{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.GNHEspGj/b1/sqlalchemy_2.0.32+ds1-1_i386.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.GNHEspGj/b2/sqlalchemy_2.0.32+ds1-1_i386.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,5 +1,5 @@\n \n- bca5fb5530ef3b12c7de9c69c097bc13 3956420 doc optional python-sqlalchemy-doc_2.0.32+ds1-1_all.deb\n+ 0b93465321e064b297527355fb26075f 3956352 doc optional python-sqlalchemy-doc_2.0.32+ds1-1_all.deb\n 57e85c6e2ab3e9e74706178cfb04ebe7 1642772 debug optional python3-sqlalchemy-ext-dbgsym_2.0.32+ds1-1_i386.deb\n 99e33d19e086a239d6a3e101fe1e0244 194244 python optional python3-sqlalchemy-ext_2.0.32+ds1-1_i386.deb\n 0955e7f12a0b73c1ab8406c88fbab7d2 1196068 python optional python3-sqlalchemy_2.0.32+ds1-1_all.deb\n"}, {"source1": "python-sqlalchemy-doc_2.0.32+ds1-1_all.deb", "source2": "python-sqlalchemy-doc_2.0.32+ds1-1_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2024-08-23 07:52:58.000000 debian-binary\n--rw-r--r-- 0 0 0 13924 2024-08-23 07:52:58.000000 control.tar.xz\n--rw-r--r-- 0 0 0 3942304 2024-08-23 07:52:58.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 13920 2024-08-23 07:52:58.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 3942240 2024-08-23 07:52:58.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "./usr/share/doc/python-sqlalchemy-doc/html/changelog/changelog_14.html", "source2": "./usr/share/doc/python-sqlalchemy-doc/html/changelog/changelog_14.html", "unified_diff": "@@ -1226,28 +1226,28 @@\n

\n \n \n \n
\n

sql\u00b6

\n \n
\n
\n

mypy\u00b6

\n
\n
\n

Associations\u00b6

\n

Examples illustrating the usage of the \u201cassociation object\u201d pattern,\n where an intermediary class mediates the relationship between two\n classes that are associated in a many-to-many pattern.

\n

Listing of files:

\n

\n
\n
\n

Asyncio Integration\u00b6

\n

Examples illustrating the asyncio engine feature of SQLAlchemy.

\n

Listing of files:

\n

\n
\n
\n

Directed Graphs\u00b6

\n

An example of persistence for a directed graph structure. The\n graph is stored as a collection of edges, each referencing both a\n@@ -378,32 +378,32 @@\n subclassing the HasAddresses mixin, which ensures that the\n parent class is provided with an addresses collection\n which contains Address objects.

\n

The discriminator_on_association.py and generic_fk.py scripts\n are modernized versions of recipes presented in the 2007 blog post\n Polymorphic Associations with SQLAlchemy.

\n

Listing of files:

\n

\n@@ -477,29 +477,29 @@\n
\n

See also

\n

How can I profile a SQLAlchemy powered application?

\n
\n
\n

File Listing\u00b6

\n

Listing of files:

\n

\n
\n@@ -751,31 +751,31 @@\n

Several examples that illustrate the technique of intercepting changes\n that would be first interpreted as an UPDATE on a row, and instead turning\n it into an INSERT of a new row, leaving the previous row intact as\n a historical version.

\n

Compare to the Versioning with a History Table example which writes a\n history row to a separate history table.

\n

Listing of files:

\n

\n
\n \n
\n

Vertical Attribute Mapping\u00b6

\n

Illustrates \u201cvertical table\u201d mappings.

\n@@ -800,35 +800,35 @@\n q = (session.query(Animal).\n filter(Animal.facts.any(\n and_(AnimalFact.key == u'weasel-like',\n AnimalFact.value == True))))\n print('weasel-like animals', q.all())\n \n

Listing of files:

\n

\n
\n \n
\n

Inheritance Mapping Recipes\u00b6

\n
\n

Basic Inheritance Mappings\u00b6

\n

Working examples of single-table, joined-table, and concrete-table\n inheritance as described in Mapping Class Inheritance Hierarchies.

