2232, 2235, 2236, 2242, 2246, 2247, 2251, 2257, 2258, 2265], │ │ │ │ │ + "ipython": [4, 26, 257, 1069, 1071, 1072, 1345, 1391, 1488, 1490, 2184, 2186, 2193, 2194, 2196, 2197, 2199, 2207, 2219, 2222, 2227, 2230, 2232, 2235, 2236, 2242, 2246, 2247, 2251, 2257, 2258, 2265], │ │ │ │ │ "ipythondir": 2202, │ │ │ │ │ "ipywidget": 2207, │ │ │ │ │ "iqr": [91, 190, 766, 1458], │ │ │ │ │ "iri": [1455, 1461, 2191, 2211, 2225], │ │ │ │ │ "irow": [2216, 2228, 2235, 2257], │ │ │ │ │ "irregular": [15, 2210, 2234, 2235, 2261, 2275, 2277], │ │ │ │ │ "irrelev": [0, 2298], │ │ │ │ │ @@ -41591,15 +41580,15 @@ │ │ │ │ │ "ly": 2210, │ │ │ │ │ "lz4": [256, 263, 888, 2199, 2236], │ │ │ │ │ "lz4hc": [256, 888, 2199, 2236], │ │ │ │ │ "lzip": 2218, │ │ │ │ │ "lzma": [251, 258, 265, 268, 272, 884, 889, 895, 1469, 1476, 1479, 1480, 1485, 1486, 1487, 2213, 2289, 2298, 2302], │ │ │ │ │ "lzmafil": [251, 258, 265, 268, 272, 884, 889, 895, 1469, 1476, 1479, 1480, 1485, 1486, 1487, 2302], │ │ │ │ │ "lzo": [256, 888, 2199], │ │ │ │ │ - "m": [1, 2, 5, 8, 13, 16, 17, 19, 22, 23, 24, 25, 27, 31, 32, 153, 163, 169, 241, 258, 264, 270, 273, 276, 284, 287, 298, 300, 301, 320, 322, 326, 423, 513, 515, 519, 522, 523, 525, 528, 532, 535, 537, 538, 541, 547, 548, 549, 551, 557, 558, 562, 563, 564, 566, 651, 677, 680, 741, 857, 889, 898, 900, 902, 912, 916, 917, 918, 923, 938, 939, 953, 954, 997, 999, 1000, 1008, 1017, 1051, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1338, 1339, 1340, 1341, 1393, 1397, 1430, 1433, 1446, 1452, 1459, 1464, 1469, 1476, 1482, 1483, 1484, 1486, 1492, 1497, 1498, 1500, 1501, 1578, 1657, 1677, 1699, 1720, 1741, 2186, 2188, 2193, 2197, 2199, 2200, 2201, 2203, 2207, 2208, 2209, 2210, 2214, 2216, 2218, 2220, 2221, 2222, 2227, 2228, 2230, 2231, 2232, 2238, 2246, 2249, 2257, 2264, 2265, 2271, 2277, 2294, 2298, 2302], │ │ │ │ │ + "m": [1, 2, 5, 8, 13, 16, 17, 19, 22, 23, 24, 25, 27, 31, 32, 153, 163, 169, 241, 258, 264, 270, 273, 276, 284, 287, 298, 300, 301, 320, 322, 326, 423, 513, 515, 519, 522, 523, 525, 528, 532, 535, 537, 538, 541, 547, 548, 549, 551, 557, 558, 562, 563, 564, 566, 651, 677, 680, 741, 857, 889, 898, 900, 902, 912, 916, 917, 918, 923, 938, 939, 953, 954, 997, 999, 1000, 1008, 1017, 1051, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1338, 1339, 1340, 1341, 1393, 1397, 1430, 1433, 1446, 1452, 1459, 1464, 1469, 1476, 1482, 1483, 1484, 1486, 1492, 1497, 1498, 1500, 1501, 1578, 1657, 1677, 1699, 1720, 1741, 2186, 2188, 2193, 2197, 2199, 2200, 2201, 2203, 2205, 2207, 2208, 2209, 2210, 2214, 2216, 2218, 2220, 2221, 2222, 2227, 2228, 2230, 2231, 2232, 2238, 2246, 2249, 2257, 2264, 2265, 2271, 2277, 2294, 2298, 2302], │ │ │ │ │ "m8": [46, 1114, 2210, 2216, 2228, 2230, 2298], │ │ │ │ │ "ma": [2211, 2283, 2298], │ │ │ │ │ "mac": [6, 22], │ │ │ │ │ "machin": [1, 2, 4, 11, 16, 19, 22, 1491, 2193, 2194, 2199, 2289], │ │ │ │ │ "maco": [5, 22, 250, 883, 2246, 2249, 2250, 2278], │ │ │ │ │ "macro": 2277, │ │ │ │ │ "mactch": 2200, │ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html │ │ │ │ @@ -1856,25 +1856,25 @@ │ │ │ │ In [141]: indexer = np.arange(10000) │ │ │ │ │ │ │ │ In [142]: random.shuffle(indexer) │ │ │ │ │ │ │ │ In [143]: %timeit arr[indexer] │ │ │ │ .....: %timeit arr.take(indexer, axis=0) │ │ │ │ .....: │ │ │ │ -621 us +- 68.9 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each) │ │ │ │ -288 us +- 26.1 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each) │ │ │ │ +308 us +- 1.63 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each) │ │ │ │ +123 us +- 88.3 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each) │ │ │ │ │ │ │ │ │ │ │ │
In [144]: ser = pd.Series(arr[:, 0])
│ │ │ │
│ │ │ │ In [145]: %timeit ser.iloc[indexer]
│ │ │ │ .....: %timeit ser.take(indexer)
│ │ │ │ .....:
│ │ │ │ -356 us +- 34.6 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ -345 us +- 77.4 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ +138 us +- 1.35 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ +147 us +- 15.1 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │
We have discussed MultiIndex
in the previous sections pretty extensively.
