{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.06wWmGy4/b1/minieigen_0.50.3+dfsg1-13_i386.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.06wWmGy4/b2/minieigen_0.50.3+dfsg1-13_i386.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,3 +1,3 @@\n \n e754d58ecf6fdd9b2346c5a3919e4e08 27796780 debug optional python3-minieigen-dbgsym_0.50.3+dfsg1-13_i386.deb\n- 7d1f18c1495ec3bfe64753bb7ef63aa8 850100 python optional python3-minieigen_0.50.3+dfsg1-13_i386.deb\n+ 17437bcd2e9b3cb2935cac7c186b1053 830992 python optional python3-minieigen_0.50.3+dfsg1-13_i386.deb\n"}, {"source1": "python3-minieigen_0.50.3+dfsg1-13_i386.deb", "source2": "python3-minieigen_0.50.3+dfsg1-13_i386.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2021-11-08 17:29:32.000000 debian-binary\n -rw-r--r-- 0 0 0 1576 2021-11-08 17:29:32.000000 control.tar.xz\n--rw-r--r-- 0 0 0 848332 2021-11-08 17:29:32.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 829224 2021-11-08 17:29:32.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./control", "source2": "./control", "unified_diff": "@@ -1,13 +1,13 @@\n Package: python3-minieigen\n Source: minieigen\n Version: 0.50.3+dfsg1-13\n Architecture: i386\n Maintainer: Debian Science Maintainers \n-Installed-Size: 8554\n+Installed-Size: 7939\n Depends: python3 (<< 3.14), python3 (>= 3.12~), libboost-python1.83.0 (>= 1.83.0), libboost-python1.83.0-py312, libboost-python1.83.0-py313, libc6 (>= 2.32), libdouble-conversion3 (>= 2.0.0), libgcc-s1 (>= 4.0), libstdc++6 (>= 5.2), libjs-sphinxdoc (>= 8.1)\n Recommends: libeigen3-dev\n Section: python\n Priority: optional\n Homepage: http://www.launchpad.net/minieigen\n Description: Wrapper of parts of the Eigen library (Python 3)\n Small wrapper for core parts of Eigen, c++ library for linear algebra.\n"}, {"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -22,19 +22,19 @@\n -rw-r--r-- 0 root (0) root (0) 14815 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/_static/basic.css\n -rw-r--r-- 0 root (0) root (0) 4148 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/_static/classic.css\n -rw-r--r-- 0 root (0) root (0) 328 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/_static/documentation_options.js\n -rw-r--r-- 0 root (0) root (0) 286 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/_static/file.png\n -rw-r--r-- 0 root (0) root (0) 90 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/_static/minus.png\n -rw-r--r-- 0 root (0) root (0) 90 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/_static/plus.png\n -rw-r--r-- 0 root (0) root (0) 4929 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/_static/pygments.css\n--rw-r--r-- 0 root (0) root (0) 60711 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/genindex.html\n--rw-r--r-- 0 root (0) root (0) 520316 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/index.html\n--rw-r--r-- 0 root (0) root (0) 2125 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/objects.inv\n+-rw-r--r-- 0 root (0) root (0) 2796 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/genindex.html\n+-rw-r--r-- 0 root (0) root (0) 11262 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/index.html\n+-rw-r--r-- 0 root (0) root (0) 246 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/objects.inv\n -rw-r--r-- 0 root (0) root (0) 3141 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/search.html\n--rw-r--r-- 0 root (0) root (0) 62229 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/searchindex.js\n+-rw-r--r-- 0 root (0) root (0) 2959 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/searchindex.js\n drwxr-xr-x 0 root (0) root (0) 0 2021-11-08 17:29:32.000000 ./usr/share/doc-base/\n -rw-r--r-- 0 root (0) root (0) 262 2020-02-19 22:00:59.000000 ./usr/share/doc-base/python3-minieigen.python3-minieigen\n lrwxrwxrwx 0 root (0) root (0) 0 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/_static/doctools.js -> ../../../../javascript/sphinxdoc/1.0/doctools.js\n lrwxrwxrwx 0 root (0) root (0) 0 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/_static/language_data.js -> ../../../../javascript/sphinxdoc/1.0/language_data.js\n lrwxrwxrwx 0 root (0) root (0) 0 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/_static/searchtools.js -> ../../../../javascript/sphinxdoc/1.0/searchtools.js\n lrwxrwxrwx 0 root (0) root (0) 0 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/_static/sidebar.js -> ../../../../javascript/sphinxdoc/1.0/sidebar.js\n lrwxrwxrwx 0 root (0) root (0) 0 2021-11-08 17:29:32.000000 ./usr/share/doc/python3-minieigen/html/_static/sphinx_highlight.js -> ../../../../javascript/sphinxdoc/1.0/sphinx_highlight.js\n"}, {"source1": "./usr/share/doc/python3-minieigen/html/genindex.html", "source2": "./usr/share/doc/python3-minieigen/html/genindex.html", "unified_diff": "@@ -31,1376 +31,16 @@\n
\n
\n \n \n

Index

\n \n
\n- A\n- | C\n- | D\n- | E\n- | F\n- | H\n- | I\n- | J\n- | L\n- | M\n- | N\n- | O\n- | P\n- | Q\n- | R\n- | S\n- | T\n- | U\n- | V\n- | X\n- | Y\n- | Z\n \n
\n-

A

\n-\n- \n-
\n-\n-

C

\n-\n- \n- \n-
\n-\n-

D

\n-\n- \n- \n-
\n-\n-

E

\n-\n- \n- \n-
\n-\n-

F

\n-\n- \n-
\n-\n-

H

\n-\n- \n-
\n-\n-

I

\n-\n- \n- \n-
\n-\n-

J

\n-\n- \n-
\n-\n-

L

\n-\n- \n- \n-
\n-\n-

M

\n-\n- \n- \n-
\n-\n-

N

\n-\n- \n- \n-
\n-\n-

O

\n-\n- \n- \n-
\n-\n-

P

\n-\n- \n- \n-
\n-\n-

Q

\n-\n- \n-
\n-\n-

R

\n-\n- \n- \n-
\n-\n-

S

\n-\n- \n- \n-
\n-\n-

T

\n-\n- \n- \n-
\n-\n-

U

\n-\n- \n- \n-
\n-\n-

V

\n-\n- \n- \n-
\n-\n-

X

\n-\n- \n- \n-
\n-\n-

Y

\n-\n- \n- \n-
\n-\n-

Z

\n-\n- \n- \n-
\n-\n \n \n
\n
\n
\n \n
\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -1,466 +1,12 @@\n *\b**\b**\b**\b* N\bNa\bav\bvi\big\bga\bat\bti\bio\bon\bn *\b**\b**\b**\b*\n * _\bi_\bn_\bd_\be_\bx\n * _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b _\b0_\b._\b4_\b-_\b1_\b _\bd_\bo_\bc_\bu_\bm_\be_\bn_\bt_\ba_\bt_\bi_\bo_\bn \u00bb\n * Index\n *\b**\b**\b**\b**\b**\b* I\bIn\bnd\bde\bex\bx *\b**\b**\b**\b**\b**\b*\n-_\bA\bA | _\bC\bC | _\bD\bD | _\bE\bE | _\bF\bF | _\bH\bH | _\bI\bI | _\bJ\bJ | _\bL\bL | _\bM\bM | _\bN\bN | _\bO\bO | _\bP\bP | _\bQ\bQ | _\bR\bR | _\bS\bS | _\bT\bT | _\bU\bU | _\bV\bV | _\bX\bX |\n-_\bY\bY | _\bZ\bZ\n-*\b**\b**\b**\b**\b* A\bA *\b**\b**\b**\b**\b*\n- * _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b)\n- * _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b)\n- * _\ba_\bn_\bg_\bu_\bl_\ba_\br_\bD_\bi_\bs_\bt_\ba_\bn_\bc_\be_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\ba_\bs_\bD_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* C\bC *\b**\b**\b**\b**\b*\n- * _\bc_\be_\bn_\bt_\be_\br_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2 * _\bc_\bo_\bm_\bp_\bu_\bt_\be_\bU_\bn_\bi_\bt_\ba_\br_\by_\bP_\bo_\bs_\bi_\bt_\bi_\bv_\be_\b(_\b)_\b \n- _\bm_\be_\bt_\bh_\bo_\bd_\b) _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bc_\bl_\ba_\bm_\bp_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2 * _\bc_\bo_\bn_\bj_\bu_\bg_\ba_\bt_\be_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3 * _\bc_\bo_\bn_\bt_\ba_\bi_\bn_\bs_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bc_\bo_\bl_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) * _\bc_\br_\bo_\bs_\bs_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bc_\bo_\bl_\bs_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* D\bD *\b**\b**\b**\b**\b*\n- * _\bd_\be_\bt_\be_\br_\bm_\bi_\bn_\ba_\bn_\bt_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3 * _\bd_\bo_\bt_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bd_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* E\bE *\b**\b**\b**\b**\b*\n- * _\be_\bm_\bp_\bt_\by_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2 * _\be_\bx_\bt_\be_\bn_\bd_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* F\bF *\b**\b**\b**\b**\b*\n- * _\bf_\bl_\bo_\ba_\bt_\b2_\bs_\bt_\br_\b(_\b)_\b _\b(_\bi_\bn_\b _\bm_\bo_\bd_\bu_\bl_\be_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b)\n-*\b**\b**\b**\b**\b* H\bH *\b**\b**\b**\b**\b*\n- * _\bh_\be_\ba_\bd_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* I\bI *\b**\b**\b**\b**\b*\n- * _\bI_\bd_\be_\bn_\bt_\bi_\bt_\by_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3 * _\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- * _\bI_\bd_\be_\bn_\bt_\bi_\bt_\by_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX\n- _\bs_\bt_\ba_\bt_\bi_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bi_\bn_\bt_\be_\br_\bs_\be_\bc_\bt_\bi_\bo_\bn_\b(_\b)_\b \n- _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bi_\bn_\bv_\be_\br_\bs_\be_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* J\bJ *\b**\b**\b**\b**\b*\n- * _\bj_\ba_\bc_\bo_\bb_\bi_\bS_\bV_\bD_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* L\bL *\b**\b**\b**\b**\b*\n- * _\bl_\bl_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) * _\bl_\br_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* M\bM *\b**\b**\b**\b**\b*\n- * _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b) * _\bm_\be_\ba_\bn_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bm_\ba_\bx_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bp_\br_\bo_\bp_\be_\br_\bt_\by_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bp_\br_\bo_\bp_\be_\br_\bt_\by_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) * _\bm_\be_\br_\bg_\be_\bd_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) * _\bm_\bi_\bn_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) _\bp_\br_\bo_\bp_\be_\br_\bt_\by_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) _\bp_\br_\bo_\bp_\be_\br_\bt_\by_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) * _\bm_\bi_\bn_\bC_\bo_\be_\bf_\bf_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bm_\ba_\bx_\bC_\bo_\be_\bf_\bf_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) * minieigen\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\bm_\bo_\bd_\bu_\bl_\be\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) * module\n- o _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn\n-*\b**\b**\b**\b**\b* N\bN *\b**\b**\b**\b**\b*\n- * _\bn_\bo_\br_\bm_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) * _\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* O\bO *\b**\b**\b**\b**\b*\n- * _\bO_\bn_\be_\bs_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3 * _\bo_\bu_\bt_\be_\br_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- * _\bO_\bn_\be_\bs_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* P\bP *\b**\b**\b**\b**\b*\n- * _\bp_\bo_\bl_\ba_\br_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn_\b(_\b)_\b * _\bp_\br_\bu_\bn_\be_\bd_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3\n- _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bp_\br_\bo_\bd_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* Q\bQ *\b**\b**\b**\b**\b*\n- * _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b)\n-*\b**\b**\b**\b**\b* R\bR *\b**\b**\b**\b**\b*\n- * _\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3 * _\br_\bo_\bw_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bs_\bt_\ba_\bt_\bi_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc * _\br_\bo_\bw_\bs_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\br_\be_\bs_\bi_\bz_\be_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bR_\bo_\bt_\ba_\bt_\be_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* S\bS *\b**\b**\b**\b**\b*\n- * _\bs_\be_\bl_\bf_\bA_\bd_\bj_\bo_\bi_\bn_\bt_\bE_\bi_\bg_\be_\bn_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn_\b(_\b)_\b * _\bs_\bu_\bm_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bs_\be_\bt_\bF_\br_\bo_\bm_\bT_\bw_\bo_\bV_\be_\bc_\bt_\bo_\br_\bs_\b(_\b)_\b o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bs_\bi_\bz_\be_\bs_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bs_\bl_\be_\br_\bp_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bs_\bp_\be_\bc_\bt_\br_\ba_\bl_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn_\b(_\b)_\b o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) * _\bs_\bv_\bd_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* T\bT *\b**\b**\b**\b**\b*\n- * _\bt_\ba_\bi_\bl_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) * _\bt_\br_\ba_\bn_\bs_\bp_\bo_\bs_\be_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bt_\bo_\bA_\bn_\bg_\bl_\be_\bA_\bx_\bi_\bs_\b(_\b)_\b o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bt_\bo_\bA_\bx_\bi_\bs_\bA_\bn_\bg_\bl_\be_\b(_\b)_\b o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bt_\bo_\bR_\bo_\bt_\ba_\bt_\bi_\bo_\bn_\bM_\ba_\bt_\br_\bi_\bx_\b(_\b)_\b \n- _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bt_\bo_\bR_\bo_\bt_\ba_\bt_\bi_\bo_\bn_\bV_\be_\bc_\bt_\bo_\br_\b(_\b)_\b \n- _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bt_\br_\ba_\bc_\be_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* U\bU *\b**\b**\b**\b**\b*\n- * _\bu_\bl_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) * _\bU_\bn_\bi_\bt_\bY_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- * _\bU_\bn_\bi_\bt_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bs_\bt_\ba_\bt_\bi_\bc * _\bU_\bn_\bi_\bt_\bZ_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\bs_\bt_\ba_\bt_\bi_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc * _\bu_\br_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- * _\bU_\bn_\bi_\bt_\bX_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n-*\b**\b**\b**\b**\b* V\bV *\b**\b**\b**\b**\b*\n- * _\bV_\be_\bc_\bt_\bo_\br_\b2_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b) * _\bV_\be_\bc_\bt_\bo_\br_\b6_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b)\n- * _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b) * _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b)\n- * _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b) * _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b)\n- * _\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b) * _\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b)\n- * _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b) * _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b)\n- * _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b) * _\bv_\bo_\bl_\bu_\bm_\be_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2\n- * _\bV_\be_\bc_\bt_\bo_\br_\b4_\b _\b(_\bc_\bl_\ba_\bs_\bs_\b _\bi_\bn_\b _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* X\bX *\b**\b**\b**\b**\b*\n- * _\bx_\by_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) * _\bx_\bz_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* Y\bY *\b**\b**\b**\b**\b*\n- * _\by_\bx_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) * _\by_\bz_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n-*\b**\b**\b**\b**\b* Z\bZ *\b**\b**\b**\b**\b*\n- * _\bZ_\be_\br_\bo_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3 * _\bZ_\be_\br_\bo_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6 o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b _\bs_\bt_\ba_\bt_\bi_\bc\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2 * _\bz_\bx_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bc o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) * _\bz_\by_\b(_\b)_\b _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b2_\bi o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b) o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b _\bm_\be_\bt_\bh_\bo_\bd_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bc\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\bi\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b4\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bc\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n- o _\b(_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b6_\bi\n- _\ba_\bt_\bt_\br_\bi_\bb_\bu_\bt_\be_\b)\n *\b**\b**\b**\b* Q\bQu\bui\bic\bck\bk s\bse\bea\bar\brc\bch\bh *\b**\b**\b**\b*\n [q ][Go]\n *\b**\b**\b**\b* N\bNa\bav\bvi\big\bga\bat\bti\bio\bon\bn *\b**\b**\b**\b*\n * _\bi_\bn_\bd_\be_\bx\n * _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b _\b0_\b._\b4_\b-_\b1_\b _\bd_\bo_\bc_\bu_\bm_\be_\bn_\bt_\ba_\bt_\bi_\bo_\bn \u00bb\n * Index\n \u00a9 Copyright 2012\u22122015, V\u00e1clav \u0160milauer. Created using _\bS_\bp_\bh_\bi_\bn_\bx 8.1.3.\n"}]}, {"source1": "./usr/share/doc/python3-minieigen/html/index.html", "source2": "./usr/share/doc/python3-minieigen/html/index.html", "unified_diff": "@@ -41,49 +41,49 @@\n

Something concise here.

\n
\n \n
\n

Examples\u00b6

\n
\n

Todo

\n-

Some examples of what can be done with minieigen.

\n+

Some examples of what can be done with minieigen.

\n
\n
\n
\n

Naming conventions\u00b6

\n \n
\n
\n

Limitations\u00b6

\n@@ -112,2989 +112,14 @@\n
\n
\n

Documentation\u00b6

\n \n-

miniEigen is wrapper for a small part of the Eigen library. Refer to its documentation for details. All classes in this module support pickling.

\n-
\n-
\n-class minieigen.AlignedBox2\u00b6
\n-

Axis-aligned box object in 2d, defined by its minimum and maximum corners

\n-
\n-
\n-center((AlignedBox2)arg1) Vector2[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-clamp((AlignedBox2)arg1, (AlignedBox2)arg2) None[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-contains((AlignedBox2)arg1, (Vector2)arg2) bool[STATIC]\u00b6
\n-

contains( (AlignedBox2)arg1, (AlignedBox2)arg2) \u2192 bool

\n-
\n-\n-
\n-
\n-empty((AlignedBox2)arg1) bool[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-extend((AlignedBox2)arg1, (Vector2)arg2) None[STATIC]\u00b6
\n-

extend( (AlignedBox2)arg1, (AlignedBox2)arg2) \u2192 None

\n-
\n-\n-
\n-
\n-intersection((AlignedBox2)arg1, (AlignedBox2)arg2) AlignedBox2[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-property max\u00b6
\n-
\n-\n-
\n-
\n-merged((AlignedBox2)arg1, (AlignedBox2)arg2) AlignedBox2[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-property min\u00b6
\n-
\n-\n-
\n-
\n-sizes((AlignedBox2)arg1) Vector2[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-volume((AlignedBox2)arg1) float[STATIC]\u00b6
\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.AlignedBox3\u00b6
\n-

Axis-aligned box object, defined by its minimum and maximum corners

\n-
\n-
\n-center((AlignedBox3)arg1) Vector3[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-clamp((AlignedBox3)arg1, (AlignedBox3)arg2) None[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-contains((AlignedBox3)arg1, (Vector3)arg2) bool[STATIC]\u00b6
\n-

contains( (AlignedBox3)arg1, (AlignedBox3)arg2) \u2192 bool

\n-
\n-\n-
\n-
\n-empty((AlignedBox3)arg1) bool[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-extend((AlignedBox3)arg1, (Vector3)arg2) None[STATIC]\u00b6
\n-

extend( (AlignedBox3)arg1, (AlignedBox3)arg2) \u2192 None

\n-
\n-\n-
\n-
\n-intersection((AlignedBox3)arg1, (AlignedBox3)arg2) AlignedBox3[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-property max\u00b6
\n-
\n-\n-
\n-
\n-merged((AlignedBox3)arg1, (AlignedBox3)arg2) AlignedBox3[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-property min\u00b6
\n-
\n-\n-
\n-
\n-sizes((AlignedBox3)arg1) Vector3[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-volume((AlignedBox3)arg1) float[STATIC]\u00b6
\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Matrix3\u00b6
\n-

3x3 float matrix.

\n-

Supported operations (m is a Matrix3, f if a float/int, v is a Vector3): -m, m+m, m+=m, m-m, m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

\n-

Static attributes: Zero, Ones, Identity.

\n-
\n-
\n-Identity = Matrix3(1,0,0, 0,1,0, 0,0,1)\u00b6
\n-
\n-\n-
\n-
\n-Ones = Matrix3(1,1,1, 1,1,1, 1,1,1)\u00b6
\n-
\n-\n-
\n-
\n-static Random() Matrix3[STATIC]\u00b6
\n-

Return an object where all elements are randomly set to values between 0 and 1.

\n-
\n-\n-
\n-
\n-Zero = Matrix3(0,0,0, 0,0,0, 0,0,0)\u00b6
\n-
\n-\n-
\n-
\n-col((Matrix3)arg1, (int)col) Vector3[STATIC]\u00b6
\n-

Return column as vector.

\n-
\n-\n-
\n-
\n-cols((Matrix3)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-computeUnitaryPositive((Matrix3)arg1) tuple[STATIC]\u00b6
\n-

Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix P such that self=U*P).

\n-
\n-\n-
\n-
\n-determinant((Matrix3)arg1) float[STATIC]\u00b6
\n-

Return matrix determinant.

\n-
\n-\n-
\n-
\n-diagonal((Matrix3)arg1) Vector3[STATIC]\u00b6
\n-

Return diagonal as vector.

\n-
\n-\n-
\n-
\n-inverse((Matrix3)arg1) Matrix3[STATIC]\u00b6
\n-

Return inverted matrix.

\n-
\n-\n-
\n-
\n-isApprox((Matrix3)arg1, (Matrix3)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-jacobiSVD((Matrix3)arg1) tuple[STATIC]\u00b6
\n-

Compute SVD decomposition of square matrix, retuns (U,S,V) such that self=U*S*V.transpose()

\n-
\n-\n-
\n-
\n-maxAbsCoeff((Matrix3)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-maxCoeff((Matrix3)arg1) float[STATIC]\u00b6
\n-

Maximum value over all elements.

\n-
\n-\n-
\n-
\n-mean((Matrix3)arg1) float[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-minCoeff((Matrix3)arg1) float[STATIC]\u00b6
\n-

Minimum value over all elements.

\n-
\n-\n-
\n-
\n-norm((Matrix3)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((Matrix3)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((Matrix3)arg1) Matrix3[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-polarDecomposition((Matrix3)arg1) tuple[STATIC]\u00b6
\n-

Alias for computeUnitaryPositive.

\n-
\n-\n-
\n-
\n-prod((Matrix3)arg1) float[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((Matrix3)arg1[, (float)absTol=1e-06]) Matrix3[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-row((Matrix3)arg1, (int)row) Vector3[STATIC]\u00b6
\n-

Return row as vector.

\n-
\n-\n-
\n-
\n-rows((Matrix3)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-selfAdjointEigenDecomposition((Matrix3)arg1) tuple[STATIC]\u00b6
\n-

Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals). eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3 with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

\n-
\n-\n-
\n-
\n-spectralDecomposition((Matrix3)arg1) tuple[STATIC]\u00b6
\n-

Alias for selfAdjointEigenDecomposition.

\n-
\n-\n-
\n-
\n-squaredNorm((Matrix3)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((Matrix3)arg1) float[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-
\n-svd((Matrix3)arg1) tuple[STATIC]\u00b6
\n-

Alias for jacobiSVD.

\n-
\n-\n-
\n-
\n-trace((Matrix3)arg1) float[STATIC]\u00b6
\n-

Return sum of diagonal elements.

\n-
\n-\n-
\n-
\n-transpose((Matrix3)arg1) Matrix3[STATIC]\u00b6
\n-

Return transposed matrix.

\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Matrix3c\u00b6
\n-

/TODO/

\n-
\n-
\n-Identity = Matrix3c(1,0,0, 0,1,0, 0,0,1)\u00b6
\n-
\n-\n-
\n-
\n-Ones = Matrix3c(1,1,1, 1,1,1, 1,1,1)\u00b6
\n-
\n-\n-
\n-
\n-static Random() Matrix3c[STATIC]\u00b6
\n-

Return an object where all elements are randomly set to values between 0 and 1.

\n-
\n-\n-
\n-
\n-Zero = Matrix3c(0,0,0, 0,0,0, 0,0,0)\u00b6
\n-
\n-\n-
\n-
\n-col((Matrix3c)arg1, (int)col) Vector3c[STATIC]\u00b6
\n-

Return column as vector.

\n-
\n-\n-
\n-
\n-cols((Matrix3c)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-determinant((Matrix3c)arg1) complex[STATIC]\u00b6
\n-

Return matrix determinant.

\n-
\n-\n-
\n-
\n-diagonal((Matrix3c)arg1) Vector3c[STATIC]\u00b6
\n-

Return diagonal as vector.

\n-
\n-\n-
\n-
\n-inverse((Matrix3c)arg1) Matrix3c[STATIC]\u00b6
\n-

Return inverted matrix.

\n-
\n-\n-
\n-
\n-isApprox((Matrix3c)arg1, (Matrix3c)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-maxAbsCoeff((Matrix3c)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-mean((Matrix3c)arg1) complex[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-norm((Matrix3c)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((Matrix3c)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((Matrix3c)arg1) Matrix3c[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-prod((Matrix3c)arg1) complex[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((Matrix3c)arg1[, (float)absTol=1e-06]) Matrix3c[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-row((Matrix3c)arg1, (int)row) Vector3c[STATIC]\u00b6
\n-

Return row as vector.

\n-
\n-\n-
\n-
\n-rows((Matrix3c)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-squaredNorm((Matrix3c)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((Matrix3c)arg1) complex[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-
\n-trace((Matrix3c)arg1) complex[STATIC]\u00b6
\n-

Return sum of diagonal elements.

\n-
\n-\n-
\n-
\n-transpose((Matrix3c)arg1) Matrix3c[STATIC]\u00b6
\n-

Return transposed matrix.

\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Matrix6\u00b6
\n-

6x6 float matrix. Constructed from 4 3x3 sub-matrices, from 6xVector6 (rows).

\n-

Supported operations (m is a Matrix6, f if a float/int, v is a Vector6): -m, m+m, m+=m, m-m, m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

\n-

Static attributes: Zero, Ones, Identity.

\n-
\n-
\n-Identity = Matrix6( \t(      1,      0,      0,      0,      0,      0), \t(      0,      1,      0,      0,      0,      0), \t(      0,      0,      1,      0,      0,      0), \t(      0,      0,      0,      1,      0,      0), \t(      0,      0,      0,      0,      1,      0), \t(      0,      0,      0,      0,      0,      1) )\u00b6
\n-
\n-\n-
\n-
\n-Ones = Matrix6( \t(      1,      1,      1,      1,      1,      1), \t(      1,      1,      1,      1,      1,      1), \t(      1,      1,      1,      1,      1,      1), \t(      1,      1,      1,      1,      1,      1), \t(      1,      1,      1,      1,      1,      1), \t(      1,      1,      1,      1,      1,      1) )\u00b6
\n-
\n-\n-
\n-
\n-static Random() Matrix6[STATIC]\u00b6
\n-

Return an object where all elements are randomly set to values between 0 and 1.