\n

Listing of files:

\n

\n
\n
\n
\n

Special APIs\u00b6

\n
\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -96,37 +96,37 @@\n Listing of files:\n * _\ba_\bd_\bj_\ba_\bc_\be_\bn_\bc_\by_\b__\bl_\bi_\bs_\bt_\b._\bp_\by\n *\b**\b**\b**\b* A\bAs\bss\bso\boc\bci\bia\bat\bti\bio\bon\bns\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n Examples illustrating the usage of the \u201cassociation object\u201d pattern, where an\n intermediary class mediates the relationship between two classes that are\n associated in a many-to-many pattern.\n Listing of files:\n- * _\bd_\bi_\bc_\bt_\b__\bo_\bf_\b__\bs_\be_\bt_\bs_\b__\bw_\bi_\bt_\bh_\b__\bd_\be_\bf_\ba_\bu_\bl_\bt_\b._\bp_\by - An advanced association proxy example\n- which illustrates nesting of association proxies to produce multi-level\n- Python collections, in this case a dictionary with string keys and sets\n- of integers as values, which conceal the underlying mapped classes.\n+ * _\bb_\ba_\bs_\bi_\bc_\b__\ba_\bs_\bs_\bo_\bc_\bi_\ba_\bt_\bi_\bo_\bn_\b._\bp_\by - Illustrate a many-to-many relationship between an\n+ \u201cOrder\u201d and a collection of \u201cItem\u201d objects, associating a purchase price\n+ with each via an association object called \u201cOrderItem\u201d\n+_\bd_\bi_\bc_\bt_\b__\bo_\bf_\b__\bs_\be_\bt_\bs_\b__\bw_\bi_\bt_\bh_\b__\bd_\be_\bf_\ba_\bu_\bl_\bt_\b._\bp_\by - An advanced association proxy example which\n+illustrates nesting of association proxies to produce multi-level Python\n+collections, in this case a dictionary with string keys and sets of integers as\n+values, which conceal the underlying mapped classes.\n _\bp_\br_\bo_\bx_\bi_\be_\bd_\b__\ba_\bs_\bs_\bo_\bc_\bi_\ba_\bt_\bi_\bo_\bn_\b._\bp_\by - Same example as basic_association, adding in usage of\n _\bs_\bq_\bl_\ba_\bl_\bc_\bh_\be_\bm_\by_\b._\be_\bx_\bt_\b._\ba_\bs_\bs_\bo_\bc_\bi_\ba_\bt_\bi_\bo_\bn_\bp_\br_\bo_\bx_\by to make explicit references to OrderItem\n optional.\n-_\bb_\ba_\bs_\bi_\bc_\b__\ba_\bs_\bs_\bo_\bc_\bi_\ba_\bt_\bi_\bo_\bn_\b._\bp_\by - Illustrate a many-to-many relationship between an\n-\u201cOrder\u201d and a collection of \u201cItem\u201d objects, associating a purchase price with\n-each via an association object called \u201cOrderItem\u201d\n *\b**\b**\b**\b* A\bAs\bsy\byn\bnc\bci\bio\bo I\bIn\bnt\bte\beg\bgr\bra\bat\bti\bio\bon\bn_\b?\b\u00b6 *\b**\b**\b**\b*\n Examples illustrating the asyncio engine feature of SQLAlchemy.\n Listing of files:\n * _\ba_\bs_\by_\bn_\bc_\b__\bo_\br_\bm_\b__\bw_\br_\bi_\bt_\be_\bo_\bn_\bl_\by_\b._\bp_\by - Illustrates using w\bwr\bri\bit\bte\be o\bon\bnl\bly\by r\bre\bel\bla\bat\bti\bio\bon\bns\bsh\bhi\bip\bps\bs for\n simpler handling of ORM collections under asyncio.\n+_\ba_\bs_\by_\bn_\bc_\b__\bo_\br_\bm_\b._\bp_\by - Illustrates use of the sqlalchemy.ext.asyncio.AsyncSession\n+object for asynchronous ORM use.\n _\bg_\br_\be_\be_\bn_\bl_\be_\bt_\b__\bo_\br_\bm_\b._\bp_\by - Illustrates use of the sqlalchemy.ext.asyncio.AsyncSession\n object for asynchronous ORM use, including the optional run_sync() method.\n+_\bb_\ba_\bs_\bi_\bc_\b._\bp_\by - Illustrates the asyncio engine / connection interface.