│ │ │ │ Documentation about DatetimeIndex
and PeriodIndex
are shown here,
│ │ │ │ ├── html2text {}
│ │ │ │ │ @@ -1241,23 +1241,23 @@
│ │ │ │ │ In [141]: indexer = np.arange(10000)
│ │ │ │ │
│ │ │ │ │ In [142]: random.shuffle(indexer)
│ │ │ │ │
│ │ │ │ │ In [143]: %timeit arr[indexer]
│ │ │ │ │ .....: %timeit arr.take(indexer, axis=0)
│ │ │ │ │ .....:
│ │ │ │ │ -621 us +- 68.9 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ -288 us +- 26.1 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +308 us +- 1.63 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +123 us +- 88.3 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ In [144]: ser = pd.Series(arr[:, 0])
│ │ │ │ │
│ │ │ │ │ In [145]: %timeit ser.iloc[indexer]
│ │ │ │ │ .....: %timeit ser.take(indexer)
│ │ │ │ │ .....:
│ │ │ │ │ -356 us +- 34.6 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ -345 us +- 77.4 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ +138 us +- 1.35 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ +147 us +- 15.1 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)
│ │ │ │ │ ********** IInnddeexx ttyyppeess_## **********
│ │ │ │ │ We have discussed MultiIndex in the previous sections pretty extensively.
│ │ │ │ │ Documentation about DatetimeIndex and PeriodIndex are shown _h_e_r_e, and
│ │ │ │ │ documentation about TimedeltaIndex is found _h_e_r_e.
│ │ │ │ │ In the following sub-sections we will highlight some other index types.
│ │ │ │ │ ******** CCaatteeggoorriiccaallIInnddeexx_## ********
│ │ │ │ │ _C_a_t_e_g_o_r_i_c_a_l_I_n_d_e_x is a type of index that is useful for supporting indexing with
│ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html
│ │ │ │ @@ -601,31 +601,31 @@
│ │ │ │ ...: s += f(a + i * dx)
│ │ │ │ ...: return s * dx
│ │ │ │ ...:
│ │ │ │
│ │ │ │
│ │ │ │
We achieve our result by using DataFrame.apply()
(row-wise):
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -210 ms +- 8.6 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ +102 ms +- 196 us per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
Let’s take a look and see where the time is spent during this operation │ │ │ │ using the prun ipython magic function:
│ │ │ │# most time consuming 4 calls
│ │ │ │ In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1) # noqa E999
│ │ │ │ - 605951 function calls (605933 primitive calls) in 1.613 seconds
│ │ │ │ + 605951 function calls (605933 primitive calls) in 0.283 seconds
│ │ │ │
│ │ │ │ Ordered by: internal time
│ │ │ │ List reduced from 159 to 4 due to restriction <4>
│ │ │ │
│ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ - 1000 0.834 0.001 1.425 0.001 <ipython-input-4-c2a74e076cf0>:1(integrate_f)
│ │ │ │ - 552423 0.591 0.000 0.591 0.000 <ipython-input-3-c138bdd570e3>:1(f)
│ │ │ │ - 3000 0.029 0.000 0.129 0.000 series.py:1095(__getitem__)
│ │ │ │ - 16098 0.023 0.000 0.030 0.000 {built-in method builtins.isinstance}
│ │ │ │ + 1000 0.165 0.000 0.245 0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)
│ │ │ │ + 552423 0.080 0.000 0.080 0.000 <ipython-input-3-c138bdd570e3>:1(f)
│ │ │ │ + 3000 0.006 0.000 0.025 0.000 series.py:1095(__getitem__)
│ │ │ │ + 3000 0.005 0.000 0.005 0.000 base.py:3777(get_loc)
│ │ │ │
By far the majority of time is spend inside either integrate_f
or f
,
│ │ │ │ hence we’ll concentrate our efforts cythonizing these two functions.
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -175 ms +- 16.2 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +84.8 ms +- 69.5 us per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
This has improved the performance compared to the pure Python approach by one-third.
│ │ │ │We can annotate the function variables and return types as well as use cdef
│ │ │ │ @@ -667,36 +667,36 @@
│ │ │ │ ....: for i in range(N):
│ │ │ │ ....: s += f_typed(a + i * dx)
│ │ │ │ ....: return s * dx
│ │ │ │ ....:
│ │ │ │
│ │ │ │
│ │ │ │
In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ -29 ms +- 478 us per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +14.3 ms +- 17.1 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
Annotating the functions with C types yields an over ten times performance improvement compared to │ │ │ │ the original Python implementation.