\n-
\n-\n-
\n-
\n-Zero = Matrix6( \t(      0,      0,      0,      0,      0,      0), \t(      0,      0,      0,      0,      0,      0), \t(      0,      0,      0,      0,      0,      0), \t(      0,      0,      0,      0,      0,      0), \t(      0,      0,      0,      0,      0,      0), \t(      0,      0,      0,      0,      0,      0) )\u00b6
\n-
\n-\n-
\n-
\n-col((Matrix6)arg1, (int)col) Vector6[STATIC]\u00b6
\n-

Return column as vector.

\n-
\n-\n-
\n-
\n-cols((Matrix6)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-computeUnitaryPositive((Matrix6)arg1) tuple[STATIC]\u00b6
\n-

Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix P such that self=U*P).

\n-
\n-\n-
\n-
\n-determinant((Matrix6)arg1) float[STATIC]\u00b6
\n-

Return matrix determinant.

\n-
\n-\n-
\n-
\n-diagonal((Matrix6)arg1) Vector6[STATIC]\u00b6
\n-

Return diagonal as vector.

\n-
\n-\n-
\n-
\n-inverse((Matrix6)arg1) Matrix6[STATIC]\u00b6
\n-

Return inverted matrix.

\n-
\n-\n-
\n-
\n-isApprox((Matrix6)arg1, (Matrix6)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-jacobiSVD((Matrix6)arg1) tuple[STATIC]\u00b6
\n-

Compute SVD decomposition of square matrix, retuns (U,S,V) such that self=U*S*V.transpose()

\n-
\n-\n-
\n-
\n-ll((Matrix6)arg1) Matrix3[STATIC]\u00b6
\n-

Return lower-left 3x3 block

\n-
\n-\n-
\n-
\n-lr((Matrix6)arg1) Matrix3[STATIC]\u00b6
\n-

Return lower-right 3x3 block

\n-
\n-\n-
\n-
\n-maxAbsCoeff((Matrix6)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-maxCoeff((Matrix6)arg1) float[STATIC]\u00b6
\n-

Maximum value over all elements.

\n-
\n-\n-
\n-
\n-mean((Matrix6)arg1) float[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-minCoeff((Matrix6)arg1) float[STATIC]\u00b6
\n-

Minimum value over all elements.

\n-
\n-\n-
\n-
\n-norm((Matrix6)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((Matrix6)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((Matrix6)arg1) Matrix6[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-polarDecomposition((Matrix6)arg1) tuple[STATIC]\u00b6
\n-

Alias for computeUnitaryPositive.

\n-
\n-\n-
\n-
\n-prod((Matrix6)arg1) float[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((Matrix6)arg1[, (float)absTol=1e-06]) Matrix6[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-row((Matrix6)arg1, (int)row) Vector6[STATIC]\u00b6
\n-

Return row as vector.

\n-
\n-\n-
\n-
\n-rows((Matrix6)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-selfAdjointEigenDecomposition((Matrix6)arg1) tuple[STATIC]\u00b6
\n-

Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals). eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3 with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

\n-
\n-\n-
\n-
\n-spectralDecomposition((Matrix6)arg1) tuple[STATIC]\u00b6
\n-

Alias for selfAdjointEigenDecomposition.

\n-
\n-\n-
\n-
\n-squaredNorm((Matrix6)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((Matrix6)arg1) float[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-
\n-svd((Matrix6)arg1) tuple[STATIC]\u00b6
\n-

Alias for jacobiSVD.

\n-
\n-\n-
\n-
\n-trace((Matrix6)arg1) float[STATIC]\u00b6
\n-

Return sum of diagonal elements.

\n-
\n-\n-
\n-
\n-transpose((Matrix6)arg1) Matrix6[STATIC]\u00b6
\n-

Return transposed matrix.

\n-
\n-\n-
\n-
\n-ul((Matrix6)arg1) Matrix3[STATIC]\u00b6
\n-

Return upper-left 3x3 block

\n-
\n-\n-
\n-
\n-ur((Matrix6)arg1) Matrix3[STATIC]\u00b6
\n-

Return upper-right 3x3 block

\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Matrix6c\u00b6
\n-

/TODO/

\n-
\n-
\n-Identity = Matrix6c( \t(      1,      0,      0,      0,      0,      0), \t(      0,      1,      0,      0,      0,      0), \t(      0,      0,      1,      0,      0,      0), \t(      0,      0,      0,      1,      0,      0), \t(      0,      0,      0,      0,      1,      0), \t(      0,      0,      0,      0,      0,      1) )\u00b6
\n-
\n-\n-
\n-
\n-Ones = Matrix6c( \t(      1,      1,      1,      1,      1,      1), \t(      1,      1,      1,      1,      1,      1), \t(      1,      1,      1,      1,      1,      1), \t(      1,      1,      1,      1,      1,      1), \t(      1,      1,      1,      1,      1,      1), \t(      1,      1,      1,      1,      1,      1) )\u00b6
\n-
\n-\n-
\n-
\n-static Random() Matrix6c[STATIC]\u00b6
\n-

Return an object where all elements are randomly set to values between 0 and 1.

\n-
\n-\n-
\n-
\n-Zero = Matrix6c( \t(      0,      0,      0,      0,      0,      0), \t(      0,      0,      0,      0,      0,      0), \t(      0,      0,      0,      0,      0,      0), \t(      0,      0,      0,      0,      0,      0), \t(      0,      0,      0,      0,      0,      0), \t(      0,      0,      0,      0,      0,      0) )\u00b6
\n-
\n-\n-
\n-
\n-col((Matrix6c)arg1, (int)col) Vector6c[STATIC]\u00b6
\n-

Return column as vector.

\n-
\n-\n-
\n-
\n-cols((Matrix6c)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-determinant((Matrix6c)arg1) complex[STATIC]\u00b6
\n-

Return matrix determinant.

\n-
\n-\n-
\n-
\n-diagonal((Matrix6c)arg1) Vector6c[STATIC]\u00b6
\n-

Return diagonal as vector.

\n-
\n-\n-
\n-
\n-inverse((Matrix6c)arg1) Matrix6c[STATIC]\u00b6
\n-

Return inverted matrix.

\n-
\n-\n-
\n-
\n-isApprox((Matrix6c)arg1, (Matrix6c)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-ll((Matrix6c)arg1) Matrix3c[STATIC]\u00b6
\n-

Return lower-left 3x3 block

\n-
\n-\n-
\n-
\n-lr((Matrix6c)arg1) Matrix3c[STATIC]\u00b6
\n-

Return lower-right 3x3 block

\n-
\n-\n-
\n-
\n-maxAbsCoeff((Matrix6c)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-mean((Matrix6c)arg1) complex[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-norm((Matrix6c)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((Matrix6c)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((Matrix6c)arg1) Matrix6c[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-prod((Matrix6c)arg1) complex[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((Matrix6c)arg1[, (float)absTol=1e-06]) Matrix6c[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-row((Matrix6c)arg1, (int)row) Vector6c[STATIC]\u00b6
\n-

Return row as vector.

\n-
\n-\n-
\n-
\n-rows((Matrix6c)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-squaredNorm((Matrix6c)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((Matrix6c)arg1) complex[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-
\n-trace((Matrix6c)arg1) complex[STATIC]\u00b6
\n-

Return sum of diagonal elements.

\n-
\n-\n-
\n-
\n-transpose((Matrix6c)arg1) Matrix6c[STATIC]\u00b6
\n-

Return transposed matrix.

\n-
\n-\n-
\n-
\n-ul((Matrix6c)arg1) Matrix3c[STATIC]\u00b6
\n-

Return upper-left 3x3 block

\n-
\n-\n-
\n-
\n-ur((Matrix6c)arg1) Matrix3c[STATIC]\u00b6
\n-

Return upper-right 3x3 block

\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.MatrixX\u00b6
\n-

XxX (dynamic-sized) float matrix. Constructed from list of rows (as VectorX).

\n-

Supported operations (m is a MatrixX, f if a float/int, v is a VectorX): -m, m+m, m+=m, m-m, m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

\n-
\n-
\n-static Identity((int)arg1, (int)rank) MatrixX[STATIC]\u00b6
\n-

Create identity matrix with given rank (square).

\n-
\n-\n-
\n-
\n-static Ones((int)rows, (int)cols) MatrixX[STATIC]\u00b6
\n-

Create matrix of given dimensions where all elements are set to 1.

\n-
\n-\n-
\n-
\n-static Random((int)rows, (int)cols) MatrixX[STATIC]\u00b6
\n-

Create matrix with given dimensions where all elements are set to number between 0 and 1 (uniformly-distributed).

\n-
\n-\n-
\n-
\n-static Zero((int)rows, (int)cols) MatrixX[STATIC]\u00b6
\n-

Create zero matrix of given dimensions

\n-
\n-\n-
\n-
\n-col((MatrixX)arg1, (int)col) VectorX[STATIC]\u00b6
\n-

Return column as vector.

\n-
\n-\n-
\n-
\n-cols((MatrixX)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-computeUnitaryPositive((MatrixX)arg1) tuple[STATIC]\u00b6
\n-

Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix P such that self=U*P).

\n-
\n-\n-
\n-
\n-determinant((MatrixX)arg1) float[STATIC]\u00b6
\n-

Return matrix determinant.

\n-
\n-\n-
\n-
\n-diagonal((MatrixX)arg1) VectorX[STATIC]\u00b6
\n-

Return diagonal as vector.

\n-
\n-\n-
\n-
\n-inverse((MatrixX)arg1) MatrixX[STATIC]\u00b6
\n-

Return inverted matrix.

\n-
\n-\n-
\n-
\n-isApprox((MatrixX)arg1, (MatrixX)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-jacobiSVD((MatrixX)arg1) tuple[STATIC]\u00b6
\n-

Compute SVD decomposition of square matrix, retuns (U,S,V) such that self=U*S*V.transpose()

\n-
\n-\n-
\n-
\n-maxAbsCoeff((MatrixX)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-maxCoeff((MatrixX)arg1) float[STATIC]\u00b6
\n-

Maximum value over all elements.

\n-
\n-\n-
\n-
\n-mean((MatrixX)arg1) float[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-minCoeff((MatrixX)arg1) float[STATIC]\u00b6
\n-

Minimum value over all elements.

\n-
\n-\n-
\n-
\n-norm((MatrixX)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((MatrixX)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((MatrixX)arg1) MatrixX[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-polarDecomposition((MatrixX)arg1) tuple[STATIC]\u00b6
\n-

Alias for computeUnitaryPositive.

\n-
\n-\n-
\n-
\n-prod((MatrixX)arg1) float[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((MatrixX)arg1[, (float)absTol=1e-06]) MatrixX[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-resize((MatrixX)arg1, (int)rows, (int)cols) None[STATIC]\u00b6
\n-

Change size of the matrix, keep values of elements which exist in the new matrix

\n-
\n-\n-
\n-
\n-row((MatrixX)arg1, (int)row) VectorX[STATIC]\u00b6
\n-

Return row as vector.

\n-
\n-\n-
\n-
\n-rows((MatrixX)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-selfAdjointEigenDecomposition((MatrixX)arg1) tuple[STATIC]\u00b6
\n-

Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals). eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3 with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

\n-
\n-\n-
\n-
\n-spectralDecomposition((MatrixX)arg1) tuple[STATIC]\u00b6
\n-

Alias for selfAdjointEigenDecomposition.

\n-
\n-\n-
\n-
\n-squaredNorm((MatrixX)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((MatrixX)arg1) float[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-
\n-svd((MatrixX)arg1) tuple[STATIC]\u00b6
\n-

Alias for jacobiSVD.

\n-
\n-\n-
\n-
\n-trace((MatrixX)arg1) float[STATIC]\u00b6
\n-

Return sum of diagonal elements.

\n-
\n-\n-
\n-
\n-transpose((MatrixX)arg1) MatrixX[STATIC]\u00b6
\n-

Return transposed matrix.

\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.MatrixXc\u00b6
\n-

/TODO/

\n-
\n-
\n-static Identity((int)arg1, (int)rank) MatrixXc[STATIC]\u00b6
\n-

Create identity matrix with given rank (square).

\n-
\n-\n-
\n-
\n-static Ones((int)rows, (int)cols) MatrixXc[STATIC]\u00b6
\n-

Create matrix of given dimensions where all elements are set to 1.

\n-
\n-\n-
\n-
\n-static Random((int)rows, (int)cols) MatrixXc[STATIC]\u00b6
\n-

Create matrix with given dimensions where all elements are set to number between 0 and 1 (uniformly-distributed).

\n-
\n-\n-
\n-
\n-static Zero((int)rows, (int)cols) MatrixXc[STATIC]\u00b6
\n-

Create zero matrix of given dimensions

\n-
\n-\n-
\n-
\n-col((MatrixXc)arg1, (int)col) VectorXc[STATIC]\u00b6
\n-

Return column as vector.

\n-
\n-\n-
\n-
\n-cols((MatrixXc)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-determinant((MatrixXc)arg1) complex[STATIC]\u00b6
\n-

Return matrix determinant.

\n-
\n-\n-
\n-
\n-diagonal((MatrixXc)arg1) VectorXc[STATIC]\u00b6
\n-

Return diagonal as vector.

\n-
\n-\n-
\n-
\n-inverse((MatrixXc)arg1) MatrixXc[STATIC]\u00b6
\n-

Return inverted matrix.

\n-
\n-\n-
\n-
\n-isApprox((MatrixXc)arg1, (MatrixXc)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-maxAbsCoeff((MatrixXc)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-mean((MatrixXc)arg1) complex[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-norm((MatrixXc)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((MatrixXc)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((MatrixXc)arg1) MatrixXc[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-prod((MatrixXc)arg1) complex[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((MatrixXc)arg1[, (float)absTol=1e-06]) MatrixXc[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-resize((MatrixXc)arg1, (int)rows, (int)cols) None[STATIC]\u00b6
\n-

Change size of the matrix, keep values of elements which exist in the new matrix

\n-
\n-\n-
\n-
\n-row((MatrixXc)arg1, (int)row) VectorXc[STATIC]\u00b6
\n-

Return row as vector.

\n-
\n-\n-
\n-
\n-rows((MatrixXc)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-squaredNorm((MatrixXc)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((MatrixXc)arg1) complex[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-
\n-trace((MatrixXc)arg1) complex[STATIC]\u00b6
\n-

Return sum of diagonal elements.

\n-
\n-\n-
\n-
\n-transpose((MatrixXc)arg1) MatrixXc[STATIC]\u00b6
\n-

Return transposed matrix.

\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Quaternion\u00b6
\n-

Quaternion representing rotation.

\n-

Supported operations (q is a Quaternion, v is a Vector3): q*q (rotation composition), q*=q, q*v (rotating v by q), q==q, q!=q.

\n-

Static attributes: Identity.

\n-
\n-
\n-Identity = Quaternion((1,0,0),0)\u00b6
\n-
\n-\n-
\n-
\n-Rotate((Quaternion)arg1, (Vector3)v) Vector3[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-angularDistance((Quaternion)arg1, (Quaternion)arg2) float[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-conjugate((Quaternion)arg1) Quaternion[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-inverse((Quaternion)arg1) Quaternion[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-norm((Quaternion)arg1) float[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-normalize((Quaternion)arg1) None[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-normalized((Quaternion)arg1) Quaternion[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-setFromTwoVectors((Quaternion)arg1, (Vector3)u, (Vector3)v) None[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-slerp((Quaternion)arg1, (float)t, (Quaternion)other) Quaternion[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-toAngleAxis((Quaternion)arg1) tuple[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-toAxisAngle((Quaternion)arg1) tuple[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-toRotationMatrix((Quaternion)arg1) Matrix3[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-toRotationVector((Quaternion)arg1) Vector3[STATIC]\u00b6
\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Vector2\u00b6
\n-

3-dimensional float vector.

\n-

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v.

\n-

Implicit conversion from sequence (list, tuple, \u2026) of 2 floats.

\n-

Static attributes: Zero, Ones, UnitX, UnitY.

\n-
\n-
\n-Identity = Vector2(1,0)\u00b6
\n-
\n-\n-
\n-
\n-Ones = Vector2(1,1)\u00b6
\n-
\n-\n-
\n-
\n-static Random() Vector2[STATIC]\u00b6
\n-

Return an object where all elements are randomly set to values between 0 and 1.

\n-
\n-\n-
\n-
\n-static Unit((int)arg1) Vector2[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-UnitX = Vector2(1,0)\u00b6
\n-
\n-\n-
\n-
\n-UnitY = Vector2(0,1)\u00b6
\n-
\n-\n-
\n-
\n-Zero = Vector2(0,0)\u00b6
\n-
\n-\n-
\n-
\n-asDiagonal((Vector2)arg1) object[STATIC]\u00b6
\n-

Return diagonal matrix with this vector on the diagonal.

\n-
\n-\n-
\n-
\n-cols((Vector2)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-dot((Vector2)arg1, (Vector2)other) float[STATIC]\u00b6
\n-

Dot product with other.

\n-
\n-\n-
\n-
\n-isApprox((Vector2)arg1, (Vector2)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-maxAbsCoeff((Vector2)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-maxCoeff((Vector2)arg1) float[STATIC]\u00b6
\n-

Maximum value over all elements.

\n-
\n-\n-
\n-
\n-mean((Vector2)arg1) float[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-minCoeff((Vector2)arg1) float[STATIC]\u00b6
\n-

Minimum value over all elements.

\n-
\n-\n-
\n-
\n-norm((Vector2)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((Vector2)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((Vector2)arg1) Vector2[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-outer((Vector2)arg1, (Vector2)other) object[STATIC]\u00b6
\n-

Outer product with other.

\n-
\n-\n-
\n-
\n-prod((Vector2)arg1) float[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((Vector2)arg1[, (float)absTol=1e-06]) Vector2[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-rows((Vector2)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-squaredNorm((Vector2)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((Vector2)arg1) float[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Vector2c\u00b6
\n-

/TODO/

\n-
\n-
\n-Identity = Vector2c(1,0)\u00b6
\n-
\n-\n-
\n-
\n-Ones = Vector2c(1,1)\u00b6
\n-
\n-\n-
\n-
\n-static Random() Vector2c[STATIC]\u00b6
\n-

Return an object where all elements are randomly set to values between 0 and 1.

\n-
\n-\n-
\n-
\n-static Unit((int)arg1) Vector2c[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-UnitX = Vector2c(1,0)\u00b6
\n-
\n-\n-
\n-
\n-UnitY = Vector2c(0,1)\u00b6
\n-
\n-\n-
\n-
\n-Zero = Vector2c(0,0)\u00b6
\n-
\n-\n-
\n-
\n-asDiagonal((Vector2c)arg1) object[STATIC]\u00b6
\n-

Return diagonal matrix with this vector on the diagonal.

\n-
\n-\n-
\n-
\n-cols((Vector2c)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-dot((Vector2c)arg1, (Vector2c)other) complex[STATIC]\u00b6
\n-

Dot product with other.

\n-
\n-\n-
\n-
\n-isApprox((Vector2c)arg1, (Vector2c)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-maxAbsCoeff((Vector2c)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-mean((Vector2c)arg1) complex[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-norm((Vector2c)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((Vector2c)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((Vector2c)arg1) Vector2c[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-outer((Vector2c)arg1, (Vector2c)other) object[STATIC]\u00b6
\n-

Outer product with other.

\n-
\n-\n-
\n-
\n-prod((Vector2c)arg1) complex[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((Vector2c)arg1[, (float)absTol=1e-06]) Vector2c[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-rows((Vector2c)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-squaredNorm((Vector2c)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((Vector2c)arg1) complex[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Vector2i\u00b6
\n-

2-dimensional integer vector.

\n-

Supported operations (i if an int, v is a Vector2i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i, v==v, v!=v.

\n-

Implicit conversion from sequence (list, tuple, \u2026) of 2 integers.

\n-

Static attributes: Zero, Ones, UnitX, UnitY.

\n-
\n-
\n-Identity = Vector2i(1,0)\u00b6
\n-
\n-\n-
\n-
\n-Ones = Vector2i(1,1)\u00b6
\n-
\n-\n-
\n-
\n-static Random() Vector2i[STATIC]\u00b6
\n-

Return an object where all elements are randomly set to values between 0 and 1.

\n-
\n-\n-
\n-
\n-static Unit((int)arg1) Vector2i[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-UnitX = Vector2i(1,0)\u00b6
\n-
\n-\n-
\n-
\n-UnitY = Vector2i(0,1)\u00b6
\n-
\n-\n-
\n-
\n-Zero = Vector2i(0,0)\u00b6
\n-
\n-\n-
\n-
\n-asDiagonal((Vector2i)arg1) object[STATIC]\u00b6
\n-

Return diagonal matrix with this vector on the diagonal.

\n-
\n-\n-
\n-
\n-cols((Vector2i)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-dot((Vector2i)arg1, (Vector2i)other) int[STATIC]\u00b6
\n-

Dot product with other.

\n-
\n-\n-
\n-
\n-isApprox((Vector2i)arg1, (Vector2i)other[, (int)prec=0]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-maxAbsCoeff((Vector2i)arg1) int[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-maxCoeff((Vector2i)arg1) int[STATIC]\u00b6
\n-

Maximum value over all elements.

\n-
\n-\n-
\n-
\n-mean((Vector2i)arg1) int[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-minCoeff((Vector2i)arg1) int[STATIC]\u00b6
\n-

Minimum value over all elements.

\n-
\n-\n-
\n-
\n-outer((Vector2i)arg1, (Vector2i)other) object[STATIC]\u00b6
\n-

Outer product with other.

\n-
\n-\n-
\n-
\n-prod((Vector2i)arg1) int[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-rows((Vector2i)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-sum((Vector2i)arg1) int[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Vector3\u00b6
\n-

3-dimensional float vector.

\n-

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v, plus operations with Matrix3 and Quaternion.

\n-

Implicit conversion from sequence (list, tuple, \u2026) of 3 floats.

\n-

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

\n-
\n-
\n-Identity = Vector3(1,0,0)\u00b6
\n-
\n-\n-
\n-
\n-Ones = Vector3(1,1,1)\u00b6
\n-
\n-\n-
\n-
\n-static Random() Vector3[STATIC]\u00b6
\n-

Return an object where all elements are randomly set to values between 0 and 1.

\n-
\n-\n-
\n-
\n-static Unit((int)arg1) Vector3[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-UnitX = Vector3(1,0,0)\u00b6
\n-
\n-\n-
\n-
\n-UnitY = Vector3(0,1,0)\u00b6
\n-
\n-\n-
\n-
\n-UnitZ = Vector3(0,0,1)\u00b6
\n-
\n-\n-
\n-
\n-Zero = Vector3(0,0,0)\u00b6
\n-
\n-\n-
\n-
\n-asDiagonal((Vector3)arg1) Matrix3[STATIC]\u00b6
\n-

Return diagonal matrix with this vector on the diagonal.

\n-
\n-\n-
\n-
\n-cols((Vector3)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-cross((Vector3)arg1, (Vector3)arg2) Vector3[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-dot((Vector3)arg1, (Vector3)other) float[STATIC]\u00b6
\n-

Dot product with other.

\n-
\n-\n-
\n-
\n-isApprox((Vector3)arg1, (Vector3)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-maxAbsCoeff((Vector3)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-maxCoeff((Vector3)arg1) float[STATIC]\u00b6
\n-

Maximum value over all elements.

\n-
\n-\n-
\n-
\n-mean((Vector3)arg1) float[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-minCoeff((Vector3)arg1) float[STATIC]\u00b6
\n-

Minimum value over all elements.

\n-
\n-\n-
\n-
\n-norm((Vector3)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((Vector3)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((Vector3)arg1) Vector3[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-outer((Vector3)arg1, (Vector3)other) Matrix3[STATIC]\u00b6
\n-

Outer product with other.

\n-
\n-\n-
\n-
\n-prod((Vector3)arg1) float[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((Vector3)arg1[, (float)absTol=1e-06]) Vector3[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-rows((Vector3)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-squaredNorm((Vector3)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((Vector3)arg1) float[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-
\n-xy((Vector3)arg1) Vector2[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-xz((Vector3)arg1) Vector2[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-yx((Vector3)arg1) Vector2[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-yz((Vector3)arg1) Vector2[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-zx((Vector3)arg1) Vector2[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-zy((Vector3)arg1) Vector2[STATIC]\u00b6
\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Vector3c\u00b6
\n-

/TODO/

\n-
\n-
\n-Identity = Vector3c(1,0,0)\u00b6
\n-
\n-\n-
\n-
\n-Ones = Vector3c(1,1,1)\u00b6
\n-
\n-\n-
\n-
\n-static Random() Vector3c[STATIC]\u00b6
\n-

Return an object where all elements are randomly set to values between 0 and 1.

\n-
\n-\n-
\n-
\n-static Unit((int)arg1) Vector3c[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-UnitX = Vector3c(1,0,0)\u00b6
\n-
\n-\n-
\n-
\n-UnitY = Vector3c(0,1,0)\u00b6
\n-
\n-\n-
\n-
\n-UnitZ = Vector3c(0,0,1)\u00b6
\n-
\n-\n-
\n-
\n-Zero = Vector3c(0,0,0)\u00b6
\n-
\n-\n-
\n-
\n-asDiagonal((Vector3c)arg1) Matrix3c[STATIC]\u00b6
\n-

Return diagonal matrix with this vector on the diagonal.

\n-
\n-\n-
\n-
\n-cols((Vector3c)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-cross((Vector3c)arg1, (Vector3c)arg2) Vector3c[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-dot((Vector3c)arg1, (Vector3c)other) complex[STATIC]\u00b6
\n-

Dot product with other.

\n-
\n-\n-
\n-
\n-isApprox((Vector3c)arg1, (Vector3c)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-maxAbsCoeff((Vector3c)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-mean((Vector3c)arg1) complex[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-norm((Vector3c)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((Vector3c)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((Vector3c)arg1) Vector3c[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-outer((Vector3c)arg1, (Vector3c)other) Matrix3c[STATIC]\u00b6
\n-

Outer product with other.

\n-
\n-\n-
\n-
\n-prod((Vector3c)arg1) complex[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((Vector3c)arg1[, (float)absTol=1e-06]) Vector3c[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-rows((Vector3c)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-squaredNorm((Vector3c)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((Vector3c)arg1) complex[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-
\n-xy((Vector3c)arg1) Vector2c[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-xz((Vector3c)arg1) Vector2c[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-yx((Vector3c)arg1) Vector2c[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-yz((Vector3c)arg1) Vector2c[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-zx((Vector3c)arg1) Vector2c[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-zy((Vector3c)arg1) Vector2c[STATIC]\u00b6
\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Vector3i\u00b6
\n-

3-dimensional integer vector.

\n-

Supported operations (i if an int, v is a Vector3i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i, v==v, v!=v.

\n-

Implicit conversion from sequence (list, tuple, \u2026) of 3 integers.