\n _\bg_\ba_\bt_\bh_\be_\br_\b__\bo_\br_\bm_\b__\bs_\bt_\ba_\bt_\be_\bm_\be_\bn_\bt_\bs_\b._\bp_\by - Illustrates how to run many statements concurrently\n using asyncio.gather() along many asyncio database connections, merging ORM\n results into a single AsyncSession.\n-_\bb_\ba_\bs_\bi_\bc_\b._\bp_\by - Illustrates the asyncio engine / connection interface.\n-_\ba_\bs_\by_\bn_\bc_\b__\bo_\br_\bm_\b._\bp_\by - Illustrates use of the sqlalchemy.ext.asyncio.AsyncSession\n-object for asynchronous ORM use.\n *\b**\b**\b**\b* D\bDi\bir\bre\bec\bct\bte\bed\bd G\bGr\bra\bap\bph\bhs\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n An example of persistence for a directed graph structure. The graph is stored\n as a collection of edges, each referencing both a \u201clower\u201d and an \u201cupper\u201d node\n in a table of nodes. Basic persistence and querying for lower- and upper-\n neighbors are illustrated:\n n2 = Node(2)\n n5 = Node(5)\n@@ -148,27 +148,27 @@\n Supplier, both subclassing the HasAddresses mixin, which ensures that the\n parent class is provided with an addresses collection which contains Address\n objects.\n The _\bd_\bi_\bs_\bc_\br_\bi_\bm_\bi_\bn_\ba_\bt_\bo_\br_\b__\bo_\bn_\b__\ba_\bs_\bs_\bo_\bc_\bi_\ba_\bt_\bi_\bo_\bn_\b._\bp_\by and _\bg_\be_\bn_\be_\br_\bi_\bc_\b__\bf_\bk_\b._\bp_\by scripts are modernized\n versions of recipes presented in the 2007 blog post _\bP_\bo_\bl_\by_\bm_\bo_\br_\bp_\bh_\bi_\bc_\b _\bA_\bs_\bs_\bo_\bc_\bi_\ba_\bt_\bi_\bo_\bn_\bs\n _\bw_\bi_\bt_\bh_\b _\bS_\bQ_\bL_\bA_\bl_\bc_\bh_\be_\bm_\by.\n Listing of files:\n- * _\bt_\ba_\bb_\bl_\be_\b__\bp_\be_\br_\b__\br_\be_\bl_\ba_\bt_\be_\bd_\b._\bp_\by - Illustrates a generic association which persists\n- association objects within individual tables, each one generated to\n- persist those objects on behalf of a particular parent class.\n+ * _\bd_\bi_\bs_\bc_\br_\bi_\bm_\bi_\bn_\ba_\bt_\bo_\br_\b__\bo_\bn_\b__\ba_\bs_\bs_\bo_\bc_\bi_\ba_\bt_\bi_\bo_\bn_\b._\bp_\by - Illustrates a mixin which provides a\n+ generic association using a single target table and a single association\n+ table, referred to by all parent tables. The association table contains a\n+ \u201cdiscriminator\u201d column which determines what type of parent object\n+ associates to each particular row in the association table.\n+_\bt_\ba_\bb_\bl_\be_\b__\bp_\be_\br_\b__\br_\be_\bl_\ba_\bt_\be_\bd_\b._\bp_\by - Illustrates a generic association which persists\n+association objects within individual tables, each one generated to persist\n+those objects on behalf of a particular parent class.\n _\bg_\be_\bn_\be_\br_\bi_\bc_\b__\bf_\bk_\b._\bp_\by - Illustrates a so-called \u201cgeneric foreign key\u201d, in a similar\n fashion to that of popular frameworks such as Django, ROR, etc. This approach\n bypasses standard referential integrity practices, in that the \u201cforeign key\u201d\n column is not actually constrained to refer to any particular table; instead,\n in-application logic is used to determine which table is referenced.