│ │ │ │When re-profiling, time is spent creating a Series
from each row, and calling __getitem__
from both
│ │ │ │ the index and the series (three times for each row). These Python function calls are expensive and
│ │ │ │ can be improved by passing an np.ndarray
.
In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ - 52528 function calls (52510 primitive calls) in 0.158 seconds
│ │ │ │ + 52528 function calls (52510 primitive calls) in 0.037 seconds
│ │ │ │
│ │ │ │ Ordered by: internal time
│ │ │ │ List reduced from 157 to 4 due to restriction <4>
│ │ │ │
│ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ - 3000 0.024 0.000 0.110 0.000 series.py:1095(__getitem__)
│ │ │ │ - 16098 0.020 0.000 0.025 0.000 {built-in method builtins.isinstance}
│ │ │ │ - 3000 0.017 0.000 0.045 0.000 series.py:1220(_get_value)
│ │ │ │ - 3000 0.015 0.000 0.028 0.000 indexing.py:2765(check_dict_or_set_indexers)
│ │ │ │ + 3000 0.006 0.000 0.024 0.000 series.py:1095(__getitem__)
│ │ │ │ + 3000 0.004 0.000 0.005 0.000 base.py:3777(get_loc)
│ │ │ │ + 3000 0.004 0.000 0.012 0.000 series.py:1220(_get_value)
│ │ │ │ + 16098 0.003 0.000 0.004 0.000 {built-in method builtins.isinstance}
│ │ │ │
In [13]: %%cython
│ │ │ │ ....: cimport numpy as np
│ │ │ │ ....: import numpy as np
│ │ │ │ ....: cdef double f_typed(double x) except? -2:
│ │ │ │ ....: return x * (x - 1)
│ │ │ │ @@ -731,33 +731,33 @@
│ │ │ │
This implementation creates an array of zeros and inserts the result
│ │ │ │ of integrate_f_typed
applied over each row. Looping over an ndarray
is faster
│ │ │ │ in Cython than looping over a Series
object.
Since apply_integrate_f
is typed to accept an np.ndarray
, Series.to_numpy()
│ │ │ │ calls are needed to utilize this function.
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())
│ │ │ │ -2.6 ms +- 44.3 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +1.91 ms +- 4.7 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │
Performance has improved from the prior implementation by almost ten times.
│ │ │ │ │ │ │ │The majority of the time is now spent in apply_integrate_f
. Disabling Cython’s boundscheck
│ │ │ │ and wraparound
checks can yield more performance.
In [15]: %prun -l 4 apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())
│ │ │ │ - 78 function calls in 0.003 seconds
│ │ │ │ + 78 function calls in 0.002 seconds
│ │ │ │
│ │ │ │ Ordered by: internal time
│ │ │ │ List reduced from 21 to 4 due to restriction <4>
│ │ │ │
│ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ - 1 0.003 0.003 0.003 0.003 <string>:1(<module>)
│ │ │ │ - 1 0.000 0.000 0.003 0.003 {built-in method builtins.exec}
│ │ │ │ + 1 0.002 0.002 0.002 0.002 <string>:1(<module>)
│ │ │ │ 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
│ │ │ │ + 1 0.000 0.000 0.002 0.002 {built-in method builtins.exec}
│ │ │ │ 3 0.000 0.000 0.000 0.000 frame.py:4062(__getitem__)
│ │ │ │
In [16]: %%cython
│ │ │ │ ....: cimport cython
│ │ │ │ ....: cimport numpy as np
│ │ │ │ ....: import numpy as np
│ │ │ │ @@ -1189,19 +1189,19 @@
│ │ │ │ compared to standard Python syntax for large DataFrame
. This engine requires the
│ │ │ │ optional dependency numexpr
to be installed.
│ │ │ │ The 'python'
engine is generally not useful except for testing
│ │ │ │ other evaluation engines against it. You will achieve no performance
│ │ │ │ benefits using eval()
with engine='python'
and may
│ │ │ │ incur a performance hit.
│ │ │ │ In [40]: %timeit df1 + df2 + df3 + df4
│ │ │ │ -768 ms +- 17.3 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ +458 ms +- 54.2 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │
│ │ │ │
│ │ │ │ In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")
│ │ │ │ -753 ms +- 56.8 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ +486 ms +- 82.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │
│ │ │ │
│ │ │ │
│ │ │ │
│ │ │ │ The DataFrame.eval()
method#
│ │ │ │ In addition to the top level pandas.eval()
function you can also
│ │ │ │ evaluate an expression in the “context” of a DataFrame
.