\n-

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

\n-
\n-
\n-Identity = Vector3i(1,0,0)\u00b6
\n-
\n-\n-
\n-
\n-Ones = Vector3i(1,1,1)\u00b6
\n-
\n-\n-
\n-
\n-static Random() Vector3i[STATIC]\u00b6
\n-

Return an object where all elements are randomly set to values between 0 and 1.

\n-
\n-\n-
\n-
\n-static Unit((int)arg1) Vector3i[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-UnitX = Vector3i(1,0,0)\u00b6
\n-
\n-\n-
\n-
\n-UnitY = Vector3i(0,1,0)\u00b6
\n-
\n-\n-
\n-
\n-UnitZ = Vector3i(0,0,1)\u00b6
\n-
\n-\n-
\n-
\n-Zero = Vector3i(0,0,0)\u00b6
\n-
\n-\n-
\n-
\n-asDiagonal((Vector3i)arg1) object[STATIC]\u00b6
\n-

Return diagonal matrix with this vector on the diagonal.

\n-
\n-\n-
\n-
\n-cols((Vector3i)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-cross((Vector3i)arg1, (Vector3i)arg2) Vector3i[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-dot((Vector3i)arg1, (Vector3i)other) int[STATIC]\u00b6
\n-

Dot product with other.

\n-
\n-\n-
\n-
\n-isApprox((Vector3i)arg1, (Vector3i)other[, (int)prec=0]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-maxAbsCoeff((Vector3i)arg1) int[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-maxCoeff((Vector3i)arg1) int[STATIC]\u00b6
\n-

Maximum value over all elements.

\n-
\n-\n-
\n-
\n-mean((Vector3i)arg1) int[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-minCoeff((Vector3i)arg1) int[STATIC]\u00b6
\n-

Minimum value over all elements.

\n-
\n-\n-
\n-
\n-outer((Vector3i)arg1, (Vector3i)other) object[STATIC]\u00b6
\n-

Outer product with other.

\n-
\n-\n-
\n-
\n-prod((Vector3i)arg1) int[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-rows((Vector3i)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-sum((Vector3i)arg1) int[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-
\n-xy((Vector3i)arg1) Vector2i[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-xz((Vector3i)arg1) Vector2i[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-yx((Vector3i)arg1) Vector2i[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-yz((Vector3i)arg1) Vector2i[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-zx((Vector3i)arg1) Vector2i[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-zy((Vector3i)arg1) Vector2i[STATIC]\u00b6
\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Vector4\u00b6
\n-

4-dimensional float vector.

\n-

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v.

\n-

Implicit conversion from sequence (list, tuple, \u2026) of 4 floats.

\n-

Static attributes: Zero, Ones.

\n-
\n-
\n-Identity = Vector4(1,0,0, 0)\u00b6
\n-
\n-\n-
\n-
\n-Ones = Vector4(1,1,1, 1)\u00b6
\n-
\n-\n-
\n-
\n-static Random() Vector4[STATIC]\u00b6
\n-

Return an object where all elements are randomly set to values between 0 and 1.

\n-
\n-\n-
\n-
\n-static Unit((int)arg1) Vector4[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-Zero = Vector4(0,0,0, 0)\u00b6
\n-
\n-\n-
\n-
\n-asDiagonal((Vector4)arg1) object[STATIC]\u00b6
\n-

Return diagonal matrix with this vector on the diagonal.

\n-
\n-\n-
\n-
\n-cols((Vector4)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-dot((Vector4)arg1, (Vector4)other) float[STATIC]\u00b6
\n-

Dot product with other.

\n-
\n-\n-
\n-
\n-isApprox((Vector4)arg1, (Vector4)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-maxAbsCoeff((Vector4)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-maxCoeff((Vector4)arg1) float[STATIC]\u00b6
\n-

Maximum value over all elements.

\n-
\n-\n-
\n-
\n-mean((Vector4)arg1) float[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-minCoeff((Vector4)arg1) float[STATIC]\u00b6
\n-

Minimum value over all elements.

\n-
\n-\n-
\n-
\n-norm((Vector4)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((Vector4)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((Vector4)arg1) Vector4[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-outer((Vector4)arg1, (Vector4)other) object[STATIC]\u00b6
\n-

Outer product with other.

\n-
\n-\n-
\n-
\n-prod((Vector4)arg1) float[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((Vector4)arg1[, (float)absTol=1e-06]) Vector4[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-rows((Vector4)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-squaredNorm((Vector4)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((Vector4)arg1) float[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Vector6\u00b6
\n-

6-dimensional float vector.

\n-

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v.

\n-

Implicit conversion from sequence (list, tuple, \u2026) of 6 floats.

\n-

Static attributes: Zero, Ones.

\n-
\n-
\n-Identity = Vector6(1,0,0, 0,0,0)\u00b6
\n-
\n-\n-
\n-
\n-Ones = Vector6(1,1,1, 1,1,1)\u00b6
\n-
\n-\n-
\n-
\n-static Random() Vector6[STATIC]\u00b6
\n-

Return an object where all elements are randomly set to values between 0 and 1.

\n-
\n-\n-
\n-
\n-static Unit((int)arg1) Vector6[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-Zero = Vector6(0,0,0, 0,0,0)\u00b6
\n-
\n-\n-
\n-
\n-asDiagonal((Vector6)arg1) Matrix6[STATIC]\u00b6
\n-

Return diagonal matrix with this vector on the diagonal.

\n-
\n-\n-
\n-
\n-cols((Vector6)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-dot((Vector6)arg1, (Vector6)other) float[STATIC]\u00b6
\n-

Dot product with other.

\n-
\n-\n-
\n-
\n-head((Vector6)arg1) Vector3[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-isApprox((Vector6)arg1, (Vector6)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-maxAbsCoeff((Vector6)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-maxCoeff((Vector6)arg1) float[STATIC]\u00b6
\n-

Maximum value over all elements.

\n-
\n-\n-
\n-
\n-mean((Vector6)arg1) float[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-minCoeff((Vector6)arg1) float[STATIC]\u00b6
\n-

Minimum value over all elements.

\n-
\n-\n-
\n-
\n-norm((Vector6)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((Vector6)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((Vector6)arg1) Vector6[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-outer((Vector6)arg1, (Vector6)other) Matrix6[STATIC]\u00b6
\n-

Outer product with other.

\n-
\n-\n-
\n-
\n-prod((Vector6)arg1) float[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((Vector6)arg1[, (float)absTol=1e-06]) Vector6[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-rows((Vector6)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-squaredNorm((Vector6)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((Vector6)arg1) float[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-
\n-tail((Vector6)arg1) Vector3[STATIC]\u00b6
\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Vector6c\u00b6
\n-

/TODO/

\n-
\n-
\n-Identity = Vector6c(1,0,0, 0,0,0)\u00b6
\n-
\n-\n-
\n-
\n-Ones = Vector6c(1,1,1, 1,1,1)\u00b6
\n-
\n-\n-
\n-
\n-static Random() Vector6c[STATIC]\u00b6
\n-

Return an object where all elements are randomly set to values between 0 and 1.

\n-
\n-\n-
\n-
\n-static Unit((int)arg1) Vector6c[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-Zero = Vector6c(0,0,0, 0,0,0)\u00b6
\n-
\n-\n-
\n-
\n-asDiagonal((Vector6c)arg1) Matrix6c[STATIC]\u00b6
\n-

Return diagonal matrix with this vector on the diagonal.

\n-
\n-\n-
\n-
\n-cols((Vector6c)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-dot((Vector6c)arg1, (Vector6c)other) complex[STATIC]\u00b6
\n-

Dot product with other.

\n-
\n-\n-
\n-
\n-head((Vector6c)arg1) Vector3c[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-isApprox((Vector6c)arg1, (Vector6c)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-maxAbsCoeff((Vector6c)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-mean((Vector6c)arg1) complex[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-norm((Vector6c)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((Vector6c)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((Vector6c)arg1) Vector6c[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-outer((Vector6c)arg1, (Vector6c)other) Matrix6c[STATIC]\u00b6
\n-

Outer product with other.

\n-
\n-\n-
\n-
\n-prod((Vector6c)arg1) complex[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((Vector6c)arg1[, (float)absTol=1e-06]) Vector6c[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-rows((Vector6c)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-squaredNorm((Vector6c)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((Vector6c)arg1) complex[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-
\n-tail((Vector6c)arg1) Vector3c[STATIC]\u00b6
\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.Vector6i\u00b6
\n-

6-dimensional float vector.

\n-

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v.

\n-

Implicit conversion from sequence (list, tuple, \u2026) of 6 floats.

\n-

Static attributes: Zero, Ones.

\n-
\n-
\n-Identity = Vector6i(1,0,0, 0,0,0)\u00b6
\n-
\n-\n-
\n-
\n-Ones = Vector6i(1,1,1, 1,1,1)\u00b6
\n-
\n-\n-
\n-
\n-static Random() Vector6i[STATIC]\u00b6
\n-

Return an object where all elements are randomly set to values between 0 and 1.

\n-
\n-\n-
\n-
\n-static Unit((int)arg1) Vector6i[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-Zero = Vector6i(0,0,0, 0,0,0)\u00b6
\n-
\n-\n-
\n-
\n-asDiagonal((Vector6i)arg1) object[STATIC]\u00b6
\n-

Return diagonal matrix with this vector on the diagonal.

\n-
\n-\n-
\n-
\n-cols((Vector6i)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-dot((Vector6i)arg1, (Vector6i)other) int[STATIC]\u00b6
\n-

Dot product with other.

\n-
\n-\n-
\n-
\n-head((Vector6i)arg1) Vector3i[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-isApprox((Vector6i)arg1, (Vector6i)other[, (int)prec=0]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-maxAbsCoeff((Vector6i)arg1) int[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-maxCoeff((Vector6i)arg1) int[STATIC]\u00b6
\n-

Maximum value over all elements.

\n-
\n-\n-
\n-
\n-mean((Vector6i)arg1) int[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-minCoeff((Vector6i)arg1) int[STATIC]\u00b6
\n-

Minimum value over all elements.

\n-
\n-\n-
\n-
\n-outer((Vector6i)arg1, (Vector6i)other) object[STATIC]\u00b6
\n-

Outer product with other.

\n-
\n-\n-
\n-
\n-prod((Vector6i)arg1) int[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-rows((Vector6i)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-sum((Vector6i)arg1) int[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-
\n-tail((Vector6i)arg1) Vector3i[STATIC]\u00b6
\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.VectorX\u00b6
\n-

Dynamic-sized float vector.

\n-

Supported operations (f if a float/int, v is a VectorX): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v.

\n-

Implicit conversion from sequence (list, tuple, \u2026) of X floats.

\n-
\n-
\n-static Ones((int)arg1) VectorX[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-static Random((int)len) VectorX[STATIC]\u00b6
\n-

Return vector of given length with all elements set to values between 0 and 1 randomly.

\n-
\n-\n-
\n-
\n-static Unit((int)arg1, (int)arg2) VectorX[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-static Zero((int)arg1) VectorX[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-asDiagonal((VectorX)arg1) MatrixX[STATIC]\u00b6
\n-

Return diagonal matrix with this vector on the diagonal.

\n-
\n-\n-
\n-
\n-cols((VectorX)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-dot((VectorX)arg1, (VectorX)other) float[STATIC]\u00b6
\n-

Dot product with other.

\n-
\n-\n-
\n-
\n-isApprox((VectorX)arg1, (VectorX)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-maxAbsCoeff((VectorX)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-maxCoeff((VectorX)arg1) float[STATIC]\u00b6
\n-

Maximum value over all elements.

\n-
\n-\n-
\n-
\n-mean((VectorX)arg1) float[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-minCoeff((VectorX)arg1) float[STATIC]\u00b6
\n-

Minimum value over all elements.

\n-
\n-\n-
\n-
\n-norm((VectorX)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((VectorX)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((VectorX)arg1) VectorX[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-outer((VectorX)arg1, (VectorX)other) MatrixX[STATIC]\u00b6
\n-

Outer product with other.

\n-
\n-\n-
\n-
\n-prod((VectorX)arg1) float[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((VectorX)arg1[, (float)absTol=1e-06]) VectorX[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-resize((VectorX)arg1, (int)arg2) None[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-rows((VectorX)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-squaredNorm((VectorX)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((VectorX)arg1) float[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-\n-
\n-
\n-class minieigen.VectorXc\u00b6
\n-

/TODO/

\n-
\n-
\n-static Ones((int)arg1) VectorXc[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-static Random((int)len) VectorXc[STATIC]\u00b6
\n-

Return vector of given length with all elements set to values between 0 and 1 randomly.

\n-
\n-\n-
\n-
\n-static Unit((int)arg1, (int)arg2) VectorXc[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-static Zero((int)arg1) VectorXc[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-asDiagonal((VectorXc)arg1) MatrixXc[STATIC]\u00b6
\n-

Return diagonal matrix with this vector on the diagonal.

\n-
\n-\n-
\n-
\n-cols((VectorXc)arg1) int[STATIC]\u00b6
\n-

Number of columns.

\n-
\n-\n-
\n-
\n-dot((VectorXc)arg1, (VectorXc)other) complex[STATIC]\u00b6
\n-

Dot product with other.

\n-
\n-\n-
\n-
\n-isApprox((VectorXc)arg1, (VectorXc)other[, (float)prec=1e-12]) bool[STATIC]\u00b6
\n-

Approximate comparison with precision prec.

\n-
\n-\n-
\n-
\n-maxAbsCoeff((VectorXc)arg1) float[STATIC]\u00b6
\n-

Maximum absolute value over all elements.

\n-
\n-\n-
\n-
\n-mean((VectorXc)arg1) complex[STATIC]\u00b6
\n-

Mean value over all elements.

\n-
\n-\n-
\n-
\n-norm((VectorXc)arg1) float[STATIC]\u00b6
\n-

Euclidean norm.

\n-
\n-\n-
\n-
\n-normalize((VectorXc)arg1) None[STATIC]\u00b6
\n-

Normalize this object in-place.

\n-
\n-\n-
\n-
\n-normalized((VectorXc)arg1) VectorXc[STATIC]\u00b6
\n-

Return normalized copy of this object

\n-
\n-\n-
\n-
\n-outer((VectorXc)arg1, (VectorXc)other) MatrixXc[STATIC]\u00b6
\n-

Outer product with other.

\n-
\n-\n-
\n-
\n-prod((VectorXc)arg1) complex[STATIC]\u00b6
\n-

Product of all elements.

\n-
\n-\n-
\n-
\n-pruned((VectorXc)arg1[, (float)absTol=1e-06]) VectorXc[STATIC]\u00b6
\n-

Zero all elements which are greater than absTol. Negative zeros are not pruned.

\n-
\n-\n-
\n-
\n-resize((VectorXc)arg1, (int)arg2) None[STATIC]\u00b6
\n-
\n-\n-
\n-
\n-rows((VectorXc)arg1) int[STATIC]\u00b6
\n-

Number of rows.

\n-
\n-\n-
\n-
\n-squaredNorm((VectorXc)arg1) float[STATIC]\u00b6
\n-

Square of the Euclidean norm.

\n-
\n-\n-
\n-
\n-sum((VectorXc)arg1) complex[STATIC]\u00b6
\n-

Sum of all elements.

\n-
\n-\n-
\n-\n-
\n-
\n-minieigen.float2str((float)f[, (int)pad=0]) str\u00b6
\n-

Return the shortest string representation of f which will is equal to f when converted back to float. This function is only useful in Python prior to 3.0; starting from that version, standard string conversion does just that.