\n-_\bd_\bi_\bs_\bc_\br_\bi_\bm_\bi_\bn_\ba_\bt_\bo_\br_\b__\bo_\bn_\b__\ba_\bs_\bs_\bo_\bc_\bi_\ba_\bt_\bi_\bo_\bn_\b._\bp_\by - Illustrates a mixin which provides a generic\n-association using a single target table and a single association table,\n-referred to by all parent tables. The association table contains a\n-\u201cdiscriminator\u201d column which determines what type of parent object associates\n-to each particular row in the association table.\n _\bt_\ba_\bb_\bl_\be_\b__\bp_\be_\br_\b__\ba_\bs_\bs_\bo_\bc_\bi_\ba_\bt_\bi_\bo_\bn_\b._\bp_\by - Illustrates a mixin which provides a generic\n association via a individually generated association tables for each parent\n class. The associated objects themselves are persisted in a single table shared\n among all parents.\n *\b**\b**\b**\b* M\bMa\bat\bte\ber\bri\bia\bal\bli\biz\bze\bed\bd P\bPa\bat\bth\bhs\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n Illustrates the \u201cmaterialized paths\u201d pattern for hierarchical data using the\n SQLAlchemy ORM.\n@@ -220,25 +220,26 @@\n $ python -m examples.performance bulk_inserts \\\n --dburl mysql+mysqldb://scott:tiger@localhost/test \\\n --profile --num 1000\n See also\n _\bH_\bo_\bw_\b _\bc_\ba_\bn_\b _\bI_\b _\bp_\br_\bo_\bf_\bi_\bl_\be_\b _\ba_\b _\bS_\bQ_\bL_\bA_\bl_\bc_\bh_\be_\bm_\by_\b _\bp_\bo_\bw_\be_\br_\be_\bd_\b _\ba_\bp_\bp_\bl_\bi_\bc_\ba_\bt_\bi_\bo_\bn_\b?\n *\b**\b**\b* F\bFi\bil\ble\be L\bLi\bis\bst\bti\bin\bng\bg_\b?\b\u00b6 *\b**\b**\b*\n Listing of files:\n- * _\bl_\ba_\br_\bg_\be_\b__\br_\be_\bs_\bu_\bl_\bt_\bs_\be_\bt_\bs_\b._\bp_\by - In this series of tests, we are looking at time to\n- load a large number of very small and simple rows.\n-_\bb_\bu_\bl_\bk_\b__\bi_\bn_\bs_\be_\br_\bt_\bs_\b._\bp_\by - This series of tests illustrates different ways to INSERT a\n-large number of rows in bulk.\n+ * _\bs_\bi_\bn_\bg_\bl_\be_\b__\bi_\bn_\bs_\be_\br_\bt_\bs_\b._\bp_\by - In this series of tests, we\u2019re looking at a method\n+ that inserts a row within a distinct transaction, and afterwards returns\n+ to essentially a \u201cclosed\u201d state. This would be analogous to an API call\n+ that starts up a database connection, inserts the row, commits and\n+ closes.\n _\bs_\bh_\bo_\br_\bt_\b__\bs_\be_\bl_\be_\bc_\bt_\bs_\b._\bp_\by - This series of tests illustrates different ways to SELECT a\n single record by primary key\n _\b__\b__\bm_\ba_\bi_\bn_\b__\b__\b._\bp_\by - Allows the examples/performance package to be run as a script.\n-_\bs_\bi_\bn_\bg_\bl_\be_\b__\bi_\bn_\bs_\be_\br_\bt_\bs_\b._\bp_\by - In this series of tests, we\u2019re looking at a method that\n-inserts a row within a distinct transaction, and afterwards returns to\n-essentially a \u201cclosed\u201d state. This would be analogous to an API call that\n-starts up a database connection, inserts the row, commits and closes.\n+_\bb_\bu_\bl_\bk_\b__\bi_\bn_\bs_\be_\br_\bt_\bs_\b._\bp_\by - This series of tests illustrates different ways to INSERT a\n+large number of rows in bulk.\n+_\bl_\ba_\br_\bg_\be_\b__\br_\be_\bs_\bu_\bl_\bt_\bs_\be_\bt_\bs_\b._\bp_\by - In this series of tests, we are looking at time to load a\n+large number of very small and simple rows.