│ │ │ │ @@ -1316,39 +1316,39 @@
│ │ │ │ In [58]: nrows, ncols = 20000, 100
│ │ │ │
│ │ │ │ In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]
│ │ │ │
│ │ │ │
│ │ │ │ DataFrame
arithmetic:
│ │ │ │ In [60]: %timeit df1 + df2 + df3 + df4
│ │ │ │ -808 ms +- 61.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ +506 ms +- 135 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │
│ │ │ │
│ │ │ │ In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")
│ │ │ │ -240 ms +- 36 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ +143 ms +- 9.47 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
│ │ │ │
│ │ │ │ DataFrame
comparison:
│ │ │ │ In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
│ │ │ │ -53.6 ms +- 2.66 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ +15.8 ms +- 29.1 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
│ │ │ │
│ │ │ │ In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")
│ │ │ │ -11.3 ms +- 224 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ +5.07 ms +- 49.4 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │
│ │ │ │
│ │ │ │ DataFrame
arithmetic with unaligned axes.
│ │ │ │ In [64]: s = pd.Series(np.random.randn(50))
│ │ │ │
│ │ │ │ In [65]: %timeit df1 + df2 + df3 + df4 + s
│ │ │ │ -1.23 s +- 63.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ +762 ms +- 43.3 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │
│ │ │ │
│ │ │ │ In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")
│ │ │ │ -252 ms +- 13.4 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ +161 ms +- 4.23 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │
│ │ │ │
│ │ │ │
│ │ │ │ Note
│ │ │ │ Operations such as
│ │ │ │ 1 and 2 # would parse to 1 & 2, but should evaluate to 2
│ │ │ │ 3 or 4 # would parse to 3 | 4, but should evaluate to 3
│ │ │ │ ├── html2text {}
│ │ │ │ │ @@ -106,33 +106,32 @@
│ │ │ │ │ ...: dx = (b - a) / N
│ │ │ │ │ ...: for i in range(N):
│ │ │ │ │ ...: s += f(a + i * dx)
│ │ │ │ │ ...: return s * dx
│ │ │ │ │ ...:
│ │ │ │ │ We achieve our result by using _D_a_t_a_F_r_a_m_e_._a_p_p_l_y_(_) (row-wise):
│ │ │ │ │ In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)
│ │ │ │ │ -210 ms +- 8.6 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ +102 ms +- 196 us per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ Let’s take a look and see where the time is spent during this operation using
│ │ │ │ │ the _p_r_u_n_ _i_p_y_t_h_o_n_ _m_a_g_i_c_ _f_u_n_c_t_i_o_n:
│ │ │ │ │ # most time consuming 4 calls
│ │ │ │ │ In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]),
│ │ │ │ │ axis=1) # noqa E999
│ │ │ │ │ - 605951 function calls (605933 primitive calls) in 1.613 seconds
│ │ │ │ │ + 605951 function calls (605933 primitive calls) in 0.283 seconds
│ │ │ │ │
│ │ │ │ │ Ordered by: internal time
│ │ │ │ │ List reduced from 159 to 4 due to restriction <4>
│ │ │ │ │
│ │ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ │ - 1000 0.834 0.001 1.425 0.001 :1
│ │ │ │ │ + 1000 0.165 0.000 0.245 0.000 :1
│ │ │ │ │ (integrate_f)
│ │ │ │ │ - 552423 0.591 0.000 0.591 0.000 :1
│ │ │ │ │ + 552423 0.080 0.000 0.080 0.000 :1
│ │ │ │ │ (f)
│ │ │ │ │ - 3000 0.029 0.000 0.129 0.000 series.py:1095(__getitem__)
│ │ │ │ │ - 16098 0.023 0.000 0.030 0.000 {built-in method
│ │ │ │ │ -builtins.isinstance}
│ │ │ │ │ + 3000 0.006 0.000 0.025 0.000 series.py:1095(__getitem__)
│ │ │ │ │ + 3000 0.005 0.000 0.005 0.000 base.py:3777(get_loc)
│ │ │ │ │ By far the majority of time is spend inside either integrate_f or f, hence
│ │ │ │ │ we’ll concentrate our efforts cythonizing these two functions.
│ │ │ │ │ ******** PPllaaiinn CCyytthhoonn_## ********
│ │ │ │ │ First we’re going to need to import the Cython magic function to IPython:
│ │ │ │ │ In [7]: %load_ext Cython
│ │ │ │ │ Now, let’s simply copy our functions over to Cython:
│ │ │ │ │ In [8]: %%cython
│ │ │ │ │ @@ -143,15 +142,15 @@
│ │ │ │ │ ...: dx = (b - a) / N
│ │ │ │ │ ...: for i in range(N):
│ │ │ │ │ ...: s += f_plain(a + i * dx)
│ │ │ │ │ ...: return s * dx
│ │ │ │ │ ...:
│ │ │ │ │ In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]),
│ │ │ │ │ axis=1)
│ │ │ │ │ -175 ms +- 16.2 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +84.8 ms +- 69.5 us per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ This has improved the performance compared to the pure Python approach by one-
│ │ │ │ │ third.