\n-
\n-\n
\n \n \n \n
\n \n \n@@ -3106,572 +131,15 @@\n \n \n \n \n

Quick search

\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -4,47 +4,47 @@\n * minieigen documentation\n *\b**\b**\b**\b**\b**\b* m\bmi\bin\bni\bie\bei\big\bge\ben\bn d\bdo\boc\bcu\bum\bme\ben\bnt\bta\bat\bti\bio\bon\bn_\b?\b\u00b6 *\b**\b**\b**\b**\b**\b*\n *\b**\b**\b**\b**\b* O\bOv\bve\ber\brv\bvi\bie\bew\bw_\b?\b\u00b6 *\b**\b**\b**\b**\b*\n Todo\n Something concise here.\n *\b**\b**\b**\b**\b* E\bEx\bxa\bam\bmp\bpl\ble\bes\bs_\b?\b\u00b6 *\b**\b**\b**\b**\b*\n Todo\n-Some examples of what can be done with _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn.\n+Some examples of what can be done with minieigen.\n *\b**\b**\b**\b**\b* N\bNa\bam\bmi\bin\bng\bg c\bco\bon\bnv\bve\ben\bnt\bti\bio\bon\bns\bs_\b?\b\u00b6 *\b**\b**\b**\b**\b*\n * Classes are suffixed with number indicating size where it makes sense (it\n- does not make sense for _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn):\n- o _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3 is a 3-vector (column vector);\n- o _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3 is a 3\u00d73 matrix;\n- o _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3 is aligned box in 3d;\n- o X indicates dynamic-sized types, such as _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\bX or\n- _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\bX.\n+ does not make sense for minieigen.Quaternion):\n+ o minieigen.Vector3 is a 3-vector (column vector);\n+ o minieigen.Matrix3 is a 3\u00d73 matrix;\n+ o minieigen.AlignedBox3 is aligned box in 3d;\n+ o X indicates dynamic-sized types, such as minieigen.VectorX or\n+ minieigen.MatrixX.\n * Scalar (element) type is suffixed at the end:\n- o nothing is suffixed for floats (_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3);\n+ o nothing is suffixed for floats (minieigen.Matrix3);\n o i indicates integers (minieigen.Matrix3i);\n- o c indicates complex numbers (_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc).\n+ o c indicates complex numbers (minieigen.Matrix3c).\n * Methods are named as follows:\n o static methods are upper-case (as in c++), e.g.\n- _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bR_\ba_\bn_\bd_\bo_\bm;\n+ minieigen.Matrix3.Random;\n # nullary static methods are exposed as properties, if they\n- return a constant (e.g. _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by); if they\n+ return a constant (e.g. minieigen.Matrix3.Identity); if they\n don\u2019t, they are exposed as methods\n- (_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bR_\ba_\bn_\bd_\bo_\bm); the idea is that the necessity to\n+ (minieigen.Matrix3.Random); the idea is that the necessity to\n call the method (Matrix3.Random()) singifies that there is\n some computation going on, whereas constants behave like\n immutable singletons.\n o non-static methods are lower-case (as in c++), e.g.\n- _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bi_\bn_\bv_\be_\br_\bs_\be.\n+ minieigen.Matrix3.inverse.\n * Return types:\n o methods modifying the instance in-place return None (e.g.\n- _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be); some methods in c++ (e.g.\n+ minieigen.Vector3.normalize); some methods in c++ (e.g.\n _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b:_\b:_\bs_\be_\bt_\bF_\br_\bo_\bm_\bT_\bw_\bo_\bV_\be_\bc_\bt_\bo_\br_\bs) both modify the instance a\ban\bnd\bd return\n the reference to it, which we don\u2019t want to do in Python\n- (_\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\bs_\be_\bt_\bF_\br_\bo_\bm_\bT_\bw_\bo_\bV_\be_\bc_\bt_\bo_\br_\bs);\n+ (minieigen.Quaternion.setFromTwoVectors);\n o methods returning another object (e.g.\n- _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b._\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd) do not modify the instance;\n+ minieigen.Vector3.normalized) do not modify the instance;\n o methods returning (non-const) references return by value in python\n *\b**\b**\b**\b**\b* L\bLi\bim\bmi\bit\bta\bat\bti\bio\bon\bns\bs_\b?\b\u00b6 *\b**\b**\b**\b**\b*\n * Type conversions (e.g. float to complex) are not supported.\n * Methods returning references in c++ return values in Python (so e.g.\n Matrix3().diagonal()[2]=0 would zero the last diagonal element in c++ but\n not in Python).\n * Many methods are not wrapped, though they are fairly easy to add.\n@@ -65,1546 +65,22 @@\n by easy_install)\n * packages:\n o _\bD_\be_\bb_\bi_\ba_\bn\n o Ubuntu: _\bd_\bi_\bs_\bt_\br_\bi_\bb_\bu_\bt_\bi_\bo_\bn, _\bP_\bP_\bA\n *\b**\b**\b**\b**\b* D\bDo\boc\bcu\bum\bme\ben\bnt\bta\bat\bti\bio\bon\bn_\b?\b\u00b6 *\b**\b**\b**\b**\b*\n * _\bI_\bn_\bd_\be_\bx\n * _\bS_\be_\ba_\br_\bc_\bh_\b _\bP_\ba_\bg_\be\n-miniEigen is wrapper for a small part of the _\bE_\bi_\bg_\be_\bn library. Refer to its\n-documentation for details. All classes in this module support pickling.\n- c\bcl\bla\bas\bss\bs minieigen.AlignedBox2_\b\u00b6\n- Axis-aligned box object in 2d, defined by its minimum and maximum corners\n- center((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx2\b2)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2[STATIC]_\b\u00b6\n- clamp((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx2\b2)\b)a\bar\brg\bg1\b1, (\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx2\b2)\b)a\bar\brg\bg2\b2) \u2192 None[STATIC]_\b\u00b6\n- contains((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx2\b2)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg2\b2) \u2192 bool[STATIC]_\b\u00b6\n- contains( (AlignedBox2)arg1, (AlignedBox2)arg2) \u2192 bool\n- empty((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx2\b2)\b)a\bar\brg\bg1\b1) \u2192 bool[STATIC]_\b\u00b6\n- extend((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx2\b2)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg2\b2) \u2192 None[STATIC]_\b\u00b6\n- extend( (AlignedBox2)arg1, (AlignedBox2)arg2) \u2192 None\n- intersection((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx2\b2)\b)a\bar\brg\bg1\b1, (\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx2\b2)\b)a\bar\brg\bg2\b2) \u2192 _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2\n- [STATIC]_\b\u00b6\n- p\bpr\bro\bop\bpe\ber\brt\bty\by max_\b\u00b6\n- merged((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx2\b2)\b)a\bar\brg\bg1\b1, (\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx2\b2)\b)a\bar\brg\bg2\b2) \u2192 _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2[STATIC]_\b\u00b6\n- p\bpr\bro\bop\bpe\ber\brt\bty\by min_\b\u00b6\n- sizes((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx2\b2)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2[STATIC]_\b\u00b6\n- volume((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx2\b2)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- c\bcl\bla\bas\bss\bs minieigen.AlignedBox3_\b\u00b6\n- Axis-aligned box object, defined by its minimum and maximum corners\n- center((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3[STATIC]_\b\u00b6\n- clamp((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx3\b3)\b)a\bar\brg\bg1\b1, (\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx3\b3)\b)a\bar\brg\bg2\b2) \u2192 None[STATIC]_\b\u00b6\n- contains((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx3\b3)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg2\b2) \u2192 bool[STATIC]_\b\u00b6\n- contains( (AlignedBox3)arg1, (AlignedBox3)arg2) \u2192 bool\n- empty((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 bool[STATIC]_\b\u00b6\n- extend((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx3\b3)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg2\b2) \u2192 None[STATIC]_\b\u00b6\n- extend( (AlignedBox3)arg1, (AlignedBox3)arg2) \u2192 None\n- intersection((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx3\b3)\b)a\bar\brg\bg1\b1, (\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx3\b3)\b)a\bar\brg\bg2\b2) \u2192 _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3\n- [STATIC]_\b\u00b6\n- p\bpr\bro\bop\bpe\ber\brt\bty\by max_\b\u00b6\n- merged((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx3\b3)\b)a\bar\brg\bg1\b1, (\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx3\b3)\b)a\bar\brg\bg2\b2) \u2192 _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3[STATIC]_\b\u00b6\n- p\bpr\bro\bop\bpe\ber\brt\bty\by min_\b\u00b6\n- sizes((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3[STATIC]_\b\u00b6\n- volume((\b(A\bAl\bli\big\bgn\bne\bed\bdB\bBo\box\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- c\bcl\bla\bas\bss\bs minieigen.Matrix3_\b\u00b6\n- 3x3 float matrix.\n- Supported operations (m is a Matrix3, f if a float/int, v is a Vector3):\n- -m, m+m, m+=m, m-m, m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m,\n- m==m, m!=m.\n- Static attributes: Zero, Ones, Identity.\n- Identity =\b= M\bMa\bat\btr\bri\bix\bx3\b3(\b(1\b1,\b,0\b0,\b,0\b0,\b, 0\b0,\b,1\b1,\b,0\b0,\b, 0\b0,\b,0\b0,\b,1\b1)\b)_\b\u00b6\n- Ones =\b= M\bMa\bat\btr\bri\bix\bx3\b3(\b(1\b1,\b,1\b1,\b,1\b1,\b, 1\b1,\b,1\b1,\b,1\b1,\b, 1\b1,\b,1\b1,\b,1\b1)\b)_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Random() \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3[STATIC]_\b\u00b6\n- Return an object where all elements are randomly set to values\n- between 0 and 1.\n- Zero =\b= M\bMa\bat\btr\bri\bix\bx3\b3(\b(0\b0,\b,0\b0,\b,0\b0,\b, 0\b0,\b,0\b0,\b,0\b0,\b, 0\b0,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- col((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)c\bco\bol\bl) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3[STATIC]_\b\u00b6\n- Return column as vector.\n- cols((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- computeUnitaryPositive((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Compute polar decomposition (unitary matrix U and positive semi-\n- definite symmetric matrix P such that self=U*P).\n- determinant((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Return matrix determinant.\n- diagonal((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3[STATIC]_\b\u00b6\n- Return diagonal as vector.\n- inverse((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3[STATIC]_\b\u00b6\n- Return inverted matrix.\n- isApprox((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1, (\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- jacobiSVD((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Compute SVD decomposition of square matrix, retuns (U,S,V) such\n- that self=U*S*V.transpose()\n- maxAbsCoeff((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- maxCoeff((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum value over all elements.\n- mean((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Mean value over all elements.\n- minCoeff((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Minimum value over all elements.\n- norm((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- polarDecomposition((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Alias for _\bc_\bo_\bm_\bp_\bu_\bt_\be_\bU_\bn_\bi_\bt_\ba_\br_\by_\bP_\bo_\bs_\bi_\bt_\bi_\bv_\be.\n- prod((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- row((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)r\bro\bow\bw) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3[STATIC]_\b\u00b6\n- Return row as vector.\n- rows((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- selfAdjointEigenDecomposition((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Compute eigen (spectral) decomposition of symmetric matrix, returns\n- (eigVecs,eigVals). eigVecs is orthogonal Matrix3 with columns ar\n- normalized eigenvectors, eigVals is Vector3 with corresponding\n- eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().\n- spectralDecomposition((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Alias for _\bs_\be_\bl_\bf_\bA_\bd_\bj_\bo_\bi_\bn_\bt_\bE_\bi_\bg_\be_\bn_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn.\n- squaredNorm((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Sum of all elements.\n- svd((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Alias for _\bj_\ba_\bc_\bo_\bb_\bi_\bS_\bV_\bD.\n- trace((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Return sum of diagonal elements.\n- transpose((\b(M\bMa\bat\btr\bri\bix\bx3\b3)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3[STATIC]_\b\u00b6\n- Return transposed matrix.\n- c\bcl\bla\bas\bss\bs minieigen.Matrix3c_\b\u00b6\n- /T\bTO\bOD\bDO\bO/\n- Identity =\b= M\bMa\bat\btr\bri\bix\bx3\b3c\bc(\b(1\b1,\b,0\b0,\b,0\b0,\b, 0\b0,\b,1\b1,\b,0\b0,\b, 0\b0,\b,0\b0,\b,1\b1)\b)_\b\u00b6\n- Ones =\b= M\bMa\bat\btr\bri\bix\bx3\b3c\bc(\b(1\b1,\b,1\b1,\b,1\b1,\b, 1\b1,\b,1\b1,\b,1\b1,\b, 1\b1,\b,1\b1,\b,1\b1)\b)_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Random() \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc[STATIC]_\b\u00b6\n- Return an object where all elements are randomly set to values\n- between 0 and 1.\n- Zero =\b= M\bMa\bat\btr\bri\bix\bx3\b3c\bc(\b(0\b0,\b,0\b0,\b,0\b0,\b, 0\b0,\b,0\b0,\b,0\b0,\b, 0\b0,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- col((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)c\bco\bol\bl) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc[STATIC]_\b\u00b6\n- Return column as vector.\n- cols((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- determinant((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Return matrix determinant.\n- diagonal((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc[STATIC]_\b\u00b6\n- Return diagonal as vector.\n- inverse((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc[STATIC]_\b\u00b6\n- Return inverted matrix.\n- isApprox((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1, (\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- maxAbsCoeff((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- mean((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Mean value over all elements.\n- norm((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- prod((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- row((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)r\bro\bow\bw) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc[STATIC]_\b\u00b6\n- Return row as vector.\n- rows((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- squaredNorm((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Sum of all elements.\n- trace((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Return sum of diagonal elements.\n- transpose((\b(M\bMa\bat\btr\bri\bix\bx3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc[STATIC]_\b\u00b6\n- Return transposed matrix.\n- c\bcl\bla\bas\bss\bs minieigen.Matrix6_\b\u00b6\n- 6x6 float matrix. Constructed from 4 3x3 sub-matrices, from 6xVector6\n- (rows).\n- Supported operations (m is a Matrix6, f if a float/int, v is a Vector6):\n- -m, m+m, m+=m, m-m, m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m,\n- m==m, m!=m.\n- Static attributes: Zero, Ones, Identity.\n- s\bst\bta\bat\bti\bic\bc Random() \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b6[STATIC]_\b\u00b6\n- Return an object where all elements are randomly set to values\n- between 0 and 1.\n- col((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)c\bco\bol\bl) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6[STATIC]_\b\u00b6\n- Return column as vector.\n- cols((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- computeUnitaryPositive((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Compute polar decomposition (unitary matrix U and positive semi-\n- definite symmetric matrix P such that self=U*P).\n- determinant((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Return matrix determinant.\n- diagonal((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6[STATIC]_\b\u00b6\n- Return diagonal as vector.\n- inverse((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b6[STATIC]_\b\u00b6\n- Return inverted matrix.\n- isApprox((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1, (\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- jacobiSVD((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Compute SVD decomposition of square matrix, retuns (U,S,V) such\n- that self=U*S*V.transpose()\n- ll((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3[STATIC]_\b\u00b6\n- Return lower-left 3x3 block\n- lr((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3[STATIC]_\b\u00b6\n- Return lower-right 3x3 block\n- maxAbsCoeff((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- maxCoeff((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum value over all elements.\n- mean((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Mean value over all elements.\n- minCoeff((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Minimum value over all elements.\n- norm((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b6[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- polarDecomposition((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Alias for _\bc_\bo_\bm_\bp_\bu_\bt_\be_\bU_\bn_\bi_\bt_\ba_\br_\by_\bP_\bo_\bs_\bi_\bt_\bi_\bv_\be.\n- prod((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b6[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- row((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)r\bro\bow\bw) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6[STATIC]_\b\u00b6\n- Return row as vector.\n- rows((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- selfAdjointEigenDecomposition((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Compute eigen (spectral) decomposition of symmetric matrix, returns\n- (eigVecs,eigVals). eigVecs is orthogonal Matrix3 with columns ar\n- normalized eigenvectors, eigVals is Vector3 with corresponding\n- eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().\n- spectralDecomposition((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Alias for _\bs_\be_\bl_\bf_\bA_\bd_\bj_\bo_\bi_\bn_\bt_\bE_\bi_\bg_\be_\bn_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn.\n- squaredNorm((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Sum of all elements.\n- svd((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Alias for _\bj_\ba_\bc_\bo_\bb_\bi_\bS_\bV_\bD.\n- trace((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Return sum of diagonal elements.\n- transpose((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b6[STATIC]_\b\u00b6\n- Return transposed matrix.\n- ul((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3[STATIC]_\b\u00b6\n- Return upper-left 3x3 block\n- ur((\b(M\bMa\bat\btr\bri\bix\bx6\b6)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3[STATIC]_\b\u00b6\n- Return upper-right 3x3 block\n- c\bcl\bla\bas\bss\bs minieigen.Matrix6c_\b\u00b6\n- /T\bTO\bOD\bDO\bO/\n- s\bst\bta\bat\bti\bic\bc Random() \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc[STATIC]_\b\u00b6\n- Return an object where all elements are randomly set to values\n- between 0 and 1.\n- col((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)c\bco\bol\bl) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc[STATIC]_\b\u00b6\n- Return column as vector.\n- cols((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- determinant((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Return matrix determinant.\n- diagonal((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc[STATIC]_\b\u00b6\n- Return diagonal as vector.\n- inverse((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc[STATIC]_\b\u00b6\n- Return inverted matrix.\n- isApprox((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1, (\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- ll((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc[STATIC]_\b\u00b6\n- Return lower-left 3x3 block\n- lr((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc[STATIC]_\b\u00b6\n- Return lower-right 3x3 block\n- maxAbsCoeff((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- mean((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Mean value over all elements.\n- norm((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- prod((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- row((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)r\bro\bow\bw) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc[STATIC]_\b\u00b6\n- Return row as vector.\n- rows((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- squaredNorm((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Sum of all elements.\n- trace((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Return sum of diagonal elements.\n- transpose((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc[STATIC]_\b\u00b6\n- Return transposed matrix.\n- ul((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc[STATIC]_\b\u00b6\n- Return upper-left 3x3 block\n- ur((\b(M\bMa\bat\btr\bri\bix\bx6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc[STATIC]_\b\u00b6\n- Return upper-right 3x3 block\n- c\bcl\bla\bas\bss\bs minieigen.MatrixX_\b\u00b6\n- XxX (dynamic-sized) float matrix. Constructed from list of rows (as\n- VectorX).\n- Supported operations (m is a MatrixX, f if a float/int, v is a VectorX):\n- -m, m+m, m+=m, m-m, m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m,\n- m==m, m!=m.\n- s\bst\bta\bat\bti\bic\bc Identity((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)r\bra\ban\bnk\bk) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX[STATIC]_\b\u00b6\n- Create identity matrix with given rank (square).\n- s\bst\bta\bat\bti\bic\bc Ones((\b(i\bin\bnt\bt)\b)r\bro\bow\bws\bs, (\b(i\bin\bnt\bt)\b)c\bco\bol\bls\bs) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX[STATIC]_\b\u00b6\n- Create matrix of given dimensions where all elements are set to 1.\n- s\bst\bta\bat\bti\bic\bc Random((\b(i\bin\bnt\bt)\b)r\bro\bow\bws\bs, (\b(i\bin\bnt\bt)\b)c\bco\bol\bls\bs) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX[STATIC]_\b\u00b6\n- Create matrix with given dimensions where all elements are set to\n- number between 0 and 1 (uniformly-distributed).\n- s\bst\bta\bat\bti\bic\bc Zero((\b(i\bin\bnt\bt)\b)r\bro\bow\bws\bs, (\b(i\bin\bnt\bt)\b)c\bco\bol\bls\bs) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX[STATIC]_\b\u00b6\n- Create zero matrix of given dimensions\n- col((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)c\bco\bol\bl) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX[STATIC]_\b\u00b6\n- Return column as vector.\n- cols((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- computeUnitaryPositive((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Compute polar decomposition (unitary matrix U and positive semi-\n- definite symmetric matrix P such that self=U*P).\n- determinant((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Return matrix determinant.\n- diagonal((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX[STATIC]_\b\u00b6\n- Return diagonal as vector.\n- inverse((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX[STATIC]_\b\u00b6\n- Return inverted matrix.\n- isApprox((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1, (\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- jacobiSVD((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Compute SVD decomposition of square matrix, retuns (U,S,V) such\n- that self=U*S*V.transpose()\n- maxAbsCoeff((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- maxCoeff((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum value over all elements.\n- mean((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Mean value over all elements.\n- minCoeff((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Minimum value over all elements.\n- norm((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- polarDecomposition((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Alias for _\bc_\bo_\bm_\bp_\bu_\bt_\be_\bU_\bn_\bi_\bt_\ba_\br_\by_\bP_\bo_\bs_\bi_\bt_\bi_\bv_\be.\n- prod((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- resize((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)r\bro\bow\bws\bs, (\b(i\bin\bnt\bt)\b)c\bco\bol\bls\bs) \u2192 None[STATIC]_\b\u00b6\n- Change size of the matrix, keep values of elements which exist in\n- the new matrix\n- row((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)r\bro\bow\bw) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX[STATIC]_\b\u00b6\n- Return row as vector.\n- rows((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- selfAdjointEigenDecomposition((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Compute eigen (spectral) decomposition of symmetric matrix, returns\n- (eigVecs,eigVals). eigVecs is orthogonal Matrix3 with columns ar\n- normalized eigenvectors, eigVals is Vector3 with corresponding\n- eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().\n- spectralDecomposition((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Alias for _\bs_\be_\bl_\bf_\bA_\bd_\bj_\bo_\bi_\bn_\bt_\bE_\bi_\bg_\be_\bn_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn.\n- squaredNorm((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Sum of all elements.\n- svd((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- Alias for _\bj_\ba_\bc_\bo_\bb_\bi_\bS_\bV_\bD.\n- trace((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Return sum of diagonal elements.\n- transpose((\b(M\bMa\bat\btr\bri\bix\bxX\bX)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX[STATIC]_\b\u00b6\n- Return transposed matrix.\n- c\bcl\bla\bas\bss\bs minieigen.MatrixXc_\b\u00b6\n- /T\bTO\bOD\bDO\bO/\n- s\bst\bta\bat\bti\bic\bc Identity((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)r\bra\ban\bnk\bk) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc[STATIC]_\b\u00b6\n- Create identity matrix with given rank (square).\n- s\bst\bta\bat\bti\bic\bc Ones((\b(i\bin\bnt\bt)\b)r\bro\bow\bws\bs, (\b(i\bin\bnt\bt)\b)c\bco\bol\bls\bs) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc[STATIC]_\b\u00b6\n- Create matrix of given dimensions where all elements are set to 1.\n- s\bst\bta\bat\bti\bic\bc Random((\b(i\bin\bnt\bt)\b)r\bro\bow\bws\bs, (\b(i\bin\bnt\bt)\b)c\bco\bol\bls\bs) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc[STATIC]_\b\u00b6\n- Create matrix with given dimensions where all elements are set to\n- number between 0 and 1 (uniformly-distributed).\n- s\bst\bta\bat\bti\bic\bc Zero((\b(i\bin\bnt\bt)\b)r\bro\bow\bws\bs, (\b(i\bin\bnt\bt)\b)c\bco\bol\bls\bs) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc[STATIC]_\b\u00b6\n- Create zero matrix of given dimensions\n- col((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)c\bco\bol\bl) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc[STATIC]_\b\u00b6\n- Return column as vector.\n- cols((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- determinant((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Return matrix determinant.\n- diagonal((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc[STATIC]_\b\u00b6\n- Return diagonal as vector.\n- inverse((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc[STATIC]_\b\u00b6\n- Return inverted matrix.\n- isApprox((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1, (\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- maxAbsCoeff((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- mean((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Mean value over all elements.\n- norm((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- prod((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- resize((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)r\bro\bow\bws\bs, (\b(i\bin\bnt\bt)\b)c\bco\bol\bls\bs) \u2192 None[STATIC]_\b\u00b6\n- Change size of the matrix, keep values of elements which exist in\n- the new matrix\n- row((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)r\bro\bow\bw) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc[STATIC]_\b\u00b6\n- Return row as vector.\n- rows((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- squaredNorm((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Sum of all elements.\n- trace((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Return sum of diagonal elements.\n- transpose((\b(M\bMa\bat\btr\bri\bix\bxX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc[STATIC]_\b\u00b6\n- Return transposed matrix.\n- c\bcl\bla\bas\bss\bs minieigen.Quaternion_\b\u00b6\n- Quaternion representing rotation.\n- Supported operations (q is a Quaternion, v is a Vector3): q*q (rotation\n- composition), q*=q, q*v (rotating v by q), q==q, q!=q.\n- Static attributes: Identity.\n- Identity =\b= Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn(\b((\b(1\b1,\b,0\b0,\b,0\b0)\b),\b,0\b0)\b)_\b\u00b6\n- Rotate((\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)v\bv) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3[STATIC]_\b\u00b6\n- angularDistance((\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)a\bar\brg\bg1\b1, (\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)a\bar\brg\bg2\b2) \u2192 float[STATIC]_\b\u00b6\n- conjugate((\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)a\bar\brg\bg1\b1) \u2192 _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn[STATIC]_\b\u00b6\n- inverse((\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)a\bar\brg\bg1\b1) \u2192 _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn[STATIC]_\b\u00b6\n- norm((\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- normalize((\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- normalized((\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)a\bar\brg\bg1\b1) \u2192 _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn[STATIC]_\b\u00b6\n- setFromTwoVectors((\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)u\bu, (\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)v\bv) \u2192 None\n- [STATIC]_\b\u00b6\n- slerp((\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)a\bar\brg\bg1\b1, (\b(f\bfl\blo\boa\bat\bt)\b)t\bt, (\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)o\bot\bth\bhe\ber\br) \u2192 _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn\n- [STATIC]_\b\u00b6\n- toAngleAxis((\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- toAxisAngle((\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)a\bar\brg\bg1\b1) \u2192 tuple[STATIC]_\b\u00b6\n- toRotationMatrix((\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3[STATIC]_\b\u00b6\n- toRotationVector((\b(Q\bQu\bua\bat\bte\ber\brn\bni\bio\bon\bn)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3[STATIC]_\b\u00b6\n- c\bcl\bla\bas\bss\bs minieigen.Vector2_\b\u00b6\n- 3-dimensional float vector.\n- Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v,\n- v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v.\n- Implicit conversion from sequence (list, tuple, \u2026) of 2 floats.\n- Static attributes: Zero, Ones, UnitX, UnitY.