\n _\bb_\bu_\bl_\bk_\b__\bu_\bp_\bd_\ba_\bt_\be_\bs_\b._\bp_\by - This series of tests will illustrate different ways to UPDATE\n a large number of rows in bulk (under construction! there\u2019s just one test at\n the moment)\n *\b**\b**\b* R\bRu\bun\bnn\bni\bin\bng\bg a\bal\bll\bl t\bte\bes\bst\bts\bs w\bwi\bit\bth\bh t\bti\bim\bme\be_\b?\b\u00b6 *\b**\b**\b*\n This is the default form of run:\n $ python -m examples.performance single_inserts\n Tests to run: test_orm_commit, test_bulk_save,\n@@ -467,27 +468,28 @@\n Several examples that illustrate the technique of intercepting changes that\n would be first interpreted as an UPDATE on a row, and instead turning it into\n an INSERT of a new row, leaving the previous row intact as a historical\n version.\n Compare to the _\bV_\be_\br_\bs_\bi_\bo_\bn_\bi_\bn_\bg_\b _\bw_\bi_\bt_\bh_\b _\ba_\b _\bH_\bi_\bs_\bt_\bo_\br_\by_\b _\bT_\ba_\bb_\bl_\be example which writes a history\n row to a separate history table.\n Listing of files:\n- * _\bv_\be_\br_\bs_\bi_\bo_\bn_\be_\bd_\b__\bm_\ba_\bp_\b._\bp_\by - A variant of the versioned_rows example built around\n- the concept of a \u201cvertical table\u201d structure, like those illustrated in\n- _\bV_\be_\br_\bt_\bi_\bc_\ba_\bl_\b _\bA_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b _\bM_\ba_\bp_\bp_\bi_\bn_\bg examples.\n-_\bv_\be_\br_\bs_\bi_\bo_\bn_\be_\bd_\b__\br_\bo_\bw_\bs_\b._\bp_\by - Illustrates a method to intercept changes on objects,\n-turning an UPDATE statement on a single row into an INSERT statement, so that a\n-new row is inserted with the new data, keeping the old row intact.\n-_\bv_\be_\br_\bs_\bi_\bo_\bn_\be_\bd_\b__\bu_\bp_\bd_\ba_\bt_\be_\b__\bo_\bl_\bd_\b__\br_\bo_\bw_\b._\bp_\by - Illustrates the same UPDATE into INSERT technique\n-of versioned_rows.py, but also emits an UPDATE on the o\bol\bld\bd row to affect a\n-change in timestamp. Also includes a _\bS_\be_\bs_\bs_\bi_\bo_\bn_\bE_\bv_\be_\bn_\bt_\bs_\b._\bd_\bo_\b__\bo_\br_\bm_\b__\be_\bx_\be_\bc_\bu_\bt_\be_\b(_\b) hook to\n-limit queries to only the most recent version.\n+ * _\bv_\be_\br_\bs_\bi_\bo_\bn_\be_\bd_\b__\bu_\bp_\bd_\ba_\bt_\be_\b__\bo_\bl_\bd_\b__\br_\bo_\bw_\b._\bp_\by - Illustrates the same UPDATE into INSERT\n+ technique of versioned_rows.py, but also emits an UPDATE on the o\bol\bld\bd row\n+ to affect a change in timestamp. Also includes a\n+ _\bS_\be_\bs_\bs_\bi_\bo_\bn_\bE_\bv_\be_\bn_\bt_\bs_\b._\bd_\bo_\b__\bo_\br_\bm_\b__\be_\bx_\be_\bc_\bu_\bt_\be_\b(_\b) hook to limit queries to only the most\n+ recent version.\n _\bv_\be_\br_\bs_\bi_\bo_\bn_\be_\bd_\b__\br_\bo_\bw_\bs_\b__\bw_\b__\bv_\be_\br_\bs_\bi_\bo_\bn_\bi_\bd_\b._\bp_\by - Illustrates a method to intercept changes on\n objects, turning an UPDATE statement on a single row into an INSERT statement,\n so that a new row is inserted with the new data, keeping the old row intact.\n+_\bv_\be_\br_\bs_\bi_\bo_\bn_\be_\bd_\b__\bm_\ba_\bp_\b._\bp_\by - A variant of the versioned_rows example built around the\n+concept of a \u201cvertical table\u201d structure, like those illustrated in _\bV_\be_\br_\bt_\bi_\bc_\ba_\bl\n+_\bA_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b _\bM_\ba_\bp_\bp_\bi_\bn_\bg examples.