│ │ │ │ │ ******** DDeeccllaarriinngg CC ttyyppeess_## ********
│ │ │ │ │ We can annotate the function variables and return types as well as use cdef and
│ │ │ │ │ cpdef to improve performance:
│ │ │ │ │ In [10]: %%cython
│ │ │ │ │ ....: cdef double f_typed(double x) except? -2:
│ │ │ │ │ @@ -163,36 +162,35 @@
│ │ │ │ │ ....: dx = (b - a) / N
│ │ │ │ │ ....: for i in range(N):
│ │ │ │ │ ....: s += f_typed(a + i * dx)
│ │ │ │ │ ....: return s * dx
│ │ │ │ │ ....:
│ │ │ │ │ In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]),
│ │ │ │ │ axis=1)
│ │ │ │ │ -29 ms +- 478 us per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +14.3 ms +- 17.1 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ Annotating the functions with C types yields an over ten times performance
│ │ │ │ │ improvement compared to the original Python implementation.
│ │ │ │ │ ******** UUssiinngg nnddaarrrraayy_## ********
│ │ │ │ │ When re-profiling, time is spent creating a _S_e_r_i_e_s from each row, and calling
│ │ │ │ │ __getitem__ from both the index and the series (three times for each row).
│ │ │ │ │ These Python function calls are expensive and can be improved by passing an
│ │ │ │ │ np.ndarray.
│ │ │ │ │ In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x
│ │ │ │ │ ["N"]), axis=1)
│ │ │ │ │ - 52528 function calls (52510 primitive calls) in 0.158 seconds
│ │ │ │ │ + 52528 function calls (52510 primitive calls) in 0.037 seconds
│ │ │ │ │
│ │ │ │ │ Ordered by: internal time
│ │ │ │ │ List reduced from 157 to 4 due to restriction <4>
│ │ │ │ │
│ │ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ │ - 3000 0.024 0.000 0.110 0.000 series.py:1095(__getitem__)
│ │ │ │ │ - 16098 0.020 0.000 0.025 0.000 {built-in method
│ │ │ │ │ + 3000 0.006 0.000 0.024 0.000 series.py:1095(__getitem__)
│ │ │ │ │ + 3000 0.004 0.000 0.005 0.000 base.py:3777(get_loc)
│ │ │ │ │ + 3000 0.004 0.000 0.012 0.000 series.py:1220(_get_value)
│ │ │ │ │ + 16098 0.003 0.000 0.004 0.000 {built-in method
│ │ │ │ │ builtins.isinstance}
│ │ │ │ │ - 3000 0.017 0.000 0.045 0.000 series.py:1220(_get_value)
│ │ │ │ │ - 3000 0.015 0.000 0.028 0.000 indexing.py:2765
│ │ │ │ │ -(check_dict_or_set_indexers)
│ │ │ │ │ In [13]: %%cython
│ │ │ │ │ ....: cimport numpy as np
│ │ │ │ │ ....: import numpy as np
│ │ │ │ │ ....: cdef double f_typed(double x) except? -2:
│ │ │ │ │ ....: return x * (x - 1)
│ │ │ │ │ ....: cpdef double integrate_f_typed(double a, double b, int N):
│ │ │ │ │ ....: cdef int i
│ │ │ │ │ @@ -233,31 +231,31 @@
│ │ │ │ │ This implementation creates an array of zeros and inserts the result of
│ │ │ │ │ integrate_f_typed applied over each row. Looping over an ndarray is faster in
│ │ │ │ │ Cython than looping over a _S_e_r_i_e_s object.
│ │ │ │ │ Since apply_integrate_f is typed to accept an np.ndarray, _S_e_r_i_e_s_._t_o___n_u_m_p_y_(_)
│ │ │ │ │ calls are needed to utilize this function.
│ │ │ │ │ In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df
│ │ │ │ │ ["N"].to_numpy())
│ │ │ │ │ -2.6 ms +- 44.3 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +1.91 ms +- 4.7 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
│ │ │ │ │ Performance has improved from the prior implementation by almost ten times.
│ │ │ │ │ ******** DDiissaabblliinngg ccoommppiilleerr ddiirreeccttiivveess_## ********
│ │ │ │ │ The majority of the time is now spent in apply_integrate_f. Disabling Cython’s
│ │ │ │ │ boundscheck and wraparound checks can yield more performance.
│ │ │ │ │ In [15]: %prun -l 4 apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(),
│ │ │ │ │ df["N"].to_numpy())
│ │ │ │ │ - 78 function calls in 0.003 seconds
│ │ │ │ │ + 78 function calls in 0.002 seconds
│ │ │ │ │
│ │ │ │ │ Ordered by: internal time
│ │ │ │ │ List reduced from 21 to 4 due to restriction <4>
│ │ │ │ │
│ │ │ │ │ ncalls tottime percall cumtime percall filename:lineno(function)
│ │ │ │ │ - 1 0.003 0.003 0.003 0.003 :1()
│ │ │ │ │ - 1 0.000 0.000 0.003 0.003 {built-in method builtins.exec}
│ │ │ │ │ + 1 0.002 0.002 0.002 0.002 :1()
│ │ │ │ │ 1 0.000 0.000 0.000 0.000 {method 'disable' of
│ │ │ │ │ '_lsprof.Profiler' objects}
│ │ │ │ │ + 1 0.000 0.000 0.002 0.002 {built-in method builtins.exec}
│ │ │ │ │ 3 0.000 0.000 0.000 0.000 frame.py:4062(__getitem__)
│ │ │ │ │ In [16]: %%cython
│ │ │ │ │ ....: cimport cython
│ │ │ │ │ ....: cimport numpy as np
│ │ │ │ │ ....: import numpy as np
│ │ │ │ │ ....: cdef np.float64_t f_typed(np.float64_t x) except? -2:
│ │ │ │ │ ....: return x * (x - 1)
│ │ │ │ │ @@ -644,17 +642,17 @@
│ │ │ │ │ The 'numexpr' engine is the more performant engine that can yield performance
│ │ │ │ │ improvements compared to standard Python syntax for large _D_a_t_a_F_r_a_m_e. This
│ │ │ │ │ engine requires the optional dependency numexpr to be installed.