\n- Identity =\b= V\bVe\bec\bct\bto\bor\br2\b2(\b(1\b1,\b,0\b0)\b)_\b\u00b6\n- Ones =\b= V\bVe\bec\bct\bto\bor\br2\b2(\b(1\b1,\b,1\b1)\b)_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Random() \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2[STATIC]_\b\u00b6\n- Return an object where all elements are randomly set to values\n- between 0 and 1.\n- s\bst\bta\bat\bti\bic\bc Unit((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2[STATIC]_\b\u00b6\n- UnitX =\b= V\bVe\bec\bct\bto\bor\br2\b2(\b(1\b1,\b,0\b0)\b)_\b\u00b6\n- UnitY =\b= V\bVe\bec\bct\bto\bor\br2\b2(\b(0\b0,\b,1\b1)\b)_\b\u00b6\n- Zero =\b= V\bVe\bec\bct\bto\bor\br2\b2(\b(0\b0,\b,0\b0)\b)_\b\u00b6\n- asDiagonal((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1) \u2192 object[STATIC]_\b\u00b6\n- Return diagonal matrix with this vector on the diagonal.\n- cols((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- dot((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)o\bot\bth\bhe\ber\br) \u2192 float[STATIC]_\b\u00b6\n- Dot product with o\bot\bth\bhe\ber\br.\n- isApprox((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- maxAbsCoeff((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- maxCoeff((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum value over all elements.\n- mean((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Mean value over all elements.\n- minCoeff((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Minimum value over all elements.\n- norm((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- outer((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)o\bot\bth\bhe\ber\br) \u2192 object[STATIC]_\b\u00b6\n- Outer product with o\bot\bth\bhe\ber\br.\n- prod((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- rows((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- squaredNorm((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(V\bVe\bec\bct\bto\bor\br2\b2)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Sum of all elements.\n- c\bcl\bla\bas\bss\bs minieigen.Vector2c_\b\u00b6\n- /T\bTO\bOD\bDO\bO/\n- Identity =\b= V\bVe\bec\bct\bto\bor\br2\b2c\bc(\b(1\b1,\b,0\b0)\b)_\b\u00b6\n- Ones =\b= V\bVe\bec\bct\bto\bor\br2\b2c\bc(\b(1\b1,\b,1\b1)\b)_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Random() \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc[STATIC]_\b\u00b6\n- Return an object where all elements are randomly set to values\n- between 0 and 1.\n- s\bst\bta\bat\bti\bic\bc Unit((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc[STATIC]_\b\u00b6\n- UnitX =\b= V\bVe\bec\bct\bto\bor\br2\b2c\bc(\b(1\b1,\b,0\b0)\b)_\b\u00b6\n- UnitY =\b= V\bVe\bec\bct\bto\bor\br2\b2c\bc(\b(0\b0,\b,1\b1)\b)_\b\u00b6\n- Zero =\b= V\bVe\bec\bct\bto\bor\br2\b2c\bc(\b(0\b0,\b,0\b0)\b)_\b\u00b6\n- asDiagonal((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1) \u2192 object[STATIC]_\b\u00b6\n- Return diagonal matrix with this vector on the diagonal.\n- cols((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- dot((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)o\bot\bth\bhe\ber\br) \u2192 complex[STATIC]_\b\u00b6\n- Dot product with o\bot\bth\bhe\ber\br.\n- isApprox((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- maxAbsCoeff((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- mean((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Mean value over all elements.\n- norm((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- outer((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)o\bot\bth\bhe\ber\br) \u2192 object[STATIC]_\b\u00b6\n- Outer product with o\bot\bth\bhe\ber\br.\n- prod((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- rows((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- squaredNorm((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(V\bVe\bec\bct\bto\bor\br2\b2c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Sum of all elements.\n- c\bcl\bla\bas\bss\bs minieigen.Vector2i_\b\u00b6\n- 2-dimensional integer vector.\n- Supported operations (i if an int, v is a Vector2i): -v, v+v, v+=v, v-v,\n- v-=v, v*i, i*v, v*=i, v==v, v!=v.\n- Implicit conversion from sequence (list, tuple, \u2026) of 2 integers.\n- Static attributes: Zero, Ones, UnitX, UnitY.\n- Identity =\b= V\bVe\bec\bct\bto\bor\br2\b2i\bi(\b(1\b1,\b,0\b0)\b)_\b\u00b6\n- Ones =\b= V\bVe\bec\bct\bto\bor\br2\b2i\bi(\b(1\b1,\b,1\b1)\b)_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Random() \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi[STATIC]_\b\u00b6\n- Return an object where all elements are randomly set to values\n- between 0 and 1.\n- s\bst\bta\bat\bti\bic\bc Unit((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi[STATIC]_\b\u00b6\n- UnitX =\b= V\bVe\bec\bct\bto\bor\br2\b2i\bi(\b(1\b1,\b,0\b0)\b)_\b\u00b6\n- UnitY =\b= V\bVe\bec\bct\bto\bor\br2\b2i\bi(\b(0\b0,\b,1\b1)\b)_\b\u00b6\n- Zero =\b= V\bVe\bec\bct\bto\bor\br2\b2i\bi(\b(0\b0,\b,0\b0)\b)_\b\u00b6\n- asDiagonal((\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)a\bar\brg\bg1\b1) \u2192 object[STATIC]_\b\u00b6\n- Return diagonal matrix with this vector on the diagonal.\n- cols((\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- dot((\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)o\bot\bth\bhe\ber\br) \u2192 int[STATIC]_\b\u00b6\n- Dot product with o\bot\bth\bhe\ber\br.\n- isApprox((\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)o\bot\bth\bhe\ber\br[, (\b(i\bin\bnt\bt)\b)p\bpr\bre\bec\bc=\b=0\b0]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- maxAbsCoeff((\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- maxCoeff((\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Maximum value over all elements.\n- mean((\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Mean value over all elements.\n- minCoeff((\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Minimum value over all elements.\n- outer((\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)o\bot\bth\bhe\ber\br) \u2192 object[STATIC]_\b\u00b6\n- Outer product with o\bot\bth\bhe\ber\br.\n- prod((\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Product of all elements.\n- rows((\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- sum((\b(V\bVe\bec\bct\bto\bor\br2\b2i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Sum of all elements.\n- c\bcl\bla\bas\bss\bs minieigen.Vector3_\b\u00b6\n- 3-dimensional float vector.\n- Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v,\n- v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v, plus operations with\n- Matrix3 and Quaternion.\n- Implicit conversion from sequence (list, tuple, \u2026) of 3 floats.\n- Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.\n- Identity =\b= V\bVe\bec\bct\bto\bor\br3\b3(\b(1\b1,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- Ones =\b= V\bVe\bec\bct\bto\bor\br3\b3(\b(1\b1,\b,1\b1,\b,1\b1)\b)_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Random() \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3[STATIC]_\b\u00b6\n- Return an object where all elements are randomly set to values\n- between 0 and 1.\n- s\bst\bta\bat\bti\bic\bc Unit((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3[STATIC]_\b\u00b6\n- UnitX =\b= V\bVe\bec\bct\bto\bor\br3\b3(\b(1\b1,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- UnitY =\b= V\bVe\bec\bct\bto\bor\br3\b3(\b(0\b0,\b,1\b1,\b,0\b0)\b)_\b\u00b6\n- UnitZ =\b= V\bVe\bec\bct\bto\bor\br3\b3(\b(0\b0,\b,0\b0,\b,1\b1)\b)_\b\u00b6\n- Zero =\b= V\bVe\bec\bct\bto\bor\br3\b3(\b(0\b0,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- asDiagonal((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3[STATIC]_\b\u00b6\n- Return diagonal matrix with this vector on the diagonal.\n- cols((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- cross((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg2\b2) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3[STATIC]_\b\u00b6\n- dot((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)o\bot\bth\bhe\ber\br) \u2192 float[STATIC]_\b\u00b6\n- Dot product with o\bot\bth\bhe\ber\br.\n- isApprox((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- maxAbsCoeff((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- maxCoeff((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum value over all elements.\n- mean((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Mean value over all elements.\n- minCoeff((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Minimum value over all elements.\n- norm((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- outer((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)o\bot\bth\bhe\ber\br) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3[STATIC]_\b\u00b6\n- Outer product with o\bot\bth\bhe\ber\br.\n- prod((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- rows((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- squaredNorm((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Sum of all elements.\n- xy((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2[STATIC]_\b\u00b6\n- xz((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2[STATIC]_\b\u00b6\n- yx((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2[STATIC]_\b\u00b6\n- yz((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2[STATIC]_\b\u00b6\n- zx((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2[STATIC]_\b\u00b6\n- zy((\b(V\bVe\bec\bct\bto\bor\br3\b3)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2[STATIC]_\b\u00b6\n- c\bcl\bla\bas\bss\bs minieigen.Vector3c_\b\u00b6\n- /T\bTO\bOD\bDO\bO/\n- Identity =\b= V\bVe\bec\bct\bto\bor\br3\b3c\bc(\b(1\b1,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- Ones =\b= V\bVe\bec\bct\bto\bor\br3\b3c\bc(\b(1\b1,\b,1\b1,\b,1\b1)\b)_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Random() \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc[STATIC]_\b\u00b6\n- Return an object where all elements are randomly set to values\n- between 0 and 1.\n- s\bst\bta\bat\bti\bic\bc Unit((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc[STATIC]_\b\u00b6\n- UnitX =\b= V\bVe\bec\bct\bto\bor\br3\b3c\bc(\b(1\b1,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- UnitY =\b= V\bVe\bec\bct\bto\bor\br3\b3c\bc(\b(0\b0,\b,1\b1,\b,0\b0)\b)_\b\u00b6\n- UnitZ =\b= V\bVe\bec\bct\bto\bor\br3\b3c\bc(\b(0\b0,\b,0\b0,\b,1\b1)\b)_\b\u00b6\n- Zero =\b= V\bVe\bec\bct\bto\bor\br3\b3c\bc(\b(0\b0,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- asDiagonal((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc[STATIC]_\b\u00b6\n- Return diagonal matrix with this vector on the diagonal.\n- cols((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- cross((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg2\b2) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc[STATIC]_\b\u00b6\n- dot((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)o\bot\bth\bhe\ber\br) \u2192 complex[STATIC]_\b\u00b6\n- Dot product with o\bot\bth\bhe\ber\br.\n- isApprox((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- maxAbsCoeff((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- mean((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Mean value over all elements.\n- norm((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- outer((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)o\bot\bth\bhe\ber\br) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc[STATIC]_\b\u00b6\n- Outer product with o\bot\bth\bhe\ber\br.\n- prod((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- rows((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- squaredNorm((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Sum of all elements.\n- xy((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc[STATIC]_\b\u00b6\n- xz((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc[STATIC]_\b\u00b6\n- yx((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc[STATIC]_\b\u00b6\n- yz((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc[STATIC]_\b\u00b6\n- zx((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc[STATIC]_\b\u00b6\n- zy((\b(V\bVe\bec\bct\bto\bor\br3\b3c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc[STATIC]_\b\u00b6\n- c\bcl\bla\bas\bss\bs minieigen.Vector3i_\b\u00b6\n- 3-dimensional integer vector.\n- Supported operations (i if an int, v is a Vector3i): -v, v+v, v+=v, v-v,\n- v-=v, v*i, i*v, v*=i, v==v, v!=v.\n- Implicit conversion from sequence (list, tuple, \u2026) of 3 integers.\n- Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.\n- Identity =\b= V\bVe\bec\bct\bto\bor\br3\b3i\bi(\b(1\b1,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- Ones =\b= V\bVe\bec\bct\bto\bor\br3\b3i\bi(\b(1\b1,\b,1\b1,\b,1\b1)\b)_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Random() \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi[STATIC]_\b\u00b6\n- Return an object where all elements are randomly set to values\n- between 0 and 1.\n- s\bst\bta\bat\bti\bic\bc Unit((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi[STATIC]_\b\u00b6\n- UnitX =\b= V\bVe\bec\bct\bto\bor\br3\b3i\bi(\b(1\b1,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- UnitY =\b= V\bVe\bec\bct\bto\bor\br3\b3i\bi(\b(0\b0,\b,1\b1,\b,0\b0)\b)_\b\u00b6\n- UnitZ =\b= V\bVe\bec\bct\bto\bor\br3\b3i\bi(\b(0\b0,\b,0\b0,\b,1\b1)\b)_\b\u00b6\n- Zero =\b= V\bVe\bec\bct\bto\bor\br3\b3i\bi(\b(0\b0,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- asDiagonal((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 object[STATIC]_\b\u00b6\n- Return diagonal matrix with this vector on the diagonal.\n- cols((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- cross((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg2\b2) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi[STATIC]_\b\u00b6\n- dot((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)o\bot\bth\bhe\ber\br) \u2192 int[STATIC]_\b\u00b6\n- Dot product with o\bot\bth\bhe\ber\br.\n- isApprox((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)o\bot\bth\bhe\ber\br[, (\b(i\bin\bnt\bt)\b)p\bpr\bre\bec\bc=\b=0\b0]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- maxAbsCoeff((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- maxCoeff((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Maximum value over all elements.\n- mean((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Mean value over all elements.\n- minCoeff((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Minimum value over all elements.\n- outer((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)o\bot\bth\bhe\ber\br) \u2192 object[STATIC]_\b\u00b6\n- Outer product with o\bot\bth\bhe\ber\br.\n- prod((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Product of all elements.\n- rows((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- sum((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Sum of all elements.\n- xy((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi[STATIC]_\b\u00b6\n- xz((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi[STATIC]_\b\u00b6\n- yx((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi[STATIC]_\b\u00b6\n- yz((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi[STATIC]_\b\u00b6\n- zx((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi[STATIC]_\b\u00b6\n- zy((\b(V\bVe\bec\bct\bto\bor\br3\b3i\bi)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi[STATIC]_\b\u00b6\n- c\bcl\bla\bas\bss\bs minieigen.Vector4_\b\u00b6\n- 4-dimensional float vector.\n- Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v,\n- v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v.\n- Implicit conversion from sequence (list, tuple, \u2026) of 4 floats.\n- Static attributes: Zero, Ones.\n- Identity =\b= V\bVe\bec\bct\bto\bor\br4\b4(\b(1\b1,\b,0\b0,\b,0\b0,\b, 0\b0)\b)_\b\u00b6\n- Ones =\b= V\bVe\bec\bct\bto\bor\br4\b4(\b(1\b1,\b,1\b1,\b,1\b1,\b, 1\b1)\b)_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Random() \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b4[STATIC]_\b\u00b6\n- Return an object where all elements are randomly set to values\n- between 0 and 1.\n- s\bst\bta\bat\bti\bic\bc Unit((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b4[STATIC]_\b\u00b6\n- Zero =\b= V\bVe\bec\bct\bto\bor\br4\b4(\b(0\b0,\b,0\b0,\b,0\b0,\b, 0\b0)\b)_\b\u00b6\n- asDiagonal((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1) \u2192 object[STATIC]_\b\u00b6\n- Return diagonal matrix with this vector on the diagonal.\n- cols((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- dot((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)o\bot\bth\bhe\ber\br) \u2192 float[STATIC]_\b\u00b6\n- Dot product with o\bot\bth\bhe\ber\br.\n- isApprox((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- maxAbsCoeff((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- maxCoeff((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum value over all elements.\n- mean((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Mean value over all elements.\n- minCoeff((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Minimum value over all elements.\n- norm((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b4[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- outer((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)o\bot\bth\bhe\ber\br) \u2192 object[STATIC]_\b\u00b6\n- Outer product with o\bot\bth\bhe\ber\br.\n- prod((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b4[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- rows((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- squaredNorm((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(V\bVe\bec\bct\bto\bor\br4\b4)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Sum of all elements.\n- c\bcl\bla\bas\bss\bs minieigen.Vector6_\b\u00b6\n- 6-dimensional float vector.\n- Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v,\n- v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v.\n- Implicit conversion from sequence (list, tuple, \u2026) of 6 floats.\n- Static attributes: Zero, Ones.\n- Identity =\b= V\bVe\bec\bct\bto\bor\br6\b6(\b(1\b1,\b,0\b0,\b,0\b0,\b, 0\b0,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- Ones =\b= V\bVe\bec\bct\bto\bor\br6\b6(\b(1\b1,\b,1\b1,\b,1\b1,\b, 1\b1,\b,1\b1,\b,1\b1)\b)_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Random() \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6[STATIC]_\b\u00b6\n- Return an object where all elements are randomly set to values\n- between 0 and 1.\n- s\bst\bta\bat\bti\bic\bc Unit((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6[STATIC]_\b\u00b6\n- Zero =\b= V\bVe\bec\bct\bto\bor\br6\b6(\b(0\b0,\b,0\b0,\b,0\b0,\b, 0\b0,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- asDiagonal((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b6[STATIC]_\b\u00b6\n- Return diagonal matrix with this vector on the diagonal.\n- cols((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- dot((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)o\bot\bth\bhe\ber\br) \u2192 float[STATIC]_\b\u00b6\n- Dot product with o\bot\bth\bhe\ber\br.\n- head((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3[STATIC]_\b\u00b6\n- isApprox((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- maxAbsCoeff((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- maxCoeff((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum value over all elements.\n- mean((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Mean value over all elements.\n- minCoeff((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Minimum value over all elements.\n- norm((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- outer((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)o\bot\bth\bhe\ber\br) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b6[STATIC]_\b\u00b6\n- Outer product with o\bot\bth\bhe\ber\br.\n- prod((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- rows((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- squaredNorm((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Sum of all elements.\n- tail((\b(V\bVe\bec\bct\bto\bor\br6\b6)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3[STATIC]_\b\u00b6\n- c\bcl\bla\bas\bss\bs minieigen.Vector6c_\b\u00b6\n- /T\bTO\bOD\bDO\bO/\n- Identity =\b= V\bVe\bec\bct\bto\bor\br6\b6c\bc(\b(1\b1,\b,0\b0,\b,0\b0,\b, 0\b0,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- Ones =\b= V\bVe\bec\bct\bto\bor\br6\b6c\bc(\b(1\b1,\b,1\b1,\b,1\b1,\b, 1\b1,\b,1\b1,\b,1\b1)\b)_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Random() \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc[STATIC]_\b\u00b6\n- Return an object where all elements are randomly set to values\n- between 0 and 1.\n- s\bst\bta\bat\bti\bic\bc Unit((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc[STATIC]_\b\u00b6\n- Zero =\b= V\bVe\bec\bct\bto\bor\br6\b6c\bc(\b(0\b0,\b,0\b0,\b,0\b0,\b, 0\b0,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- asDiagonal((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc[STATIC]_\b\u00b6\n- Return diagonal matrix with this vector on the diagonal.\n- cols((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- dot((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)o\bot\bth\bhe\ber\br) \u2192 complex[STATIC]_\b\u00b6\n- Dot product with o\bot\bth\bhe\ber\br.\n- head((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc[STATIC]_\b\u00b6\n- isApprox((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- maxAbsCoeff((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- mean((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Mean value over all elements.\n- norm((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- outer((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)o\bot\bth\bhe\ber\br) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc[STATIC]_\b\u00b6\n- Outer product with o\bot\bth\bhe\ber\br.\n- prod((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- rows((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- squaredNorm((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Sum of all elements.\n- tail((\b(V\bVe\bec\bct\bto\bor\br6\b6c\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc[STATIC]_\b\u00b6\n- c\bcl\bla\bas\bss\bs minieigen.Vector6i_\b\u00b6\n- 6-dimensional float vector.\n- Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v,\n- v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v.\n- Implicit conversion from sequence (list, tuple, \u2026) of 6 floats.\n- Static attributes: Zero, Ones.\n- Identity =\b= V\bVe\bec\bct\bto\bor\br6\b6i\bi(\b(1\b1,\b,0\b0,\b,0\b0,\b, 0\b0,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- Ones =\b= V\bVe\bec\bct\bto\bor\br6\b6i\bi(\b(1\b1,\b,1\b1,\b,1\b1,\b, 1\b1,\b,1\b1,\b,1\b1)\b)_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Random() \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi[STATIC]_\b\u00b6\n- Return an object where all elements are randomly set to values\n- between 0 and 1.\n- s\bst\bta\bat\bti\bic\bc Unit((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi[STATIC]_\b\u00b6\n- Zero =\b= V\bVe\bec\bct\bto\bor\br6\b6i\bi(\b(0\b0,\b,0\b0,\b,0\b0,\b, 0\b0,\b,0\b0,\b,0\b0)\b)_\b\u00b6\n- asDiagonal((\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)a\bar\brg\bg1\b1) \u2192 object[STATIC]_\b\u00b6\n- Return diagonal matrix with this vector on the diagonal.\n- cols((\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- dot((\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)o\bot\bth\bhe\ber\br) \u2192 int[STATIC]_\b\u00b6\n- Dot product with o\bot\bth\bhe\ber\br.\n- head((\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi[STATIC]_\b\u00b6\n- isApprox((\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)o\bot\bth\bhe\ber\br[, (\b(i\bin\bnt\bt)\b)p\bpr\bre\bec\bc=\b=0\b0]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- maxAbsCoeff((\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- maxCoeff((\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Maximum value over all elements.\n- mean((\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Mean value over all elements.\n- minCoeff((\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Minimum value over all elements.\n- outer((\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)o\bot\bth\bhe\ber\br) \u2192 object[STATIC]_\b\u00b6\n- Outer product with o\bot\bth\bhe\ber\br.\n- prod((\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Product of all elements.\n- rows((\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- sum((\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Sum of all elements.\n- tail((\b(V\bVe\bec\bct\bto\bor\br6\b6i\bi)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi[STATIC]_\b\u00b6\n- c\bcl\bla\bas\bss\bs minieigen.VectorX_\b\u00b6\n- Dynamic-sized float vector.\n- Supported operations (f if a float/int, v is a VectorX): -v, v+v, v+=v,\n- v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v.\n- Implicit conversion from sequence (list, tuple, \u2026) of X floats.\n- s\bst\bta\bat\bti\bic\bc Ones((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX[STATIC]_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Random((\b(i\bin\bnt\bt)\b)l\ble\ben\bn) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX[STATIC]_\b\u00b6\n- Return vector of given length with all elements set to values\n- between 0 and 1 randomly.\n- s\bst\bta\bat\bti\bic\bc Unit((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)a\bar\brg\bg2\b2) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX[STATIC]_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Zero((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX[STATIC]_\b\u00b6\n- asDiagonal((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX[STATIC]_\b\u00b6\n- Return diagonal matrix with this vector on the diagonal.\n- cols((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- dot((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)o\bot\bth\bhe\ber\br) \u2192 float[STATIC]_\b\u00b6\n- Dot product with o\bot\bth\bhe\ber\br.\n- isApprox((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- maxAbsCoeff((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- maxCoeff((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum value over all elements.\n- mean((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Mean value over all elements.\n- minCoeff((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Minimum value over all elements.\n- norm((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- outer((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)o\bot\bth\bhe\ber\br) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX[STATIC]_\b\u00b6\n- Outer product with o\bot\bth\bhe\ber\br.\n- prod((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- resize((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)a\bar\brg\bg2\b2) \u2192 None[STATIC]_\b\u00b6\n- rows((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- squaredNorm((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(V\bVe\bec\bct\bto\bor\brX\bX)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Sum of all elements.\n- c\bcl\bla\bas\bss\bs minieigen.VectorXc_\b\u00b6\n- /T\bTO\bOD\bDO\bO/\n- s\bst\bta\bat\bti\bic\bc Ones((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc[STATIC]_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Random((\b(i\bin\bnt\bt)\b)l\ble\ben\bn) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc[STATIC]_\b\u00b6\n- Return vector of given length with all elements set to values\n- between 0 and 1 randomly.\n- s\bst\bta\bat\bti\bic\bc Unit((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)a\bar\brg\bg2\b2) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc[STATIC]_\b\u00b6\n- s\bst\bta\bat\bti\bic\bc Zero((\b(i\bin\bnt\bt)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc[STATIC]_\b\u00b6\n- asDiagonal((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc[STATIC]_\b\u00b6\n- Return diagonal matrix with this vector on the diagonal.\n- cols((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of columns.\n- dot((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)o\bot\bth\bhe\ber\br) \u2192 complex[STATIC]_\b\u00b6\n- Dot product with o\bot\bth\bhe\ber\br.\n- isApprox((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)o\bot\bth\bhe\ber\br[, (\b(f\bfl\blo\boa\bat\bt)\b)p\bpr\bre\bec\bc=\b=1\b1e\be-\b-1\b12\b2]) \u2192 bool\n- [STATIC]_\b\u00b6\n- Approximate comparison with precision p\bpr\bre\bec\bc.\n- maxAbsCoeff((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Maximum absolute value over all elements.\n- mean((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Mean value over all elements.\n- norm((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Euclidean norm.\n- normalize((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 None[STATIC]_\b\u00b6\n- Normalize this object in-place.\n- normalized((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc[STATIC]_\b\u00b6\n- Return normalized copy of this object\n- outer((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1, (\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)o\bot\bth\bhe\ber\br) \u2192 _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc[STATIC]_\b\u00b6\n- Outer product with o\bot\bth\bhe\ber\br.\n- prod((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Product of all elements.\n- pruned((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1[, (\b(f\bfl\blo\boa\bat\bt)\b)a\bab\bbs\bsT\bTo\bol\bl=\b=1\b1e\be-\b-0\b06\b6]) \u2192 _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc[STATIC]_\b\u00b6\n- Zero all elements which are greater than a\bab\bbs\bsT\bTo\bol\bl. Negative zeros are\n- not pruned.\n- resize((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1, (\b(i\bin\bnt\bt)\b)a\bar\brg\bg2\b2) \u2192 None[STATIC]_\b\u00b6\n- rows((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 int[STATIC]_\b\u00b6\n- Number of rows.\n- squaredNorm((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 float[STATIC]_\b\u00b6\n- Square of the Euclidean norm.\n- sum((\b(V\bVe\bec\bct\bto\bor\brX\bXc\bc)\b)a\bar\brg\bg1\b1) \u2192 complex[STATIC]_\b\u00b6\n- Sum of all elements.\n- minieigen.float2str((\b(f\bfl\blo\boa\bat\bt)\b)f\bf[, (\b(i\bin\bnt\bt)\b)p\bpa\bad\bd=\b=0\b0]) \u2192 str_\b\u00b6\n- Return the shortest string representation of f\bf which will is equal to f\bf\n- when converted back to float. This function is only useful in Python\n- prior to 3.0; starting from that version, standard string conversion does\n- just that.