\n+_\bv_\be_\br_\bs_\bi_\bo_\bn_\be_\bd_\b__\br_\bo_\bw_\bs_\b._\bp_\by - Illustrates a method to intercept changes on objects,\n+turning an UPDATE statement on a single row into an INSERT statement, so that a\n+new row is inserted with the new data, keeping the old row intact.\n *\b**\b**\b**\b* V\bVe\ber\brt\bti\bic\bca\bal\bl A\bAt\btt\btr\bri\bib\bbu\but\bte\be M\bMa\bap\bpp\bpi\bin\bng\bg_\b?\b\u00b6 *\b**\b**\b**\b*\n Illustrates \u201cvertical table\u201d mappings.\n A \u201cvertical table\u201d refers to a technique where individual attributes of an\n object are stored as distinct rows in a table. The \u201cvertical table\u201d technique\n is used to persist objects which can have a varied set of attributes, at the\n expense of simple query control and brevity. It is commonly found in content/\n document management systems in order to represent user-created structures\n@@ -506,25 +508,25 @@\n \n q = (session.query(Animal).\n filter(Animal.facts.any(\n and_(AnimalFact.key == u'weasel-like',\n AnimalFact.value == True))))\n print('weasel-like animals', q.all())\n Listing of files:\n- * _\bd_\bi_\bc_\bt_\bl_\bi_\bk_\be_\b-_\bp_\bo_\bl_\by_\bm_\bo_\br_\bp_\bh_\bi_\bc_\b._\bp_\by - Mapping a polymorphic-valued vertical table as\n- a dictionary.\n-_\bd_\bi_\bc_\bt_\bl_\bi_\bk_\be_\b._\bp_\by - Mapping a vertical table as a dictionary.\n+ * _\bd_\bi_\bc_\bt_\bl_\bi_\bk_\be_\b._\bp_\by - Mapping a vertical table as a dictionary.\n+_\bd_\bi_\bc_\bt_\bl_\bi_\bk_\be_\b-_\bp_\bo_\bl_\by_\bm_\bo_\br_\bp_\bh_\bi_\bc_\b._\bp_\by - Mapping a polymorphic-valued vertical table as a\n+dictionary.\n *\b**\b**\b**\b**\b* I\bIn\bnh\bhe\ber\bri\bit\bta\ban\bnc\bce\be M\bMa\bap\bpp\bpi\bin\bng\bg R\bRe\bec\bci\bip\bpe\bes\bs_\b?\b\u00b6 *\b**\b**\b**\b**\b*\n *\b**\b**\b**\b* B\bBa\bas\bsi\bic\bc I\bIn\bnh\bhe\ber\bri\bit\bta\ban\bnc\bce\be M\bMa\bap\bpp\bpi\bin\bng\bgs\bs_\b?\b\u00b6 *\b**\b**\b**\b*\n Working examples of single-table, joined-table, and concrete-table inheritance\n as described in _\bM_\ba_\bp_\bp_\bi_\bn_\bg_\b _\bC_\bl_\ba_\bs_\bs_\b _\bI_\bn_\bh_\be_\br_\bi_\bt_\ba_\bn_\bc_\be_\b _\bH_\bi_\be_\br_\ba_\br_\bc_\bh_\bi_\be_\bs.\n Listing of files:\n * _\bc_\bo_\bn_\bc_\br_\be_\bt_\be_\b._\bp_\by - Concrete-table (table-per-class) inheritance example.\n-_\bs_\bi_\bn_\bg_\bl_\be_\b._\bp_\by - Single-table (table-per-hierarchy) inheritance example.\n _\bj_\bo_\bi_\bn_\be_\bd_\b._\bp_\by - Joined-table (table-per-subclass) inheritance example.\n+_\bs_\bi_\bn_\bg_\bl_\be_\b._\bp_\by - Single-table (table-per-hierarchy) inheritance example.\n *\b**\b**\b**\b**\b* S\bSp\bpe\bec\bci\bia\bal\bl A\bAP\bPI\bIs\bs_\b?\b\u00b6 *\b**\b**\b**\b**\b*\n *\b**\b**\b**\b* A\bAt\btt\btr\bri\bib\bbu\but\bte\be I\bIn\bns\bst\btr\bru\bum\bme\ben\bnt\bta\bat\bti\bio\bon\bn_\b?\b\u00b6 *\b**\b**\b**\b*\n Examples illustrating modifications to SQLAlchemy\u2019s attribute management\n system.\n Listing of files:\n * _\bl_\bi_\bs_\bt_\be_\bn_\b__\bf_\bo_\br_\b__\be_\bv_\be_\bn_\bt_\bs_\b._\bp_\by - Illustrates how to attach events to all\n instrumented attributes and listen for change events.\n"}]}]}]}]}]}