│ │ │ │ │ The 'python' engine is generally nnoott useful except for testing other evaluation
│ │ │ │ │ engines against it. You will achieve nnoo performance benefits using _e_v_a_l_(_) with
│ │ │ │ │ engine='python' and may incur a performance hit.
│ │ │ │ │ In [40]: %timeit df1 + df2 + df3 + df4
│ │ │ │ │ -768 ms +- 17.3 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ +458 ms +- 54.2 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")
│ │ │ │ │ -753 ms +- 56.8 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ +486 ms +- 82.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ ******** TThhee _DD_aa_tt_aa_FF_rr_aa_mm_ee_.._ee_vv_aa_ll_((_)) mmeetthhoodd_## ********
│ │ │ │ │ In addition to the top level _p_a_n_d_a_s_._e_v_a_l_(_) function you can also evaluate an
│ │ │ │ │ expression in the “context” of a _D_a_t_a_F_r_a_m_e.
│ │ │ │ │ In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=["a", "b"])
│ │ │ │ │
│ │ │ │ │ In [43]: df.eval("a + b")
│ │ │ │ │ Out[43]:
│ │ │ │ │ @@ -751,29 +749,29 @@
│ │ │ │ │ _p_a_n_d_a_s_._e_v_a_l_(_) works well with expressions containing large arrays.
│ │ │ │ │ In [58]: nrows, ncols = 20000, 100
│ │ │ │ │
│ │ │ │ │ In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for
│ │ │ │ │ _ in range(4)]
│ │ │ │ │ _D_a_t_a_F_r_a_m_e arithmetic:
│ │ │ │ │ In [60]: %timeit df1 + df2 + df3 + df4
│ │ │ │ │ -808 ms +- 61.1 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ +506 ms +- 135 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")
│ │ │ │ │ -240 ms +- 36 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ +143 ms +- 9.47 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ _D_a_t_a_F_r_a_m_e comparison:
│ │ │ │ │ In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
│ │ │ │ │ -53.6 ms +- 2.66 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ +15.8 ms +- 29.1 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")
│ │ │ │ │ -11.3 ms +- 224 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ +5.07 ms +- 49.4 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
│ │ │ │ │ _D_a_t_a_F_r_a_m_e arithmetic with unaligned axes.
│ │ │ │ │ In [64]: s = pd.Series(np.random.randn(50))
│ │ │ │ │
│ │ │ │ │ In [65]: %timeit df1 + df2 + df3 + df4 + s
│ │ │ │ │ -1.23 s +- 63.9 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ +762 ms +- 43.3 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")
│ │ │ │ │ -252 ms +- 13.4 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)
│ │ │ │ │ +161 ms +- 4.23 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
│ │ │ │ │ Note
│ │ │ │ │ Operations such as
│ │ │ │ │ 1 and 2 # would parse to 1 & 2, but should evaluate to 2
│ │ │ │ │ 3 or 4 # would parse to 3 | 4, but should evaluate to 3
│ │ │ │ │ ~1 # this is okay, but slower when using eval
│ │ │ │ │ should be performed in Python. An exception will be raised if you try to
│ │ │ │ │ perform any boolean/bitwise operations with scalar operands that are not of
│ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html
│ │ │ │ @@ -995,26 +995,19 @@
│ │ │ │ Cell In[33], line 1
│ │ │ │ ----> 1 table = pa.table([pa.array([1, 2, 3], type=pa.int64())], names=["a"])
│ │ │ │
│ │ │ │ NameError: name 'pa' is not defined
│ │ │ │
│ │ │ │ In [34]: df = table.to_pandas(types_mapper=pd.ArrowDtype)
│ │ │ │ ---------------------------------------------------------------------------
│ │ │ │ -AttributeError Traceback (most recent call last)
│ │ │ │ -<ipython-input-34-64ec62289cb4> in ?()
│ │ │ │ +NameError Traceback (most recent call last)
│ │ │ │ +Cell In[34], line 1
│ │ │ │ ----> 1 df = table.to_pandas(types_mapper=pd.ArrowDtype)
│ │ │ │
│ │ │ │ -/usr/lib/python3/dist-packages/pandas/core/generic.py in ?(self, name)