\n *\b**\b**\b**\b* _\bT\bT_\ba\ba_\bb\bb_\bl\bl_\be\be_\b _\bo\bo_\bf\bf_\b _\bC\bC_\bo\bo_\bn\bn_\bt\bt_\be\be_\bn\bn_\bt\bt_\bs\bs *\b**\b**\b**\b*\n * _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b _\bd_\bo_\bc_\bu_\bm_\be_\bn_\bt_\ba_\bt_\bi_\bo_\bn\n o _\bO_\bv_\be_\br_\bv_\bi_\be_\bw\n o _\bE_\bx_\ba_\bm_\bp_\bl_\be_\bs\n o _\bN_\ba_\bm_\bi_\bn_\bg_\b _\bc_\bo_\bn_\bv_\be_\bn_\bt_\bi_\bo_\bn_\bs\n o _\bL_\bi_\bm_\bi_\bt_\ba_\bt_\bi_\bo_\bn_\bs\n o _\bL_\bi_\bn_\bk_\bs\n o _\bD_\bo_\bc_\bu_\bm_\be_\bn_\bt_\ba_\bt_\bi_\bo_\bn\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2_\b._\bc_\be_\bn_\bt_\be_\br_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2_\b._\bc_\bl_\ba_\bm_\bp_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2_\b._\bc_\bo_\bn_\bt_\ba_\bi_\bn_\bs_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2_\b._\be_\bm_\bp_\bt_\by_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2_\b._\be_\bx_\bt_\be_\bn_\bd_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2_\b._\bi_\bn_\bt_\be_\br_\bs_\be_\bc_\bt_\bi_\bo_\bn_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2_\b._\bm_\ba_\bx\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2_\b._\bm_\be_\br_\bg_\be_\bd_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2_\b._\bm_\bi_\bn\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2_\b._\bs_\bi_\bz_\be_\bs_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b2_\b._\bv_\bo_\bl_\bu_\bm_\be_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3_\b._\bc_\be_\bn_\bt_\be_\br_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3_\b._\bc_\bl_\ba_\bm_\bp_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3_\b._\bc_\bo_\bn_\bt_\ba_\bi_\bn_\bs_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3_\b._\be_\bm_\bp_\bt_\by_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3_\b._\be_\bx_\bt_\be_\bn_\bd_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3_\b._\bi_\bn_\bt_\be_\br_\bs_\be_\bc_\bt_\bi_\bo_\bn_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3_\b._\bm_\ba_\bx\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3_\b._\bm_\be_\br_\bg_\be_\bd_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3_\b._\bm_\bi_\bn\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3_\b._\bs_\bi_\bz_\be_\bs_\b(_\b)\n- # _\bA_\bl_\bi_\bg_\bn_\be_\bd_\bB_\bo_\bx_\b3_\b._\bv_\bo_\bl_\bu_\bm_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bO_\bn_\be_\bs\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bZ_\be_\br_\bo\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bc_\bo_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bc_\bo_\bm_\bp_\bu_\bt_\be_\bU_\bn_\bi_\bt_\ba_\br_\by_\bP_\bo_\bs_\bi_\bt_\bi_\bv_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bd_\be_\bt_\be_\br_\bm_\bi_\bn_\ba_\bn_\bt_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bd_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bi_\bn_\bv_\be_\br_\bs_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bj_\ba_\bc_\bo_\bb_\bi_\bS_\bV_\bD_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bm_\ba_\bx_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bm_\bi_\bn_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bp_\bo_\bl_\ba_\br_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\br_\bo_\bw_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bs_\be_\bl_\bf_\bA_\bd_\bj_\bo_\bi_\bn_\bt_\bE_\bi_\bg_\be_\bn_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bs_\bp_\be_\bc_\bt_\br_\ba_\bl_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bs_\bv_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bt_\br_\ba_\bc_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\b._\bt_\br_\ba_\bn_\bs_\bp_\bo_\bs_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bO_\bn_\be_\bs\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bZ_\be_\br_\bo\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bc_\bo_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bd_\be_\bt_\be_\br_\bm_\bi_\bn_\ba_\bn_\bt_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bd_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bi_\bn_\bv_\be_\br_\bs_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\br_\bo_\bw_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bt_\br_\ba_\bc_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b3_\bc_\b._\bt_\br_\ba_\bn_\bs_\bp_\bo_\bs_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bO_\bn_\be_\bs\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bZ_\be_\br_\bo\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bc_\bo_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bc_\bo_\bm_\bp_\bu_\bt_\be_\bU_\bn_\bi_\bt_\ba_\br_\by_\bP_\bo_\bs_\bi_\bt_\bi_\bv_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bd_\be_\bt_\be_\br_\bm_\bi_\bn_\ba_\bn_\bt_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bd_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bi_\bn_\bv_\be_\br_\bs_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bj_\ba_\bc_\bo_\bb_\bi_\bS_\bV_\bD_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bl_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bl_\br_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bm_\ba_\bx_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bm_\bi_\bn_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bp_\bo_\bl_\ba_\br_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\br_\bo_\bw_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bs_\be_\bl_\bf_\bA_\bd_\bj_\bo_\bi_\bn_\bt_\bE_\bi_\bg_\be_\bn_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bs_\bp_\be_\bc_\bt_\br_\ba_\bl_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bs_\bv_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bt_\br_\ba_\bc_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bt_\br_\ba_\bn_\bs_\bp_\bo_\bs_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bu_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\b._\bu_\br_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bO_\bn_\be_\bs\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bZ_\be_\br_\bo\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bc_\bo_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bd_\be_\bt_\be_\br_\bm_\bi_\bn_\ba_\bn_\bt_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bd_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bi_\bn_\bv_\be_\br_\bs_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bl_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bl_\br_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\br_\bo_\bw_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bt_\br_\ba_\bc_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bt_\br_\ba_\bn_\bs_\bp_\bo_\bs_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bu_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\b6_\bc_\b._\bu_\br_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bO_\bn_\be_\bs_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bZ_\be_\br_\bo_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bc_\bo_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bc_\bo_\bm_\bp_\bu_\bt_\be_\bU_\bn_\bi_\bt_\ba_\br_\by_\bP_\bo_\bs_\bi_\bt_\bi_\bv_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bd_\be_\bt_\be_\br_\bm_\bi_\bn_\ba_\bn_\bt_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bd_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bi_\bn_\bv_\be_\br_\bs_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bj_\ba_\bc_\bo_\bb_\bi_\bS_\bV_\bD_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bm_\ba_\bx_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bm_\bi_\bn_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bp_\bo_\bl_\ba_\br_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\br_\be_\bs_\bi_\bz_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\br_\bo_\bw_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bs_\be_\bl_\bf_\bA_\bd_\bj_\bo_\bi_\bn_\bt_\bE_\bi_\bg_\be_\bn_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bs_\bp_\be_\bc_\bt_\br_\ba_\bl_\bD_\be_\bc_\bo_\bm_\bp_\bo_\bs_\bi_\bt_\bi_\bo_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bs_\bv_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bt_\br_\ba_\bc_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\b._\bt_\br_\ba_\bn_\bs_\bp_\bo_\bs_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bO_\bn_\be_\bs_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bZ_\be_\br_\bo_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bc_\bo_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bd_\be_\bt_\be_\br_\bm_\bi_\bn_\ba_\bn_\bt_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bd_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bi_\bn_\bv_\be_\br_\bs_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\br_\be_\bs_\bi_\bz_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\br_\bo_\bw_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bt_\br_\ba_\bc_\be_\b(_\b)\n- # _\bM_\ba_\bt_\br_\bi_\bx_\bX_\bc_\b._\bt_\br_\ba_\bn_\bs_\bp_\bo_\bs_\be_\b(_\b)\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\bR_\bo_\bt_\ba_\bt_\be_\b(_\b)\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\ba_\bn_\bg_\bu_\bl_\ba_\br_\bD_\bi_\bs_\bt_\ba_\bn_\bc_\be_\b(_\b)\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\bc_\bo_\bn_\bj_\bu_\bg_\ba_\bt_\be_\b(_\b)\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\bi_\bn_\bv_\be_\br_\bs_\be_\b(_\b)\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\bs_\be_\bt_\bF_\br_\bo_\bm_\bT_\bw_\bo_\bV_\be_\bc_\bt_\bo_\br_\bs_\b(_\b)\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\bs_\bl_\be_\br_\bp_\b(_\b)\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\bt_\bo_\bA_\bn_\bg_\bl_\be_\bA_\bx_\bi_\bs_\b(_\b)\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\bt_\bo_\bA_\bx_\bi_\bs_\bA_\bn_\bg_\bl_\be_\b(_\b)\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\bt_\bo_\bR_\bo_\bt_\ba_\bt_\bi_\bo_\bn_\bM_\ba_\bt_\br_\bi_\bx_\b(_\b)\n- # _\bQ_\bu_\ba_\bt_\be_\br_\bn_\bi_\bo_\bn_\b._\bt_\bo_\bR_\bo_\bt_\ba_\bt_\bi_\bo_\bn_\bV_\be_\bc_\bt_\bo_\br_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bO_\bn_\be_\bs\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bU_\bn_\bi_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bU_\bn_\bi_\bt_\bX\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bU_\bn_\bi_\bt_\bY\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bZ_\be_\br_\bo\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\ba_\bs_\bD_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bd_\bo_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bm_\ba_\bx_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bm_\bi_\bn_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bo_\bu_\bt_\be_\br_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bO_\bn_\be_\bs\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bU_\bn_\bi_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bU_\bn_\bi_\bt_\bX\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bU_\bn_\bi_\bt_\bY\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bZ_\be_\br_\bo\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\ba_\bs_\bD_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bd_\bo_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bo_\bu_\bt_\be_\br_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bc_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bO_\bn_\be_\bs\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bU_\bn_\bi_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bU_\bn_\bi_\bt_\bX\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bU_\bn_\bi_\bt_\bY\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bZ_\be_\br_\bo\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\ba_\bs_\bD_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bd_\bo_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bm_\ba_\bx_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bm_\bi_\bn_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bo_\bu_\bt_\be_\br_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b2_\bi_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bO_\bn_\be_\bs\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bU_\bn_\bi_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bU_\bn_\bi_\bt_\bX\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bU_\bn_\bi_\bt_\bY\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bU_\bn_\bi_\bt_\bZ\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bZ_\be_\br_\bo\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\ba_\bs_\bD_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bc_\br_\bo_\bs_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bd_\bo_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bm_\ba_\bx_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bm_\bi_\bn_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bo_\bu_\bt_\be_\br_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bx_\by_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bx_\bz_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\by_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\by_\bz_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bz_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\b._\bz_\by_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bO_\bn_\be_\bs\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bU_\bn_\bi_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bU_\bn_\bi_\bt_\bX\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bU_\bn_\bi_\bt_\bY\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bU_\bn_\bi_\bt_\bZ\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bZ_\be_\br_\bo\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\ba_\bs_\bD_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bc_\br_\bo_\bs_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bd_\bo_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bo_\bu_\bt_\be_\br_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bx_\by_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bx_\bz_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\by_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\by_\bz_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bz_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bc_\b._\bz_\by_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bO_\bn_\be_\bs\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bU_\bn_\bi_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bU_\bn_\bi_\bt_\bX\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bU_\bn_\bi_\bt_\bY\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bU_\bn_\bi_\bt_\bZ\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bZ_\be_\br_\bo\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\ba_\bs_\bD_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bc_\br_\bo_\bs_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bd_\bo_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bm_\ba_\bx_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bm_\bi_\bn_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bo_\bu_\bt_\be_\br_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bx_\by_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bx_\bz_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\by_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\by_\bz_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bz_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b3_\bi_\b._\bz_\by_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bO_\bn_\be_\bs\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bU_\bn_\bi_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bZ_\be_\br_\bo\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\ba_\bs_\bD_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bd_\bo_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bm_\ba_\bx_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bm_\bi_\bn_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bo_\bu_\bt_\be_\br_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b4_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bO_\bn_\be_\bs\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bU_\bn_\bi_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bZ_\be_\br_\bo\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\ba_\bs_\bD_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bd_\bo_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bh_\be_\ba_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bm_\ba_\bx_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bm_\bi_\bn_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bo_\bu_\bt_\be_\br_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\b._\bt_\ba_\bi_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bO_\bn_\be_\bs\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bU_\bn_\bi_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bZ_\be_\br_\bo\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\ba_\bs_\bD_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bd_\bo_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bh_\be_\ba_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bo_\bu_\bt_\be_\br_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bc_\b._\bt_\ba_\bi_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bI_\bd_\be_\bn_\bt_\bi_\bt_\by\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bO_\bn_\be_\bs\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bU_\bn_\bi_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bZ_\be_\br_\bo\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\ba_\bs_\bD_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bd_\bo_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bh_\be_\ba_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bm_\ba_\bx_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bm_\bi_\bn_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bo_\bu_\bt_\be_\br_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\b6_\bi_\b._\bt_\ba_\bi_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bO_\bn_\be_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bU_\bn_\bi_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bZ_\be_\br_\bo_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\ba_\bs_\bD_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bd_\bo_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bm_\ba_\bx_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bm_\bi_\bn_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bo_\bu_\bt_\be_\br_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\br_\be_\bs_\bi_\bz_\be_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bO_\bn_\be_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bR_\ba_\bn_\bd_\bo_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bU_\bn_\bi_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bZ_\be_\br_\bo_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\ba_\bs_\bD_\bi_\ba_\bg_\bo_\bn_\ba_\bl_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bc_\bo_\bl_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bd_\bo_\bt_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bi_\bs_\bA_\bp_\bp_\br_\bo_\bx_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bm_\ba_\bx_\bA_\bb_\bs_\bC_\bo_\be_\bf_\bf_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bm_\be_\ba_\bn_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bn_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bn_\bo_\br_\bm_\ba_\bl_\bi_\bz_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bo_\bu_\bt_\be_\br_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bp_\br_\bo_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bp_\br_\bu_\bn_\be_\bd_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\br_\be_\bs_\bi_\bz_\be_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\br_\bo_\bw_\bs_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bs_\bq_\bu_\ba_\br_\be_\bd_\bN_\bo_\br_\bm_\b(_\b)\n- # _\bV_\be_\bc_\bt_\bo_\br_\bX_\bc_\b._\bs_\bu_\bm_\b(_\b)\n- # _\bf_\bl_\bo_\ba_\bt_\b2_\bs_\bt_\br_\b(_\b)\n *\b**\b**\b**\b* Q\bQu\bui\bic\bck\bk s\bse\bea\bar\brc\bch\bh *\b**\b**\b**\b*\n [q ][Go]\n *\b**\b**\b**\b* N\bNa\bav\bvi\big\bga\bat\bti\bio\bon\bn *\b**\b**\b**\b*\n * _\bi_\bn_\bd_\be_\bx\n * _\bm_\bi_\bn_\bi_\be_\bi_\bg_\be_\bn_\b _\b0_\b._\b4_\b-_\b1_\b _\bd_\bo_\bc_\bu_\bm_\be_\bn_\bt_\ba_\bt_\bi_\bo_\bn \u00bb\n * minieigen documentation\n \u00a9 Copyright 2012\u22122015, V\u00e1clav \u0160milauer. Created using _\bS_\bp_\bh_\bi_\bn_\bx 8.1.3.\n"}]}, {"source1": "./usr/share/doc/python3-minieigen/html/objects.inv", "source2": "./usr/share/doc/python3-minieigen/html/objects.inv", "unified_diff": null, "details": [{"source1": "Sphinx inventory", "source2": "Sphinx inventory", "unified_diff": "@@ -1,524 +1,10 @@\n # Sphinx inventory version 2\n # Project: minieigen\n # Version: 0.4\n # The remainder of this file is compressed using zlib.\n \n-minieigen py:module 0 index.html#module-$ -\n-minieigen.AlignedBox2 py:class 1 index.html#$ -\n-minieigen.AlignedBox2.center py:method 1 index.html#$ -\n-minieigen.AlignedBox2.clamp py:method 1 index.html#$ -\n-minieigen.AlignedBox2.contains py:method 1 index.html#$ -\n-minieigen.AlignedBox2.empty py:method 1 index.html#$ -\n-minieigen.AlignedBox2.extend py:method 1 index.html#$ -\n-minieigen.AlignedBox2.intersection py:method 1 index.html#$ -\n-minieigen.AlignedBox2.max py:property 1 index.html#$ -\n-minieigen.AlignedBox2.merged py:method 1 index.html#$ -\n-minieigen.AlignedBox2.min py:property 1 index.html#$ -\n-minieigen.AlignedBox2.sizes py:method 1 index.html#$ -\n-minieigen.AlignedBox2.volume py:method 1 index.html#$ -\n-minieigen.AlignedBox3 py:class 1 index.html#$ -\n-minieigen.AlignedBox3.center py:method 1 index.html#$ -\n-minieigen.AlignedBox3.clamp py:method 1 index.html#$ -\n-minieigen.AlignedBox3.contains py:method 1 index.html#$ -\n-minieigen.AlignedBox3.empty py:method 1 index.html#$ -\n-minieigen.AlignedBox3.extend py:method 1 index.html#$ -\n-minieigen.AlignedBox3.intersection py:method 1 index.html#$ -\n-minieigen.AlignedBox3.max py:property 1 index.html#$ -\n-minieigen.AlignedBox3.merged py:method 1 index.html#$ -\n-minieigen.AlignedBox3.min py:property 1 index.html#$ -\n-minieigen.AlignedBox3.sizes py:method 1 index.html#$ -\n-minieigen.AlignedBox3.volume py:method 1 index.html#$ -\n-minieigen.Matrix3 py:class 1 index.html#$ -\n-minieigen.Matrix3.Identity py:attribute 1 index.html#$ -\n-minieigen.Matrix3.Ones py:attribute 1 index.html#$ -\n-minieigen.Matrix3.Random py:method 1 index.html#$ -\n-minieigen.Matrix3.Zero py:attribute 1 index.html#$ -\n-minieigen.Matrix3.col py:method 1 index.html#$ -\n-minieigen.Matrix3.cols py:method 1 index.html#$ -\n-minieigen.Matrix3.computeUnitaryPositive py:method 1 index.html#$ -\n-minieigen.Matrix3.determinant py:method 1 index.html#$ -\n-minieigen.Matrix3.diagonal py:method 1 index.html#$ -\n-minieigen.Matrix3.inverse py:method 1 index.html#$ -\n-minieigen.Matrix3.isApprox py:method 1 index.html#$ -\n-minieigen.Matrix3.jacobiSVD py:method 1 index.html#$ -\n-minieigen.Matrix3.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.Matrix3.maxCoeff py:method 1 index.html#$ -\n-minieigen.Matrix3.mean py:method 1 index.html#$ -\n-minieigen.Matrix3.minCoeff py:method 1 index.html#$ -\n-minieigen.Matrix3.norm py:method 1 index.html#$ -\n-minieigen.Matrix3.normalize py:method 1 index.html#$ -\n-minieigen.Matrix3.normalized py:method 1 index.html#$ -\n-minieigen.Matrix3.polarDecomposition py:method 1 index.html#$ -\n-minieigen.Matrix3.prod py:method 1 index.html#$ -\n-minieigen.Matrix3.pruned py:method 1 index.html#$ -\n-minieigen.Matrix3.row py:method 1 index.html#$ -\n-minieigen.Matrix3.rows py:method 1 index.html#$ -\n-minieigen.Matrix3.selfAdjointEigenDecomposition py:method 1 index.html#$ -\n-minieigen.Matrix3.spectralDecomposition py:method 1 index.html#$ -\n-minieigen.Matrix3.squaredNorm py:method 1 index.html#$ -\n-minieigen.Matrix3.sum py:method 1 index.html#$ -\n-minieigen.Matrix3.svd py:method 1 index.html#$ -\n-minieigen.Matrix3.trace py:method 1 index.html#$ -\n-minieigen.Matrix3.transpose py:method 1 index.html#$ -\n-minieigen.Matrix3c py:class 1 index.html#$ -\n-minieigen.Matrix3c.Identity py:attribute 1 index.html#$ -\n-minieigen.Matrix3c.Ones py:attribute 1 index.html#$ -\n-minieigen.Matrix3c.Random py:method 1 index.html#$ -\n-minieigen.Matrix3c.Zero py:attribute 1 index.html#$ -\n-minieigen.Matrix3c.col py:method 1 index.html#$ -\n-minieigen.Matrix3c.cols py:method 1 index.html#$ -\n-minieigen.Matrix3c.determinant py:method 1 index.html#$ -\n-minieigen.Matrix3c.diagonal py:method 1 index.html#$ -\n-minieigen.Matrix3c.inverse py:method 1 index.html#$ -\n-minieigen.Matrix3c.isApprox py:method 1 index.html#$ -\n-minieigen.Matrix3c.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.Matrix3c.mean py:method 1 index.html#$ -\n-minieigen.Matrix3c.norm py:method 1 index.html#$ -\n-minieigen.Matrix3c.normalize py:method 1 index.html#$ -\n-minieigen.Matrix3c.normalized py:method 1 index.html#$ -\n-minieigen.Matrix3c.prod py:method 1 index.html#$ -\n-minieigen.Matrix3c.pruned py:method 1 index.html#$ -\n-minieigen.Matrix3c.row py:method 1 index.html#$ -\n-minieigen.Matrix3c.rows py:method 1 index.html#$ -\n-minieigen.Matrix3c.squaredNorm py:method 1 index.html#$ -\n-minieigen.Matrix3c.sum py:method 1 index.html#$ -\n-minieigen.Matrix3c.trace py:method 1 index.html#$ -\n-minieigen.Matrix3c.transpose py:method 1 index.html#$ -\n-minieigen.Matrix6 py:class 1 index.html#$ -\n-minieigen.Matrix6.Identity py:attribute 1 index.html#$ -\n-minieigen.Matrix6.Ones py:attribute 1 index.html#$ -\n-minieigen.Matrix6.Random py:method 1 index.html#$ -\n-minieigen.Matrix6.Zero py:attribute 1 index.html#$ -\n-minieigen.Matrix6.col py:method 1 index.html#$ -\n-minieigen.Matrix6.cols py:method 1 index.html#$ -\n-minieigen.Matrix6.computeUnitaryPositive py:method 1 index.html#$ -\n-minieigen.Matrix6.determinant py:method 1 index.html#$ -\n-minieigen.Matrix6.diagonal py:method 1 index.html#$ -\n-minieigen.Matrix6.inverse py:method 1 index.html#$ -\n-minieigen.Matrix6.isApprox py:method 1 index.html#$ -\n-minieigen.Matrix6.jacobiSVD py:method 1 index.html#$ -\n-minieigen.Matrix6.ll py:method 1 index.html#$ -\n-minieigen.Matrix6.lr py:method 1 index.html#$ -\n-minieigen.Matrix6.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.Matrix6.maxCoeff py:method 1 index.html#$ -\n-minieigen.Matrix6.mean py:method 1 index.html#$ -\n-minieigen.Matrix6.minCoeff py:method 1 index.html#$ -\n-minieigen.Matrix6.norm py:method 1 index.html#$ -\n-minieigen.Matrix6.normalize py:method 1 index.html#$ -\n-minieigen.Matrix6.normalized py:method 1 index.html#$ -\n-minieigen.Matrix6.polarDecomposition py:method 1 index.html#$ -\n-minieigen.Matrix6.prod py:method 1 index.html#$ -\n-minieigen.Matrix6.pruned py:method 1 index.html#$ -\n-minieigen.Matrix6.row py:method 1 index.html#$ -\n-minieigen.Matrix6.rows py:method 1 index.html#$ -\n-minieigen.Matrix6.selfAdjointEigenDecomposition py:method 1 index.html#$ -\n-minieigen.Matrix6.spectralDecomposition py:method 1 index.html#$ -\n-minieigen.Matrix6.squaredNorm py:method 1 index.html#$ -\n-minieigen.Matrix6.sum py:method 1 index.html#$ -\n-minieigen.Matrix6.svd py:method 1 index.html#$ -\n-minieigen.Matrix6.trace py:method 1 index.html#$ -\n-minieigen.Matrix6.transpose py:method 1 index.html#$ -\n-minieigen.Matrix6.ul py:method 1 index.html#$ -\n-minieigen.Matrix6.ur py:method 1 index.html#$ -\n-minieigen.Matrix6c py:class 1 index.html#$ -\n-minieigen.Matrix6c.Identity py:attribute 1 index.html#$ -\n-minieigen.Matrix6c.Ones py:attribute 1 index.html#$ -\n-minieigen.Matrix6c.Random py:method 1 index.html#$ -\n-minieigen.Matrix6c.Zero py:attribute 1 index.html#$ -\n-minieigen.Matrix6c.col py:method 1 index.html#$ -\n-minieigen.Matrix6c.cols py:method 1 index.html#$ -\n-minieigen.Matrix6c.determinant py:method 1 index.html#$ -\n-minieigen.Matrix6c.diagonal py:method 1 index.html#$ -\n-minieigen.Matrix6c.inverse py:method 1 index.html#$ -\n-minieigen.Matrix6c.isApprox py:method 1 index.html#$ -\n-minieigen.Matrix6c.ll py:method 1 index.html#$ -\n-minieigen.Matrix6c.lr py:method 1 index.html#$ -\n-minieigen.Matrix6c.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.Matrix6c.mean py:method 1 index.html#$ -\n-minieigen.Matrix6c.norm py:method 1 index.html#$ -\n-minieigen.Matrix6c.normalize py:method 1 index.html#$ -\n-minieigen.Matrix6c.normalized py:method 1 index.html#$ -\n-minieigen.Matrix6c.prod py:method 1 index.html#$ -\n-minieigen.Matrix6c.pruned py:method 1 index.html#$ -\n-minieigen.Matrix6c.row py:method 1 index.html#$ -\n-minieigen.Matrix6c.rows py:method 1 index.html#$ -\n-minieigen.Matrix6c.squaredNorm py:method 1 index.html#$ -\n-minieigen.Matrix6c.sum py:method 1 index.html#$ -\n-minieigen.Matrix6c.trace py:method 1 index.html#$ -\n-minieigen.Matrix6c.transpose py:method 1 index.html#$ -\n-minieigen.Matrix6c.ul py:method 1 index.html#$ -\n-minieigen.Matrix6c.ur py:method 1 index.html#$ -\n-minieigen.MatrixX py:class 1 index.html#$ -\n-minieigen.MatrixX.Identity py:method 1 index.html#$ -\n-minieigen.MatrixX.Ones py:method 1 index.html#$ -\n-minieigen.MatrixX.Random py:method 1 index.html#$ -\n-minieigen.MatrixX.Zero py:method 1 index.html#$ -\n-minieigen.MatrixX.col py:method 1 index.html#$ -\n-minieigen.MatrixX.cols py:method 1 index.html#$ -\n-minieigen.MatrixX.computeUnitaryPositive py:method 1 index.html#$ -\n-minieigen.MatrixX.determinant py:method 1 index.html#$ -\n-minieigen.MatrixX.diagonal py:method 1 index.html#$ -\n-minieigen.MatrixX.inverse py:method 1 index.html#$ -\n-minieigen.MatrixX.isApprox py:method 1 index.html#$ -\n-minieigen.MatrixX.jacobiSVD py:method 1 index.html#$ -\n-minieigen.MatrixX.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.MatrixX.maxCoeff py:method 1 index.html#$ -\n-minieigen.MatrixX.mean py:method 1 index.html#$ -\n-minieigen.MatrixX.minCoeff py:method 1 index.html#$ -\n-minieigen.MatrixX.norm py:method 1 index.html#$ -\n-minieigen.MatrixX.normalize py:method 1 index.html#$ -\n-minieigen.MatrixX.normalized py:method 1 index.html#$ -\n-minieigen.MatrixX.polarDecomposition py:method 1 index.html#$ -\n-minieigen.MatrixX.prod py:method 1 index.html#$ -\n-minieigen.MatrixX.pruned py:method 1 index.html#$ -\n-minieigen.MatrixX.resize py:method 1 index.html#$ -\n-minieigen.MatrixX.row py:method 1 index.html#$ -\n-minieigen.MatrixX.rows py:method 1 index.html#$ -\n-minieigen.MatrixX.selfAdjointEigenDecomposition py:method 1 index.html#$ -\n-minieigen.MatrixX.spectralDecomposition py:method 1 index.html#$ -\n-minieigen.MatrixX.squaredNorm py:method 1 index.html#$ -\n-minieigen.MatrixX.sum py:method 1 index.html#$ -\n-minieigen.MatrixX.svd py:method 1 index.html#$ -\n-minieigen.MatrixX.trace py:method 1 index.html#$ -\n-minieigen.MatrixX.transpose py:method 1 index.html#$ -\n-minieigen.MatrixXc py:class 1 index.html#$ -\n-minieigen.MatrixXc.Identity py:method 1 index.html#$ -\n-minieigen.MatrixXc.Ones py:method 1 index.html#$ -\n-minieigen.MatrixXc.Random py:method 1 index.html#$ -\n-minieigen.MatrixXc.Zero py:method 1 index.html#$ -\n-minieigen.MatrixXc.col py:method 1 index.html#$ -\n-minieigen.MatrixXc.cols py:method 1 index.html#$ -\n-minieigen.MatrixXc.determinant py:method 1 index.html#$ -\n-minieigen.MatrixXc.diagonal py:method 1 index.html#$ -\n-minieigen.MatrixXc.inverse py:method 1 index.html#$ -\n-minieigen.MatrixXc.isApprox py:method 1 index.html#$ -\n-minieigen.MatrixXc.