│ │ │ │ - 6295 and name not in self._accessors
│ │ │ │ - 6296 and self._info_axis._can_hold_identifiers_and_holds_name(name)
│ │ │ │ - 6297 ):
│ │ │ │ - 6298 return self[name]
│ │ │ │ --> 6299 return object.__getattribute__(self, name)
│ │ │ │ -
│ │ │ │ -AttributeError: 'DataFrame' object has no attribute 'to_pandas'
│ │ │ │ +NameError: name 'table' is not defined
│ │ │ │
│ │ │ │ In [35]: df
│ │ │ │ Out[35]:
│ │ │ │ a b
│ │ │ │ 0 xxx yyy
│ │ │ │ 1 ¡¡ ¡¡
│ │ │ │ ├── html2text {}
│ │ │ │ │ @@ -522,27 +522,19 @@
│ │ │ │ │ Cell In[33], line 1
│ │ │ │ │ ----> 1 table = pa.table([pa.array([1, 2, 3], type=pa.int64())], names=["a"])
│ │ │ │ │
│ │ │ │ │ NameError: name 'pa' is not defined
│ │ │ │ │
│ │ │ │ │ In [34]: df = table.to_pandas(types_mapper=pd.ArrowDtype)
│ │ │ │ │ ---------------------------------------------------------------------------
│ │ │ │ │ -AttributeError Traceback (most recent call last)
│ │ │ │ │ - in ?()
│ │ │ │ │ +NameError Traceback (most recent call last)
│ │ │ │ │ +Cell In[34], line 1
│ │ │ │ │ ----> 1 df = table.to_pandas(types_mapper=pd.ArrowDtype)
│ │ │ │ │
│ │ │ │ │ -/usr/lib/python3/dist-packages/pandas/core/generic.py in ?(self, name)
│ │ │ │ │ - 6295 and name not in self._accessors
│ │ │ │ │ - 6296 and self._info_axis._can_hold_identifiers_and_holds_name
│ │ │ │ │ -(name)
│ │ │ │ │ - 6297 ):
│ │ │ │ │ - 6298 return self[name]
│ │ │ │ │ --> 6299 return object.__getattribute__(self, name)
│ │ │ │ │ -
│ │ │ │ │ -AttributeError: 'DataFrame' object has no attribute 'to_pandas'
│ │ │ │ │ +NameError: name 'table' is not defined
│ │ │ │ │
│ │ │ │ │ In [35]: df
│ │ │ │ │ Out[35]:
│ │ │ │ │ a b
│ │ │ │ │ 0 xxx yyy
│ │ │ │ │ 1 ¡¡ ¡¡
│ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html
│ │ │ │ @@ -1095,16 +1095,16 @@
│ │ │ │ ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")
│ │ │ │ ....: counts = pd.Series(dtype=int)
│ │ │ │ ....: for path in files:
│ │ │ │ ....: df = pd.read_parquet(path)
│ │ │ │ ....: counts = counts.add(df["name"].value_counts(), fill_value=0)
│ │ │ │ ....: counts.astype(int)
│ │ │ │ ....:
│ │ │ │ -CPU times: user 680 us, sys: 0 ns, total: 680 us
│ │ │ │ -Wall time: 684 us
│ │ │ │ +CPU times: user 408 us, sys: 362 us, total: 770 us
│ │ │ │ +Wall time: 2.18 ms
│ │ │ │ Out[32]: Series([], dtype: int32)
│ │ │ │
│ │ │ │
│ │ │ │ Some readers, like pandas.read_csv()
, offer parameters to control the
│ │ │ │ chunksize
when reading a single file.
│ │ │ │ Manually chunking is an OK option for workflows that don’t
│ │ │ │ require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby()
, are
│ │ │ │ ├── html2text {}
│ │ │ │ │ @@ -640,16 +640,16 @@
│ │ │ │ │ ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")
│ │ │ │ │ ....: counts = pd.Series(dtype=int)
│ │ │ │ │ ....: for path in files:
│ │ │ │ │ ....: df = pd.read_parquet(path)
│ │ │ │ │ ....: counts = counts.add(df["name"].value_counts(), fill_value=0)
│ │ │ │ │ ....: counts.astype(int)
│ │ │ │ │ ....:
│ │ │ │ │ -CPU times: user 680 us, sys: 0 ns, total: 680 us
│ │ │ │ │ -Wall time: 684 us
│ │ │ │ │ +CPU times: user 408 us, sys: 362 us, total: 770 us
│ │ │ │ │ +Wall time: 2.18 ms
│ │ │ │ │ Out[32]: Series([], dtype: int32)
│ │ │ │ │ Some readers, like _p_a_n_d_a_s_._r_e_a_d___c_s_v_(_), offer parameters to control the chunksize
│ │ │ │ │ when reading a single file.
│ │ │ │ │ Manually chunking is an OK option for workflows that don’t require too
│ │ │ │ │ sophisticated of operations. Some operations, like _p_a_n_d_a_s_._D_a_t_a_F_r_a_m_e_._g_r_o_u_p_b_y_(_),
│ │ │ │ │ are much harder to do chunkwise. In these cases, you may be better switching to
│ │ │ │ │ a different library that implements these out-of-core algorithms for you.
│ │ │ ├── ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz
│ │ │ │ ├── style.ipynb
│ │ │ │ │ ├── Pretty-printed
│ │ │ │ │ │┄ Similarity: 0.9985610875706213%
│ │ │ │ │ │┄ Differences: {"'cells'": "{1: {'metadata': {'execution': {'iopub.execute_input': '2025-12-11T23:36:27.300629Z', "
│ │ │ │ │ │┄ "'iopub.status.busy': '2025-12-11T23:36:27.300243Z', 'iopub.status.idle': "
│ │ │ │ │ │┄ "'2025-12-11T23:36:27.889580Z', 'shell.execute_reply': "
│ │ │ │ │ │┄ "'2025-12-11T23:36:27.888991Z'}}}, 3: {'metadata': {'execution': "
│ │ │ │ │ │┄ "{'iopub.execute_input': '2025-12-11T23:36:27.893615Z', 'iopub.status.busy': "
│ │ │ │ │ │┄ "'2025-12-11T23:36:27.893061Z', 'iopub.status.idle': '2025-12-11T23:36:2 […]
│ │ │ │ │ │ @@ -39,18 +39,18 @@
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 1,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2024-11-08T14:51:53.436265Z",
│ │ │ │ │ │ - "iopub.status.busy": "2024-11-08T14:51:53.435850Z",
│ │ │ │ │ │ - "iopub.status.idle": "2024-11-08T14:51:54.474028Z",
│ │ │ │ │ │ - "shell.execute_reply": "2024-11-08T14:51:54.472870Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-12-11T23:36:27.300629Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-12-11T23:36:27.300243Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-12-11T23:36:27.889580Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-12-11T23:36:27.888991Z"
│ │ │ │ │ │ },
│ │ │ │ │ │ "nbsphinx": "hidden"
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [],
│ │ │ │ │ │ "source": [
│ │ │ │ │ │ "import matplotlib.pyplot\n",
│ │ │ │ │ │ "# We have this here to trigger matplotlib's font cache stuff.\n",
│ │ │ │ │ │ @@ -77,36 +77,36 @@
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 2,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2024-11-08T14:51:54.479097Z",
│ │ │ │ │ │ - "iopub.status.busy": "2024-11-08T14:51:54.478394Z",
│ │ │ │ │ │ - "iopub.status.idle": "2024-11-08T14:51:55.099332Z",
│ │ │ │ │ │ - "shell.execute_reply": "2024-11-08T14:51:55.098252Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-12-11T23:36:27.893615Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-12-11T23:36:27.893061Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-12-11T23:36:28.358030Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-12-11T23:36:28.357414Z"
│ │ │ │ │ │ }
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [],
│ │ │ │ │ │ "source": [
│ │ │ │ │ │ "import pandas as pd\n",
│ │ │ │ │ │ "import numpy as np\n",
│ │ │ │ │ │ "import matplotlib as mpl\n"
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 3,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2024-11-08T14:51:55.104847Z",
│ │ │ │ │ │ - "iopub.status.busy": "2024-11-08T14:51:55.104268Z",
│ │ │ │ │ │ - "iopub.status.idle": "2024-11-08T14:51:55.230295Z",
│ │ │ │ │ │ - "shell.execute_reply": "2024-11-08T14:51:55.229357Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-12-11T23:36:28.360993Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-12-11T23:36:28.360514Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-12-11T23:36:28.431529Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-12-11T23:36:28.430970Z"
│ │ │ │ │ │ },
│ │ │ │ │ │ "nbsphinx": "hidden"
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [],
│ │ │ │ │ │ "source": [
│ │ │ │ │ │ "# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\n",
│ │ │ │ │ │ "from pandas.io.formats.style import Styler\n",
│ │ │ │ │ │ @@ -123,18 +123,18 @@
│ │ │ │ │ │ ]
│ │ │ │ │ │ },
│ │ │ │ │ │ {
│ │ │ │ │ │ "cell_type": "code",
│ │ │ │ │ │ "execution_count": 4,
│ │ │ │ │ │ "metadata": {
│ │ │ │ │ │ "execution": {
│ │ │ │ │ │ - "iopub.execute_input": "2024-11-08T14:51:55.236100Z",
│ │ │ │ │ │ - "iopub.status.busy": "2024-11-08T14:51:55.234984Z",
│ │ │ │ │ │ - "iopub.status.idle": "2024-11-08T14:51:55.251807Z",
│ │ │ │ │ │ - "shell.execute_reply": "2024-11-08T14:51:55.250847Z"
│ │ │ │ │ │ + "iopub.execute_input": "2025-12-11T23:36:28.434079Z",
│ │ │ │ │ │ + "iopub.status.busy": "2025-12-11T23:36:28.433553Z",
│ │ │ │ │ │ + "iopub.status.idle": "2025-12-11T23:36:28.442917Z",
│ │ │ │ │ │ + "shell.execute_reply": "2025-12-11T23:36:28.442347Z"
│ │ │ │ │ │ }
│ │ │ │ │ │ },
│ │ │ │ │ │ "outputs": [
│ │ │ │ │ │ {
│ │ │ │ │ │ "data": {
│ │ │ │ │ │ "text/html": [
│ │ │ │ │ │ "