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.MatrixXc.mean py:method 1 index.html#$ -\n-minieigen.MatrixXc.norm py:method 1 index.html#$ -\n-minieigen.MatrixXc.normalize py:method 1 index.html#$ -\n-minieigen.MatrixXc.normalized py:method 1 index.html#$ -\n-minieigen.MatrixXc.prod py:method 1 index.html#$ -\n-minieigen.MatrixXc.pruned py:method 1 index.html#$ -\n-minieigen.MatrixXc.resize py:method 1 index.html#$ -\n-minieigen.MatrixXc.row py:method 1 index.html#$ -\n-minieigen.MatrixXc.rows py:method 1 index.html#$ -\n-minieigen.MatrixXc.squaredNorm py:method 1 index.html#$ -\n-minieigen.MatrixXc.sum py:method 1 index.html#$ -\n-minieigen.MatrixXc.trace py:method 1 index.html#$ -\n-minieigen.MatrixXc.transpose py:method 1 index.html#$ -\n-minieigen.Quaternion py:class 1 index.html#$ -\n-minieigen.Quaternion.Identity py:attribute 1 index.html#$ -\n-minieigen.Quaternion.Rotate py:method 1 index.html#$ -\n-minieigen.Quaternion.angularDistance py:method 1 index.html#$ -\n-minieigen.Quaternion.conjugate py:method 1 index.html#$ -\n-minieigen.Quaternion.inverse py:method 1 index.html#$ -\n-minieigen.Quaternion.norm py:method 1 index.html#$ -\n-minieigen.Quaternion.normalize py:method 1 index.html#$ -\n-minieigen.Quaternion.normalized py:method 1 index.html#$ -\n-minieigen.Quaternion.setFromTwoVectors py:method 1 index.html#$ -\n-minieigen.Quaternion.slerp py:method 1 index.html#$ -\n-minieigen.Quaternion.toAngleAxis py:method 1 index.html#$ -\n-minieigen.Quaternion.toAxisAngle py:method 1 index.html#$ -\n-minieigen.Quaternion.toRotationMatrix py:method 1 index.html#$ -\n-minieigen.Quaternion.toRotationVector py:method 1 index.html#$ -\n-minieigen.Vector2 py:class 1 index.html#$ -\n-minieigen.Vector2.Identity py:attribute 1 index.html#$ -\n-minieigen.Vector2.Ones py:attribute 1 index.html#$ -\n-minieigen.Vector2.Random py:method 1 index.html#$ -\n-minieigen.Vector2.Unit py:method 1 index.html#$ -\n-minieigen.Vector2.UnitX py:attribute 1 index.html#$ -\n-minieigen.Vector2.UnitY py:attribute 1 index.html#$ -\n-minieigen.Vector2.Zero py:attribute 1 index.html#$ -\n-minieigen.Vector2.asDiagonal py:method 1 index.html#$ -\n-minieigen.Vector2.cols py:method 1 index.html#$ -\n-minieigen.Vector2.dot py:method 1 index.html#$ -\n-minieigen.Vector2.isApprox py:method 1 index.html#$ -\n-minieigen.Vector2.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.Vector2.maxCoeff py:method 1 index.html#$ -\n-minieigen.Vector2.mean py:method 1 index.html#$ -\n-minieigen.Vector2.minCoeff py:method 1 index.html#$ -\n-minieigen.Vector2.norm py:method 1 index.html#$ -\n-minieigen.Vector2.normalize py:method 1 index.html#$ -\n-minieigen.Vector2.normalized py:method 1 index.html#$ -\n-minieigen.Vector2.outer py:method 1 index.html#$ -\n-minieigen.Vector2.prod py:method 1 index.html#$ -\n-minieigen.Vector2.pruned py:method 1 index.html#$ -\n-minieigen.Vector2.rows py:method 1 index.html#$ -\n-minieigen.Vector2.squaredNorm py:method 1 index.html#$ -\n-minieigen.Vector2.sum py:method 1 index.html#$ -\n-minieigen.Vector2c py:class 1 index.html#$ -\n-minieigen.Vector2c.Identity py:attribute 1 index.html#$ -\n-minieigen.Vector2c.Ones py:attribute 1 index.html#$ -\n-minieigen.Vector2c.Random py:method 1 index.html#$ -\n-minieigen.Vector2c.Unit py:method 1 index.html#$ -\n-minieigen.Vector2c.UnitX py:attribute 1 index.html#$ -\n-minieigen.Vector2c.UnitY py:attribute 1 index.html#$ -\n-minieigen.Vector2c.Zero py:attribute 1 index.html#$ -\n-minieigen.Vector2c.asDiagonal py:method 1 index.html#$ -\n-minieigen.Vector2c.cols py:method 1 index.html#$ -\n-minieigen.Vector2c.dot py:method 1 index.html#$ -\n-minieigen.Vector2c.isApprox py:method 1 index.html#$ -\n-minieigen.Vector2c.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.Vector2c.mean py:method 1 index.html#$ -\n-minieigen.Vector2c.norm py:method 1 index.html#$ -\n-minieigen.Vector2c.normalize py:method 1 index.html#$ -\n-minieigen.Vector2c.normalized py:method 1 index.html#$ -\n-minieigen.Vector2c.outer py:method 1 index.html#$ -\n-minieigen.Vector2c.prod py:method 1 index.html#$ -\n-minieigen.Vector2c.pruned py:method 1 index.html#$ -\n-minieigen.Vector2c.rows py:method 1 index.html#$ -\n-minieigen.Vector2c.squaredNorm py:method 1 index.html#$ -\n-minieigen.Vector2c.sum py:method 1 index.html#$ -\n-minieigen.Vector2i py:class 1 index.html#$ -\n-minieigen.Vector2i.Identity py:attribute 1 index.html#$ -\n-minieigen.Vector2i.Ones py:attribute 1 index.html#$ -\n-minieigen.Vector2i.Random py:method 1 index.html#$ -\n-minieigen.Vector2i.Unit py:method 1 index.html#$ -\n-minieigen.Vector2i.UnitX py:attribute 1 index.html#$ -\n-minieigen.Vector2i.UnitY py:attribute 1 index.html#$ -\n-minieigen.Vector2i.Zero py:attribute 1 index.html#$ -\n-minieigen.Vector2i.asDiagonal py:method 1 index.html#$ -\n-minieigen.Vector2i.cols py:method 1 index.html#$ -\n-minieigen.Vector2i.dot py:method 1 index.html#$ -\n-minieigen.Vector2i.isApprox py:method 1 index.html#$ -\n-minieigen.Vector2i.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.Vector2i.maxCoeff py:method 1 index.html#$ -\n-minieigen.Vector2i.mean py:method 1 index.html#$ -\n-minieigen.Vector2i.minCoeff py:method 1 index.html#$ -\n-minieigen.Vector2i.outer py:method 1 index.html#$ -\n-minieigen.Vector2i.prod py:method 1 index.html#$ -\n-minieigen.Vector2i.rows py:method 1 index.html#$ -\n-minieigen.Vector2i.sum py:method 1 index.html#$ -\n-minieigen.Vector3 py:class 1 index.html#$ -\n-minieigen.Vector3.Identity py:attribute 1 index.html#$ -\n-minieigen.Vector3.Ones py:attribute 1 index.html#$ -\n-minieigen.Vector3.Random py:method 1 index.html#$ -\n-minieigen.Vector3.Unit py:method 1 index.html#$ -\n-minieigen.Vector3.UnitX py:attribute 1 index.html#$ -\n-minieigen.Vector3.UnitY py:attribute 1 index.html#$ -\n-minieigen.Vector3.UnitZ py:attribute 1 index.html#$ -\n-minieigen.Vector3.Zero py:attribute 1 index.html#$ -\n-minieigen.Vector3.asDiagonal py:method 1 index.html#$ -\n-minieigen.Vector3.cols py:method 1 index.html#$ -\n-minieigen.Vector3.cross py:method 1 index.html#$ -\n-minieigen.Vector3.dot py:method 1 index.html#$ -\n-minieigen.Vector3.isApprox py:method 1 index.html#$ -\n-minieigen.Vector3.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.Vector3.maxCoeff py:method 1 index.html#$ -\n-minieigen.Vector3.mean py:method 1 index.html#$ -\n-minieigen.Vector3.minCoeff py:method 1 index.html#$ -\n-minieigen.Vector3.norm py:method 1 index.html#$ -\n-minieigen.Vector3.normalize py:method 1 index.html#$ -\n-minieigen.Vector3.normalized py:method 1 index.html#$ -\n-minieigen.Vector3.outer py:method 1 index.html#$ -\n-minieigen.Vector3.prod py:method 1 index.html#$ -\n-minieigen.Vector3.pruned py:method 1 index.html#$ -\n-minieigen.Vector3.rows py:method 1 index.html#$ -\n-minieigen.Vector3.squaredNorm py:method 1 index.html#$ -\n-minieigen.Vector3.sum py:method 1 index.html#$ -\n-minieigen.Vector3.xy py:method 1 index.html#$ -\n-minieigen.Vector3.xz py:method 1 index.html#$ -\n-minieigen.Vector3.yx py:method 1 index.html#$ -\n-minieigen.Vector3.yz py:method 1 index.html#$ -\n-minieigen.Vector3.zx py:method 1 index.html#$ -\n-minieigen.Vector3.zy py:method 1 index.html#$ -\n-minieigen.Vector3c py:class 1 index.html#$ -\n-minieigen.Vector3c.Identity py:attribute 1 index.html#$ -\n-minieigen.Vector3c.Ones py:attribute 1 index.html#$ -\n-minieigen.Vector3c.Random py:method 1 index.html#$ -\n-minieigen.Vector3c.Unit py:method 1 index.html#$ -\n-minieigen.Vector3c.UnitX py:attribute 1 index.html#$ -\n-minieigen.Vector3c.UnitY py:attribute 1 index.html#$ -\n-minieigen.Vector3c.UnitZ py:attribute 1 index.html#$ -\n-minieigen.Vector3c.Zero py:attribute 1 index.html#$ -\n-minieigen.Vector3c.asDiagonal py:method 1 index.html#$ -\n-minieigen.Vector3c.cols py:method 1 index.html#$ -\n-minieigen.Vector3c.cross py:method 1 index.html#$ -\n-minieigen.Vector3c.dot py:method 1 index.html#$ -\n-minieigen.Vector3c.isApprox py:method 1 index.html#$ -\n-minieigen.Vector3c.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.Vector3c.mean py:method 1 index.html#$ -\n-minieigen.Vector3c.norm py:method 1 index.html#$ -\n-minieigen.Vector3c.normalize py:method 1 index.html#$ -\n-minieigen.Vector3c.normalized py:method 1 index.html#$ -\n-minieigen.Vector3c.outer py:method 1 index.html#$ -\n-minieigen.Vector3c.prod py:method 1 index.html#$ -\n-minieigen.Vector3c.pruned py:method 1 index.html#$ -\n-minieigen.Vector3c.rows py:method 1 index.html#$ -\n-minieigen.Vector3c.squaredNorm py:method 1 index.html#$ -\n-minieigen.Vector3c.sum py:method 1 index.html#$ -\n-minieigen.Vector3c.xy py:method 1 index.html#$ -\n-minieigen.Vector3c.xz py:method 1 index.html#$ -\n-minieigen.Vector3c.yx py:method 1 index.html#$ -\n-minieigen.Vector3c.yz py:method 1 index.html#$ -\n-minieigen.Vector3c.zx py:method 1 index.html#$ -\n-minieigen.Vector3c.zy py:method 1 index.html#$ -\n-minieigen.Vector3i py:class 1 index.html#$ -\n-minieigen.Vector3i.Identity py:attribute 1 index.html#$ -\n-minieigen.Vector3i.Ones py:attribute 1 index.html#$ -\n-minieigen.Vector3i.Random py:method 1 index.html#$ -\n-minieigen.Vector3i.Unit py:method 1 index.html#$ -\n-minieigen.Vector3i.UnitX py:attribute 1 index.html#$ -\n-minieigen.Vector3i.UnitY py:attribute 1 index.html#$ -\n-minieigen.Vector3i.UnitZ py:attribute 1 index.html#$ -\n-minieigen.Vector3i.Zero py:attribute 1 index.html#$ -\n-minieigen.Vector3i.asDiagonal py:method 1 index.html#$ -\n-minieigen.Vector3i.cols py:method 1 index.html#$ -\n-minieigen.Vector3i.cross py:method 1 index.html#$ -\n-minieigen.Vector3i.dot py:method 1 index.html#$ -\n-minieigen.Vector3i.isApprox py:method 1 index.html#$ -\n-minieigen.Vector3i.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.Vector3i.maxCoeff py:method 1 index.html#$ -\n-minieigen.Vector3i.mean py:method 1 index.html#$ -\n-minieigen.Vector3i.minCoeff py:method 1 index.html#$ -\n-minieigen.Vector3i.outer py:method 1 index.html#$ -\n-minieigen.Vector3i.prod py:method 1 index.html#$ -\n-minieigen.Vector3i.rows py:method 1 index.html#$ -\n-minieigen.Vector3i.sum py:method 1 index.html#$ -\n-minieigen.Vector3i.xy py:method 1 index.html#$ -\n-minieigen.Vector3i.xz py:method 1 index.html#$ -\n-minieigen.Vector3i.yx py:method 1 index.html#$ -\n-minieigen.Vector3i.yz py:method 1 index.html#$ -\n-minieigen.Vector3i.zx py:method 1 index.html#$ -\n-minieigen.Vector3i.zy py:method 1 index.html#$ -\n-minieigen.Vector4 py:class 1 index.html#$ -\n-minieigen.Vector4.Identity py:attribute 1 index.html#$ -\n-minieigen.Vector4.Ones py:attribute 1 index.html#$ -\n-minieigen.Vector4.Random py:method 1 index.html#$ -\n-minieigen.Vector4.Unit py:method 1 index.html#$ -\n-minieigen.Vector4.Zero py:attribute 1 index.html#$ -\n-minieigen.Vector4.asDiagonal py:method 1 index.html#$ -\n-minieigen.Vector4.cols py:method 1 index.html#$ -\n-minieigen.Vector4.dot py:method 1 index.html#$ -\n-minieigen.Vector4.isApprox py:method 1 index.html#$ -\n-minieigen.Vector4.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.Vector4.maxCoeff py:method 1 index.html#$ -\n-minieigen.Vector4.mean py:method 1 index.html#$ -\n-minieigen.Vector4.minCoeff py:method 1 index.html#$ -\n-minieigen.Vector4.norm py:method 1 index.html#$ -\n-minieigen.Vector4.normalize py:method 1 index.html#$ -\n-minieigen.Vector4.normalized py:method 1 index.html#$ -\n-minieigen.Vector4.outer py:method 1 index.html#$ -\n-minieigen.Vector4.prod py:method 1 index.html#$ -\n-minieigen.Vector4.pruned py:method 1 index.html#$ -\n-minieigen.Vector4.rows py:method 1 index.html#$ -\n-minieigen.Vector4.squaredNorm py:method 1 index.html#$ -\n-minieigen.Vector4.sum py:method 1 index.html#$ -\n-minieigen.Vector6 py:class 1 index.html#$ -\n-minieigen.Vector6.Identity py:attribute 1 index.html#$ -\n-minieigen.Vector6.Ones py:attribute 1 index.html#$ -\n-minieigen.Vector6.Random py:method 1 index.html#$ -\n-minieigen.Vector6.Unit py:method 1 index.html#$ -\n-minieigen.Vector6.Zero py:attribute 1 index.html#$ -\n-minieigen.Vector6.asDiagonal py:method 1 index.html#$ -\n-minieigen.Vector6.cols py:method 1 index.html#$ -\n-minieigen.Vector6.dot py:method 1 index.html#$ -\n-minieigen.Vector6.head py:method 1 index.html#$ -\n-minieigen.Vector6.isApprox py:method 1 index.html#$ -\n-minieigen.Vector6.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.Vector6.maxCoeff py:method 1 index.html#$ -\n-minieigen.Vector6.mean py:method 1 index.html#$ -\n-minieigen.Vector6.minCoeff py:method 1 index.html#$ -\n-minieigen.Vector6.norm py:method 1 index.html#$ -\n-minieigen.Vector6.normalize py:method 1 index.html#$ -\n-minieigen.Vector6.normalized py:method 1 index.html#$ -\n-minieigen.Vector6.outer py:method 1 index.html#$ -\n-minieigen.Vector6.prod py:method 1 index.html#$ -\n-minieigen.Vector6.pruned py:method 1 index.html#$ -\n-minieigen.Vector6.rows py:method 1 index.html#$ -\n-minieigen.Vector6.squaredNorm py:method 1 index.html#$ -\n-minieigen.Vector6.sum py:method 1 index.html#$ -\n-minieigen.Vector6.tail py:method 1 index.html#$ -\n-minieigen.Vector6c py:class 1 index.html#$ -\n-minieigen.Vector6c.Identity py:attribute 1 index.html#$ -\n-minieigen.Vector6c.Ones py:attribute 1 index.html#$ -\n-minieigen.Vector6c.Random py:method 1 index.html#$ -\n-minieigen.Vector6c.Unit py:method 1 index.html#$ -\n-minieigen.Vector6c.Zero py:attribute 1 index.html#$ -\n-minieigen.Vector6c.asDiagonal py:method 1 index.html#$ -\n-minieigen.Vector6c.cols py:method 1 index.html#$ -\n-minieigen.Vector6c.dot py:method 1 index.html#$ -\n-minieigen.Vector6c.head py:method 1 index.html#$ -\n-minieigen.Vector6c.isApprox py:method 1 index.html#$ -\n-minieigen.Vector6c.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.Vector6c.mean py:method 1 index.html#$ -\n-minieigen.Vector6c.norm py:method 1 index.html#$ -\n-minieigen.Vector6c.normalize py:method 1 index.html#$ -\n-minieigen.Vector6c.normalized py:method 1 index.html#$ -\n-minieigen.Vector6c.outer py:method 1 index.html#$ -\n-minieigen.Vector6c.prod py:method 1 index.html#$ -\n-minieigen.Vector6c.pruned py:method 1 index.html#$ -\n-minieigen.Vector6c.rows py:method 1 index.html#$ -\n-minieigen.Vector6c.squaredNorm py:method 1 index.html#$ -\n-minieigen.Vector6c.sum py:method 1 index.html#$ -\n-minieigen.Vector6c.tail py:method 1 index.html#$ -\n-minieigen.Vector6i py:class 1 index.html#$ -\n-minieigen.Vector6i.Identity py:attribute 1 index.html#$ -\n-minieigen.Vector6i.Ones py:attribute 1 index.html#$ -\n-minieigen.Vector6i.Random py:method 1 index.html#$ -\n-minieigen.Vector6i.Unit py:method 1 index.html#$ -\n-minieigen.Vector6i.Zero py:attribute 1 index.html#$ -\n-minieigen.Vector6i.asDiagonal py:method 1 index.html#$ -\n-minieigen.Vector6i.cols py:method 1 index.html#$ -\n-minieigen.Vector6i.dot py:method 1 index.html#$ -\n-minieigen.Vector6i.head py:method 1 index.html#$ -\n-minieigen.Vector6i.isApprox py:method 1 index.html#$ -\n-minieigen.Vector6i.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.Vector6i.maxCoeff py:method 1 index.html#$ -\n-minieigen.Vector6i.mean py:method 1 index.html#$ -\n-minieigen.Vector6i.minCoeff py:method 1 index.html#$ -\n-minieigen.Vector6i.outer py:method 1 index.html#$ -\n-minieigen.Vector6i.prod py:method 1 index.html#$ -\n-minieigen.Vector6i.rows py:method 1 index.html#$ -\n-minieigen.Vector6i.sum py:method 1 index.html#$ -\n-minieigen.Vector6i.tail py:method 1 index.html#$ -\n-minieigen.VectorX py:class 1 index.html#$ -\n-minieigen.VectorX.Ones py:method 1 index.html#$ -\n-minieigen.VectorX.Random py:method 1 index.html#$ -\n-minieigen.VectorX.Unit py:method 1 index.html#$ -\n-minieigen.VectorX.Zero py:method 1 index.html#$ -\n-minieigen.VectorX.asDiagonal py:method 1 index.html#$ -\n-minieigen.VectorX.cols py:method 1 index.html#$ -\n-minieigen.VectorX.dot py:method 1 index.html#$ -\n-minieigen.VectorX.isApprox py:method 1 index.html#$ -\n-minieigen.VectorX.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.VectorX.maxCoeff py:method 1 index.html#$ -\n-minieigen.VectorX.mean py:method 1 index.html#$ -\n-minieigen.VectorX.minCoeff py:method 1 index.html#$ -\n-minieigen.VectorX.norm py:method 1 index.html#$ -\n-minieigen.VectorX.normalize py:method 1 index.html#$ -\n-minieigen.VectorX.normalized py:method 1 index.html#$ -\n-minieigen.VectorX.outer py:method 1 index.html#$ -\n-minieigen.VectorX.prod py:method 1 index.html#$ -\n-minieigen.VectorX.pruned py:method 1 index.html#$ -\n-minieigen.VectorX.resize py:method 1 index.html#$ -\n-minieigen.VectorX.rows py:method 1 index.html#$ -\n-minieigen.VectorX.squaredNorm py:method 1 index.html#$ -\n-minieigen.VectorX.sum py:method 1 index.html#$ -\n-minieigen.VectorXc py:class 1 index.html#$ -\n-minieigen.VectorXc.Ones py:method 1 index.html#$ -\n-minieigen.VectorXc.Random py:method 1 index.html#$ -\n-minieigen.VectorXc.Unit py:method 1 index.html#$ -\n-minieigen.VectorXc.Zero py:method 1 index.html#$ -\n-minieigen.VectorXc.asDiagonal py:method 1 index.html#$ -\n-minieigen.VectorXc.cols py:method 1 index.html#$ -\n-minieigen.VectorXc.dot py:method 1 index.html#$ -\n-minieigen.VectorXc.isApprox py:method 1 index.html#$ -\n-minieigen.VectorXc.maxAbsCoeff py:method 1 index.html#$ -\n-minieigen.VectorXc.mean py:method 1 index.html#$ -\n-minieigen.VectorXc.norm py:method 1 index.html#$ -\n-minieigen.VectorXc.normalize py:method 1 index.html#$ -\n-minieigen.VectorXc.normalized py:method 1 index.html#$ -\n-minieigen.VectorXc.outer py:method 1 index.html#$ -\n-minieigen.VectorXc.prod py:method 1 index.html#$ -\n-minieigen.VectorXc.pruned py:method 1 index.html#$ -\n-minieigen.VectorXc.resize py:method 1 index.html#$ -\n-minieigen.VectorXc.rows py:method 1 index.html#$ -\n-minieigen.VectorXc.squaredNorm py:method 1 index.html#$ -\n-minieigen.VectorXc.sum py:method 1 index.html#$ -\n-minieigen.float2str py:function 1 index.html#$ -\n genindex std:label -1 genindex.html Index\n index std:doc -1 index.html minieigen documentation\n modindex std:label -1 py-modindex.html Module Index\n py-modindex std:label -1 py-modindex.html Python Module Index\n search std:label -1 search.html Search Page\n"}]}, {"source1": "./usr/share/doc/python3-minieigen/html/searchindex.js", "source2": "./usr/share/doc/python3-minieigen/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -38,2495 +38,184 @@\n \"sphinx.domains.math\": 2,\n \"sphinx.domains.python\": 4,\n \"sphinx.domains.rst\": 2,\n \"sphinx.domains.std\": 2,\n \"sphinx.ext.todo\": 2\n },\n \"filenames\": [\"index.rst\"],\n- \"indexentries\": {\n- \"alignedbox2 (class in minieigen)\": [\n- [0, \"minieigen.AlignedBox2\", false]\n- ],\n- \"alignedbox3 (class in minieigen)\": [\n- [0, \"minieigen.AlignedBox3\", false]\n- ],\n- \"angulardistance() (minieigen.quaternion method)\": [\n- [0, \"minieigen.Quaternion.angularDistance\", false]\n- ],\n- \"asdiagonal() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.asDiagonal\", false]\n- ],\n- \"asdiagonal() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.asDiagonal\", false]\n- ],\n- \"asdiagonal() (minieigen.vector2i method)\": [\n- [0, \"minieigen.Vector2i.asDiagonal\", false]\n- ],\n- \"asdiagonal() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.asDiagonal\", false]\n- ],\n- \"asdiagonal() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.asDiagonal\", false]\n- ],\n- \"asdiagonal() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.asDiagonal\", false]\n- ],\n- \"asdiagonal() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.asDiagonal\", false]\n- ],\n- \"asdiagonal() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.asDiagonal\", false]\n- ],\n- \"asdiagonal() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.asDiagonal\", false]\n- ],\n- \"asdiagonal() (minieigen.vector6i method)\": [\n- [0, \"minieigen.Vector6i.asDiagonal\", false]\n- ],\n- \"asdiagonal() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.asDiagonal\", false]\n- ],\n- \"asdiagonal() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.asDiagonal\", false]\n- ],\n- \"center() (minieigen.alignedbox2 method)\": [\n- [0, \"minieigen.AlignedBox2.center\", false]\n- ],\n- \"center() (minieigen.alignedbox3 method)\": [\n- [0, \"minieigen.AlignedBox3.center\", false]\n- ],\n- \"clamp() (minieigen.alignedbox2 method)\": [\n- [0, \"minieigen.AlignedBox2.clamp\", false]\n- ],\n- \"clamp() (minieigen.alignedbox3 method)\": [\n- [0, \"minieigen.AlignedBox3.clamp\", false]\n- ],\n- \"col() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.col\", false]\n- ],\n- \"col() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.col\", false]\n- ],\n- \"col() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.col\", false]\n- ],\n- \"col() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.col\", false]\n- ],\n- \"col() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.col\", false]\n- ],\n- \"col() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.col\", false]\n- ],\n- \"cols() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.cols\", false]\n- ],\n- \"cols() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.cols\", false]\n- ],\n- \"cols() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.cols\", false]\n- ],\n- \"cols() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.cols\", false]\n- ],\n- \"cols() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.cols\", false]\n- ],\n- \"cols() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.cols\", false]\n- ],\n- \"cols() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.cols\", false]\n- ],\n- \"cols() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.cols\", false]\n- ],\n- \"cols() (minieigen.vector2i method)\": [\n- [0, \"minieigen.Vector2i.cols\", false]\n- ],\n- \"cols() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.cols\", false]\n- ],\n- \"cols() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.cols\", false]\n- ],\n- \"cols() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.cols\", false]\n- ],\n- \"cols() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.cols\", false]\n- ],\n- \"cols() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.cols\", false]\n- ],\n- \"cols() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.cols\", false]\n- ],\n- \"cols() (minieigen.vector6i method)\": [\n- [0, \"minieigen.Vector6i.cols\", false]\n- ],\n- \"cols() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.cols\", false]\n- ],\n- \"cols() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.cols\", false]\n- ],\n- \"computeunitarypositive() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.computeUnitaryPositive\", false]\n- ],\n- \"computeunitarypositive() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.computeUnitaryPositive\", false]\n- ],\n- \"computeunitarypositive() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.computeUnitaryPositive\", false]\n- ],\n- \"conjugate() (minieigen.quaternion method)\": [\n- [0, \"minieigen.Quaternion.conjugate\", false]\n- ],\n- \"contains() (minieigen.alignedbox2 method)\": [\n- [0, \"minieigen.AlignedBox2.contains\", false]\n- ],\n- \"contains() (minieigen.alignedbox3 method)\": [\n- [0, \"minieigen.AlignedBox3.contains\", false]\n- ],\n- \"cross() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.cross\", false]\n- ],\n- \"cross() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.cross\", false]\n- ],\n- \"cross() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.cross\", false]\n- ],\n- \"determinant() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.determinant\", false]\n- ],\n- \"determinant() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.determinant\", false]\n- ],\n- \"determinant() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.determinant\", false]\n- ],\n- \"determinant() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.determinant\", false]\n- ],\n- \"determinant() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.determinant\", false]\n- ],\n- \"determinant() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.determinant\", false]\n- ],\n- \"diagonal() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.diagonal\", false]\n- ],\n- \"diagonal() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.diagonal\", false]\n- ],\n- \"diagonal() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.diagonal\", false]\n- ],\n- \"diagonal() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.diagonal\", false]\n- ],\n- \"diagonal() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.diagonal\", false]\n- ],\n- \"diagonal() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.diagonal\", false]\n- ],\n- \"dot() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.dot\", false]\n- ],\n- \"dot() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.dot\", false]\n- ],\n- \"dot() (minieigen.vector2i method)\": [\n- [0, \"minieigen.Vector2i.dot\", false]\n- ],\n- \"dot() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.dot\", false]\n- ],\n- \"dot() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.dot\", false]\n- ],\n- \"dot() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.dot\", false]\n- ],\n- \"dot() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.dot\", false]\n- ],\n- \"dot() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.dot\", false]\n- ],\n- \"dot() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.dot\", false]\n- ],\n- \"dot() (minieigen.vector6i method)\": [\n- [0, \"minieigen.Vector6i.dot\", false]\n- ],\n- \"dot() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.dot\", false]\n- ],\n- \"dot() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.dot\", false]\n- ],\n- \"empty() (minieigen.alignedbox2 method)\": [\n- [0, \"minieigen.AlignedBox2.empty\", false]\n- ],\n- \"empty() (minieigen.alignedbox3 method)\": [\n- [0, \"minieigen.AlignedBox3.empty\", false]\n- ],\n- \"extend() (minieigen.alignedbox2 method)\": [\n- [0, \"minieigen.AlignedBox2.extend\", false]\n- ],\n- \"extend() (minieigen.alignedbox3 method)\": [\n- [0, \"minieigen.AlignedBox3.extend\", false]\n- ],\n- \"float2str() (in module minieigen)\": [\n- [0, \"minieigen.float2str\", false]\n- ],\n- \"head() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.head\", false]\n- ],\n- \"head() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.head\", false]\n- ],\n- \"head() (minieigen.vector6i method)\": [\n- [0, \"minieigen.Vector6i.head\", false]\n- ],\n- \"identity (minieigen.matrix3 attribute)\": [\n- [0, \"minieigen.Matrix3.Identity\", false]\n- ],\n- \"identity (minieigen.matrix3c attribute)\": [\n- [0, \"minieigen.Matrix3c.Identity\", false]\n- ],\n- \"identity (minieigen.matrix6 attribute)\": [\n- [0, \"minieigen.Matrix6.Identity\", false]\n- ],\n- \"identity (minieigen.matrix6c attribute)\": [\n- [0, \"minieigen.Matrix6c.Identity\", false]\n- ],\n- \"identity (minieigen.quaternion attribute)\": [\n- [0, \"minieigen.Quaternion.Identity\", false]\n- ],\n- \"identity (minieigen.vector2 attribute)\": [\n- [0, \"minieigen.Vector2.Identity\", false]\n- ],\n- \"identity (minieigen.vector2c attribute)\": [\n- [0, \"minieigen.Vector2c.Identity\", false]\n- ],\n- \"identity (minieigen.vector2i attribute)\": [\n- [0, \"minieigen.Vector2i.Identity\", false]\n- ],\n- \"identity (minieigen.vector3 attribute)\": [\n- [0, \"minieigen.Vector3.Identity\", false]\n- ],\n- \"identity (minieigen.vector3c attribute)\": [\n- [0, \"minieigen.Vector3c.Identity\", false]\n- ],\n- \"identity (minieigen.vector3i attribute)\": [\n- [0, \"minieigen.Vector3i.Identity\", false]\n- ],\n- \"identity (minieigen.vector4 attribute)\": [\n- [0, \"minieigen.Vector4.Identity\", false]\n- ],\n- \"identity (minieigen.vector6 attribute)\": [\n- [0, \"minieigen.Vector6.Identity\", false]\n- ],\n- \"identity (minieigen.vector6c attribute)\": [\n- [0, \"minieigen.Vector6c.Identity\", false]\n- ],\n- \"identity (minieigen.vector6i attribute)\": [\n- [0, \"minieigen.Vector6i.Identity\", false]\n- ],\n- \"identity() (minieigen.matrixx static method)\": [\n- [0, \"minieigen.MatrixX.Identity\", false]\n- ],\n- \"identity() (minieigen.matrixxc static method)\": [\n- [0, \"minieigen.MatrixXc.Identity\", false]\n- ],\n- \"intersection() (minieigen.alignedbox2 method)\": [\n- [0, \"minieigen.AlignedBox2.intersection\", false]\n- ],\n- \"intersection() (minieigen.alignedbox3 method)\": [\n- [0, \"minieigen.AlignedBox3.intersection\", false]\n- ],\n- \"inverse() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.inverse\", false]\n- ],\n- \"inverse() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.inverse\", false]\n- ],\n- \"inverse() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.inverse\", false]\n- ],\n- \"inverse() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.inverse\", false]\n- ],\n- \"inverse() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.inverse\", false]\n- ],\n- \"inverse() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.inverse\", false]\n- ],\n- \"inverse() (minieigen.quaternion method)\": [\n- [0, \"minieigen.Quaternion.inverse\", false]\n- ],\n- \"isapprox() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.vector2i method)\": [\n- [0, \"minieigen.Vector2i.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.vector6i method)\": [\n- [0, \"minieigen.Vector6i.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.isApprox\", false]\n- ],\n- \"isapprox() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.isApprox\", false]\n- ],\n- \"jacobisvd() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.jacobiSVD\", false]\n- ],\n- \"jacobisvd() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.jacobiSVD\", false]\n- ],\n- \"jacobisvd() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.jacobiSVD\", false]\n- ],\n- \"ll() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.ll\", false]\n- ],\n- \"ll() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.ll\", false]\n- ],\n- \"lr() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.lr\", false]\n- ],\n- \"lr() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.lr\", false]\n- ],\n- \"matrix3 (class in minieigen)\": [\n- [0, \"minieigen.Matrix3\", false]\n- ],\n- \"matrix3c (class in minieigen)\": [\n- [0, \"minieigen.Matrix3c\", false]\n- ],\n- \"matrix6 (class in minieigen)\": [\n- [0, \"minieigen.Matrix6\", false]\n- ],\n- \"matrix6c (class in minieigen)\": [\n- [0, \"minieigen.Matrix6c\", false]\n- ],\n- \"matrixx (class in minieigen)\": [\n- [0, \"minieigen.MatrixX\", false]\n- ],\n- \"matrixxc (class in minieigen)\": [\n- [0, \"minieigen.MatrixXc\", false]\n- ],\n- \"max (minieigen.alignedbox2 property)\": [\n- [0, \"minieigen.AlignedBox2.max\", false]\n- ],\n- \"max (minieigen.alignedbox3 property)\": [\n- [0, \"minieigen.AlignedBox3.max\", false]\n- ],\n- \"maxabscoeff() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.vector2i method)\": [\n- [0, \"minieigen.Vector2i.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.vector6i method)\": [\n- [0, \"minieigen.Vector6i.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.maxAbsCoeff\", false]\n- ],\n- \"maxabscoeff() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.maxAbsCoeff\", false]\n- ],\n- \"maxcoeff() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.maxCoeff\", false]\n- ],\n- \"maxcoeff() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.maxCoeff\", false]\n- ],\n- \"maxcoeff() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.maxCoeff\", false]\n- ],\n- \"maxcoeff() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.maxCoeff\", false]\n- ],\n- \"maxcoeff() (minieigen.vector2i method)\": [\n- [0, \"minieigen.Vector2i.maxCoeff\", false]\n- ],\n- \"maxcoeff() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.maxCoeff\", false]\n- ],\n- \"maxcoeff() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.maxCoeff\", false]\n- ],\n- \"maxcoeff() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.maxCoeff\", false]\n- ],\n- \"maxcoeff() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.maxCoeff\", false]\n- ],\n- \"maxcoeff() (minieigen.vector6i method)\": [\n- [0, \"minieigen.Vector6i.maxCoeff\", false]\n- ],\n- \"maxcoeff() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.maxCoeff\", false]\n- ],\n- \"mean() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.mean\", false]\n- ],\n- \"mean() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.mean\", false]\n- ],\n- \"mean() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.mean\", false]\n- ],\n- \"mean() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.mean\", false]\n- ],\n- \"mean() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.mean\", false]\n- ],\n- \"mean() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.mean\", false]\n- ],\n- \"mean() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.mean\", false]\n- ],\n- \"mean() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.mean\", false]\n- ],\n- \"mean() (minieigen.vector2i method)\": [\n- [0, \"minieigen.Vector2i.mean\", false]\n- ],\n- \"mean() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.mean\", false]\n- ],\n- \"mean() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.mean\", false]\n- ],\n- \"mean() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.mean\", false]\n- ],\n- \"mean() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.mean\", false]\n- ],\n- \"mean() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.mean\", false]\n- ],\n- \"mean() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.mean\", false]\n- ],\n- \"mean() (minieigen.vector6i method)\": [\n- [0, \"minieigen.Vector6i.mean\", false]\n- ],\n- \"mean() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.mean\", false]\n- ],\n- \"mean() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.mean\", false]\n- ],\n- \"merged() (minieigen.alignedbox2 method)\": [\n- [0, \"minieigen.AlignedBox2.merged\", false]\n- ],\n- \"merged() (minieigen.alignedbox3 method)\": [\n- [0, \"minieigen.AlignedBox3.merged\", false]\n- ],\n- \"min (minieigen.alignedbox2 property)\": [\n- [0, \"minieigen.AlignedBox2.min\", false]\n- ],\n- \"min (minieigen.alignedbox3 property)\": [\n- [0, \"minieigen.AlignedBox3.min\", false]\n- ],\n- \"mincoeff() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.minCoeff\", false]\n- ],\n- \"mincoeff() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.minCoeff\", false]\n- ],\n- \"mincoeff() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.minCoeff\", false]\n- ],\n- \"mincoeff() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.minCoeff\", false]\n- ],\n- \"mincoeff() (minieigen.vector2i method)\": [\n- [0, \"minieigen.Vector2i.minCoeff\", false]\n- ],\n- \"mincoeff() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.minCoeff\", false]\n- ],\n- \"mincoeff() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.minCoeff\", false]\n- ],\n- \"mincoeff() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.minCoeff\", false]\n- ],\n- \"mincoeff() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.minCoeff\", false]\n- ],\n- \"mincoeff() (minieigen.vector6i method)\": [\n- [0, \"minieigen.Vector6i.minCoeff\", false]\n- ],\n- \"mincoeff() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.minCoeff\", false]\n- ],\n- \"minieigen\": [\n- [0, \"module-minieigen\", false]\n- ],\n- \"module\": [\n- [0, \"module-minieigen\", false]\n- ],\n- \"norm() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.norm\", false]\n- ],\n- \"norm() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.norm\", false]\n- ],\n- \"norm() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.norm\", false]\n- ],\n- \"norm() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.norm\", false]\n- ],\n- \"norm() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.norm\", false]\n- ],\n- \"norm() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.norm\", false]\n- ],\n- \"norm() (minieigen.quaternion method)\": [\n- [0, \"minieigen.Quaternion.norm\", false]\n- ],\n- \"norm() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.norm\", false]\n- ],\n- \"norm() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.norm\", false]\n- ],\n- \"norm() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.norm\", false]\n- ],\n- \"norm() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.norm\", false]\n- ],\n- \"norm() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.norm\", false]\n- ],\n- \"norm() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.norm\", false]\n- ],\n- \"norm() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.norm\", false]\n- ],\n- \"norm() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.norm\", false]\n- ],\n- \"norm() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.norm\", false]\n- ],\n- \"normalize() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.normalize\", false]\n- ],\n- \"normalize() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.normalize\", false]\n- ],\n- \"normalize() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.normalize\", false]\n- ],\n- \"normalize() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.normalize\", false]\n- ],\n- \"normalize() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.normalize\", false]\n- ],\n- \"normalize() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.normalize\", false]\n- ],\n- \"normalize() (minieigen.quaternion method)\": [\n- [0, \"minieigen.Quaternion.normalize\", false]\n- ],\n- \"normalize() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.normalize\", false]\n- ],\n- \"normalize() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.normalize\", false]\n- ],\n- \"normalize() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.normalize\", false]\n- ],\n- \"normalize() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.normalize\", false]\n- ],\n- \"normalize() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.normalize\", false]\n- ],\n- \"normalize() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.normalize\", false]\n- ],\n- \"normalize() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.normalize\", false]\n- ],\n- \"normalize() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.normalize\", false]\n- ],\n- \"normalize() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.normalize\", false]\n- ],\n- \"normalized() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.normalized\", false]\n- ],\n- \"normalized() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.normalized\", false]\n- ],\n- \"normalized() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.normalized\", false]\n- ],\n- \"normalized() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.normalized\", false]\n- ],\n- \"normalized() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.normalized\", false]\n- ],\n- \"normalized() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.normalized\", false]\n- ],\n- \"normalized() (minieigen.quaternion method)\": [\n- [0, \"minieigen.Quaternion.normalized\", false]\n- ],\n- \"normalized() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.normalized\", false]\n- ],\n- \"normalized() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.normalized\", false]\n- ],\n- \"normalized() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.normalized\", false]\n- ],\n- \"normalized() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.normalized\", false]\n- ],\n- \"normalized() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.normalized\", false]\n- ],\n- \"normalized() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.normalized\", false]\n- ],\n- \"normalized() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.normalized\", false]\n- ],\n- \"normalized() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.normalized\", false]\n- ],\n- \"normalized() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.normalized\", false]\n- ],\n- \"ones (minieigen.matrix3 attribute)\": [\n- [0, \"minieigen.Matrix3.Ones\", false]\n- ],\n- \"ones (minieigen.matrix3c attribute)\": [\n- [0, \"minieigen.Matrix3c.Ones\", false]\n- ],\n- \"ones (minieigen.matrix6 attribute)\": [\n- [0, \"minieigen.Matrix6.Ones\", false]\n- ],\n- \"ones (minieigen.matrix6c attribute)\": [\n- [0, \"minieigen.Matrix6c.Ones\", false]\n- ],\n- \"ones (minieigen.vector2 attribute)\": [\n- [0, \"minieigen.Vector2.Ones\", false]\n- ],\n- \"ones (minieigen.vector2c attribute)\": [\n- [0, \"minieigen.Vector2c.Ones\", false]\n- ],\n- \"ones (minieigen.vector2i attribute)\": [\n- [0, \"minieigen.Vector2i.Ones\", false]\n- ],\n- \"ones (minieigen.vector3 attribute)\": [\n- [0, \"minieigen.Vector3.Ones\", false]\n- ],\n- \"ones (minieigen.vector3c attribute)\": [\n- [0, \"minieigen.Vector3c.Ones\", false]\n- ],\n- \"ones (minieigen.vector3i attribute)\": [\n- [0, \"minieigen.Vector3i.Ones\", false]\n- ],\n- \"ones (minieigen.vector4 attribute)\": [\n- [0, \"minieigen.Vector4.Ones\", false]\n- ],\n- \"ones (minieigen.vector6 attribute)\": [\n- [0, \"minieigen.Vector6.Ones\", false]\n- ],\n- \"ones (minieigen.vector6c attribute)\": [\n- [0, \"minieigen.Vector6c.Ones\", false]\n- ],\n- \"ones (minieigen.vector6i attribute)\": [\n- [0, \"minieigen.Vector6i.Ones\", false]\n- ],\n- \"ones() (minieigen.matrixx static method)\": [\n- [0, \"minieigen.MatrixX.Ones\", false]\n- ],\n- \"ones() (minieigen.matrixxc static method)\": [\n- [0, \"minieigen.MatrixXc.Ones\", false]\n- ],\n- \"ones() (minieigen.vectorx static method)\": [\n- [0, \"minieigen.VectorX.Ones\", false]\n- ],\n- \"ones() (minieigen.vectorxc static method)\": [\n- [0, \"minieigen.VectorXc.Ones\", false]\n- ],\n- \"outer() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.outer\", false]\n- ],\n- \"outer() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.outer\", false]\n- ],\n- \"outer() (minieigen.vector2i method)\": [\n- [0, \"minieigen.Vector2i.outer\", false]\n- ],\n- \"outer() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.outer\", false]\n- ],\n- \"outer() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.outer\", false]\n- ],\n- \"outer() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.outer\", false]\n- ],\n- \"outer() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.outer\", false]\n- ],\n- \"outer() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.outer\", false]\n- ],\n- \"outer() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.outer\", false]\n- ],\n- \"outer() (minieigen.vector6i method)\": [\n- [0, \"minieigen.Vector6i.outer\", false]\n- ],\n- \"outer() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.outer\", false]\n- ],\n- \"outer() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.outer\", false]\n- ],\n- \"polardecomposition() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.polarDecomposition\", false]\n- ],\n- \"polardecomposition() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.polarDecomposition\", false]\n- ],\n- \"polardecomposition() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.polarDecomposition\", false]\n- ],\n- \"prod() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.prod\", false]\n- ],\n- \"prod() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.prod\", false]\n- ],\n- \"prod() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.prod\", false]\n- ],\n- \"prod() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.prod\", false]\n- ],\n- \"prod() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.prod\", false]\n- ],\n- \"prod() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.prod\", false]\n- ],\n- \"prod() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.prod\", false]\n- ],\n- \"prod() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.prod\", false]\n- ],\n- \"prod() (minieigen.vector2i method)\": [\n- [0, \"minieigen.Vector2i.prod\", false]\n- ],\n- \"prod() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.prod\", false]\n- ],\n- \"prod() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.prod\", false]\n- ],\n- \"prod() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.prod\", false]\n- ],\n- \"prod() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.prod\", false]\n- ],\n- \"prod() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.prod\", false]\n- ],\n- \"prod() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.prod\", false]\n- ],\n- \"prod() (minieigen.vector6i method)\": [\n- [0, \"minieigen.Vector6i.prod\", false]\n- ],\n- \"prod() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.prod\", false]\n- ],\n- \"prod() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.prod\", false]\n- ],\n- \"pruned() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.pruned\", false]\n- ],\n- \"pruned() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.pruned\", false]\n- ],\n- \"pruned() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.pruned\", false]\n- ],\n- \"pruned() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.pruned\", false]\n- ],\n- \"pruned() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.pruned\", false]\n- ],\n- \"pruned() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.pruned\", false]\n- ],\n- \"pruned() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.pruned\", false]\n- ],\n- \"pruned() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.pruned\", false]\n- ],\n- \"pruned() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.pruned\", false]\n- ],\n- \"pruned() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.pruned\", false]\n- ],\n- \"pruned() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.pruned\", false]\n- ],\n- \"pruned() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.pruned\", false]\n- ],\n- \"pruned() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.pruned\", false]\n- ],\n- \"pruned() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.pruned\", false]\n- ],\n- \"pruned() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.pruned\", false]\n- ],\n- \"quaternion (class in minieigen)\": [\n- [0, \"minieigen.Quaternion\", false]\n- ],\n- \"random() (minieigen.matrix3 static method)\": [\n- [0, \"minieigen.Matrix3.Random\", false]\n- ],\n- \"random() (minieigen.matrix3c static method)\": [\n- [0, \"minieigen.Matrix3c.Random\", false]\n- ],\n- \"random() (minieigen.matrix6 static method)\": [\n- [0, \"minieigen.Matrix6.Random\", false]\n- ],\n- \"random() (minieigen.matrix6c static method)\": [\n- [0, \"minieigen.Matrix6c.Random\", false]\n- ],\n- \"random() (minieigen.matrixx static method)\": [\n- [0, \"minieigen.MatrixX.Random\", false]\n- ],\n- \"random() (minieigen.matrixxc static method)\": [\n- [0, \"minieigen.MatrixXc.Random\", false]\n- ],\n- \"random() (minieigen.vector2 static method)\": [\n- [0, \"minieigen.Vector2.Random\", false]\n- ],\n- \"random() (minieigen.vector2c static method)\": [\n- [0, \"minieigen.Vector2c.Random\", false]\n- ],\n- \"random() (minieigen.vector2i static method)\": [\n- [0, \"minieigen.Vector2i.Random\", false]\n- ],\n- \"random() (minieigen.vector3 static method)\": [\n- [0, \"minieigen.Vector3.Random\", false]\n- ],\n- \"random() (minieigen.vector3c static method)\": [\n- [0, \"minieigen.Vector3c.Random\", false]\n- ],\n- \"random() (minieigen.vector3i static method)\": [\n- [0, \"minieigen.Vector3i.Random\", false]\n- ],\n- \"random() (minieigen.vector4 static method)\": [\n- [0, \"minieigen.Vector4.Random\", false]\n- ],\n- \"random() (minieigen.vector6 static method)\": [\n- [0, \"minieigen.Vector6.Random\", false]\n- ],\n- \"random() (minieigen.vector6c static method)\": [\n- [0, \"minieigen.Vector6c.Random\", false]\n- ],\n- \"random() (minieigen.vector6i static method)\": [\n- [0, \"minieigen.Vector6i.Random\", false]\n- ],\n- \"random() (minieigen.vectorx static method)\": [\n- [0, \"minieigen.VectorX.Random\", false]\n- ],\n- \"random() (minieigen.vectorxc static method)\": [\n- [0, \"minieigen.VectorXc.Random\", false]\n- ],\n- \"resize() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.resize\", false]\n- ],\n- \"resize() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.resize\", false]\n- ],\n- \"resize() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.resize\", false]\n- ],\n- \"resize() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.resize\", false]\n- ],\n- \"rotate() (minieigen.quaternion method)\": [\n- [0, \"minieigen.Quaternion.Rotate\", false]\n- ],\n- \"row() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.row\", false]\n- ],\n- \"row() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.row\", false]\n- ],\n- \"row() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.row\", false]\n- ],\n- \"row() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.row\", false]\n- ],\n- \"row() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.row\", false]\n- ],\n- \"row() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.row\", false]\n- ],\n- \"rows() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.rows\", false]\n- ],\n- \"rows() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.rows\", false]\n- ],\n- \"rows() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.rows\", false]\n- ],\n- \"rows() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.rows\", false]\n- ],\n- \"rows() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.rows\", false]\n- ],\n- \"rows() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.rows\", false]\n- ],\n- \"rows() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.rows\", false]\n- ],\n- \"rows() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.rows\", false]\n- ],\n- \"rows() (minieigen.vector2i method)\": [\n- [0, \"minieigen.Vector2i.rows\", false]\n- ],\n- \"rows() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.rows\", false]\n- ],\n- \"rows() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.rows\", false]\n- ],\n- \"rows() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.rows\", false]\n- ],\n- \"rows() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.rows\", false]\n- ],\n- \"rows() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.rows\", false]\n- ],\n- \"rows() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.rows\", false]\n- ],\n- \"rows() (minieigen.vector6i method)\": [\n- [0, \"minieigen.Vector6i.rows\", false]\n- ],\n- \"rows() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.rows\", false]\n- ],\n- \"rows() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.rows\", false]\n- ],\n- \"selfadjointeigendecomposition() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.selfAdjointEigenDecomposition\", false]\n- ],\n- \"selfadjointeigendecomposition() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.selfAdjointEigenDecomposition\", false]\n- ],\n- \"selfadjointeigendecomposition() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.selfAdjointEigenDecomposition\", false]\n- ],\n- \"setfromtwovectors() (minieigen.quaternion method)\": [\n- [0, \"minieigen.Quaternion.setFromTwoVectors\", false]\n- ],\n- \"sizes() (minieigen.alignedbox2 method)\": [\n- [0, \"minieigen.AlignedBox2.sizes\", false]\n- ],\n- \"sizes() (minieigen.alignedbox3 method)\": [\n- [0, \"minieigen.AlignedBox3.sizes\", false]\n- ],\n- \"slerp() (minieigen.quaternion method)\": [\n- [0, \"minieigen.Quaternion.slerp\", false]\n- ],\n- \"spectraldecomposition() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.spectralDecomposition\", false]\n- ],\n- \"spectraldecomposition() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.spectralDecomposition\", false]\n- ],\n- \"spectraldecomposition() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.spectralDecomposition\", false]\n- ],\n- \"squarednorm() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.squaredNorm\", false]\n- ],\n- \"squarednorm() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.squaredNorm\", false]\n- ],\n- \"squarednorm() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.squaredNorm\", false]\n- ],\n- \"squarednorm() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.squaredNorm\", false]\n- ],\n- \"squarednorm() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.squaredNorm\", false]\n- ],\n- \"squarednorm() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.squaredNorm\", false]\n- ],\n- \"squarednorm() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.squaredNorm\", false]\n- ],\n- \"squarednorm() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.squaredNorm\", false]\n- ],\n- \"squarednorm() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.squaredNorm\", false]\n- ],\n- \"squarednorm() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.squaredNorm\", false]\n- ],\n- \"squarednorm() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.squaredNorm\", false]\n- ],\n- \"squarednorm() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.squaredNorm\", false]\n- ],\n- \"squarednorm() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.squaredNorm\", false]\n- ],\n- \"squarednorm() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.squaredNorm\", false]\n- ],\n- \"squarednorm() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.squaredNorm\", false]\n- ],\n- \"sum() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.sum\", false]\n- ],\n- \"sum() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.sum\", false]\n- ],\n- \"sum() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.sum\", false]\n- ],\n- \"sum() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.sum\", false]\n- ],\n- \"sum() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.sum\", false]\n- ],\n- \"sum() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.sum\", false]\n- ],\n- \"sum() (minieigen.vector2 method)\": [\n- [0, \"minieigen.Vector2.sum\", false]\n- ],\n- \"sum() (minieigen.vector2c method)\": [\n- [0, \"minieigen.Vector2c.sum\", false]\n- ],\n- \"sum() (minieigen.vector2i method)\": [\n- [0, \"minieigen.Vector2i.sum\", false]\n- ],\n- \"sum() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.sum\", false]\n- ],\n- \"sum() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.sum\", false]\n- ],\n- \"sum() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.sum\", false]\n- ],\n- \"sum() (minieigen.vector4 method)\": [\n- [0, \"minieigen.Vector4.sum\", false]\n- ],\n- \"sum() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.sum\", false]\n- ],\n- \"sum() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.sum\", false]\n- ],\n- \"sum() (minieigen.vector6i method)\": [\n- [0, \"minieigen.Vector6i.sum\", false]\n- ],\n- \"sum() (minieigen.vectorx method)\": [\n- [0, \"minieigen.VectorX.sum\", false]\n- ],\n- \"sum() (minieigen.vectorxc method)\": [\n- [0, \"minieigen.VectorXc.sum\", false]\n- ],\n- \"svd() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.svd\", false]\n- ],\n- \"svd() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.svd\", false]\n- ],\n- \"svd() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.svd\", false]\n- ],\n- \"tail() (minieigen.vector6 method)\": [\n- [0, \"minieigen.Vector6.tail\", false]\n- ],\n- \"tail() (minieigen.vector6c method)\": [\n- [0, \"minieigen.Vector6c.tail\", false]\n- ],\n- \"tail() (minieigen.vector6i method)\": [\n- [0, \"minieigen.Vector6i.tail\", false]\n- ],\n- \"toangleaxis() (minieigen.quaternion method)\": [\n- [0, \"minieigen.Quaternion.toAngleAxis\", false]\n- ],\n- \"toaxisangle() (minieigen.quaternion method)\": [\n- [0, \"minieigen.Quaternion.toAxisAngle\", false]\n- ],\n- \"torotationmatrix() (minieigen.quaternion method)\": [\n- [0, \"minieigen.Quaternion.toRotationMatrix\", false]\n- ],\n- \"torotationvector() (minieigen.quaternion method)\": [\n- [0, \"minieigen.Quaternion.toRotationVector\", false]\n- ],\n- \"trace() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.trace\", false]\n- ],\n- \"trace() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.trace\", false]\n- ],\n- \"trace() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.trace\", false]\n- ],\n- \"trace() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.trace\", false]\n- ],\n- \"trace() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.trace\", false]\n- ],\n- \"trace() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.trace\", false]\n- ],\n- \"transpose() (minieigen.matrix3 method)\": [\n- [0, \"minieigen.Matrix3.transpose\", false]\n- ],\n- \"transpose() (minieigen.matrix3c method)\": [\n- [0, \"minieigen.Matrix3c.transpose\", false]\n- ],\n- \"transpose() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.transpose\", false]\n- ],\n- \"transpose() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.transpose\", false]\n- ],\n- \"transpose() (minieigen.matrixx method)\": [\n- [0, \"minieigen.MatrixX.transpose\", false]\n- ],\n- \"transpose() (minieigen.matrixxc method)\": [\n- [0, \"minieigen.MatrixXc.transpose\", false]\n- ],\n- \"ul() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.ul\", false]\n- ],\n- \"ul() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.ul\", false]\n- ],\n- \"unit() (minieigen.vector2 static method)\": [\n- [0, \"minieigen.Vector2.Unit\", false]\n- ],\n- \"unit() (minieigen.vector2c static method)\": [\n- [0, \"minieigen.Vector2c.Unit\", false]\n- ],\n- \"unit() (minieigen.vector2i static method)\": [\n- [0, \"minieigen.Vector2i.Unit\", false]\n- ],\n- \"unit() (minieigen.vector3 static method)\": [\n- [0, \"minieigen.Vector3.Unit\", false]\n- ],\n- \"unit() (minieigen.vector3c static method)\": [\n- [0, \"minieigen.Vector3c.Unit\", false]\n- ],\n- \"unit() (minieigen.vector3i static method)\": [\n- [0, \"minieigen.Vector3i.Unit\", false]\n- ],\n- \"unit() (minieigen.vector4 static method)\": [\n- [0, \"minieigen.Vector4.Unit\", false]\n- ],\n- \"unit() (minieigen.vector6 static method)\": [\n- [0, \"minieigen.Vector6.Unit\", false]\n- ],\n- \"unit() (minieigen.vector6c static method)\": [\n- [0, \"minieigen.Vector6c.Unit\", false]\n- ],\n- \"unit() (minieigen.vector6i static method)\": [\n- [0, \"minieigen.Vector6i.Unit\", false]\n- ],\n- \"unit() (minieigen.vectorx static method)\": [\n- [0, \"minieigen.VectorX.Unit\", false]\n- ],\n- \"unit() (minieigen.vectorxc static method)\": [\n- [0, \"minieigen.VectorXc.Unit\", false]\n- ],\n- \"unitx (minieigen.vector2 attribute)\": [\n- [0, \"minieigen.Vector2.UnitX\", false]\n- ],\n- \"unitx (minieigen.vector2c attribute)\": [\n- [0, \"minieigen.Vector2c.UnitX\", false]\n- ],\n- \"unitx (minieigen.vector2i attribute)\": [\n- [0, \"minieigen.Vector2i.UnitX\", false]\n- ],\n- \"unitx (minieigen.vector3 attribute)\": [\n- [0, \"minieigen.Vector3.UnitX\", false]\n- ],\n- \"unitx (minieigen.vector3c attribute)\": [\n- [0, \"minieigen.Vector3c.UnitX\", false]\n- ],\n- \"unitx (minieigen.vector3i attribute)\": [\n- [0, \"minieigen.Vector3i.UnitX\", false]\n- ],\n- \"unity (minieigen.vector2 attribute)\": [\n- [0, \"minieigen.Vector2.UnitY\", false]\n- ],\n- \"unity (minieigen.vector2c attribute)\": [\n- [0, \"minieigen.Vector2c.UnitY\", false]\n- ],\n- \"unity (minieigen.vector2i attribute)\": [\n- [0, \"minieigen.Vector2i.UnitY\", false]\n- ],\n- \"unity (minieigen.vector3 attribute)\": [\n- [0, \"minieigen.Vector3.UnitY\", false]\n- ],\n- \"unity (minieigen.vector3c attribute)\": [\n- [0, \"minieigen.Vector3c.UnitY\", false]\n- ],\n- \"unity (minieigen.vector3i attribute)\": [\n- [0, \"minieigen.Vector3i.UnitY\", false]\n- ],\n- \"unitz (minieigen.vector3 attribute)\": [\n- [0, \"minieigen.Vector3.UnitZ\", false]\n- ],\n- \"unitz (minieigen.vector3c attribute)\": [\n- [0, \"minieigen.Vector3c.UnitZ\", false]\n- ],\n- \"unitz (minieigen.vector3i attribute)\": [\n- [0, \"minieigen.Vector3i.UnitZ\", false]\n- ],\n- \"ur() (minieigen.matrix6 method)\": [\n- [0, \"minieigen.Matrix6.ur\", false]\n- ],\n- \"ur() (minieigen.matrix6c method)\": [\n- [0, \"minieigen.Matrix6c.ur\", false]\n- ],\n- \"vector2 (class in minieigen)\": [\n- [0, \"minieigen.Vector2\", false]\n- ],\n- \"vector2c (class in minieigen)\": [\n- [0, \"minieigen.Vector2c\", false]\n- ],\n- \"vector2i (class in minieigen)\": [\n- [0, \"minieigen.Vector2i\", false]\n- ],\n- \"vector3 (class in minieigen)\": [\n- [0, \"minieigen.Vector3\", false]\n- ],\n- \"vector3c (class in minieigen)\": [\n- [0, \"minieigen.Vector3c\", false]\n- ],\n- \"vector3i (class in minieigen)\": [\n- [0, \"minieigen.Vector3i\", false]\n- ],\n- \"vector4 (class in minieigen)\": [\n- [0, \"minieigen.Vector4\", false]\n- ],\n- \"vector6 (class in minieigen)\": [\n- [0, \"minieigen.Vector6\", false]\n- ],\n- \"vector6c (class in minieigen)\": [\n- [0, \"minieigen.Vector6c\", false]\n- ],\n- \"vector6i (class in minieigen)\": [\n- [0, \"minieigen.Vector6i\", false]\n- ],\n- \"vectorx (class in minieigen)\": [\n- [0, \"minieigen.VectorX\", false]\n- ],\n- \"vectorxc (class in minieigen)\": [\n- [0, \"minieigen.VectorXc\", false]\n- ],\n- \"volume() (minieigen.alignedbox2 method)\": [\n- [0, \"minieigen.AlignedBox2.volume\", false]\n- ],\n- \"volume() (minieigen.alignedbox3 method)\": [\n- [0, \"minieigen.AlignedBox3.volume\", false]\n- ],\n- \"xy() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.xy\", false]\n- ],\n- \"xy() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.xy\", false]\n- ],\n- \"xy() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.xy\", false]\n- ],\n- \"xz() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.xz\", false]\n- ],\n- \"xz() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.xz\", false]\n- ],\n- \"xz() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.xz\", false]\n- ],\n- \"yx() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.yx\", false]\n- ],\n- \"yx() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.yx\", false]\n- ],\n- \"yx() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.yx\", false]\n- ],\n- \"yz() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.yz\", false]\n- ],\n- \"yz() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.yz\", false]\n- ],\n- \"yz() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.yz\", false]\n- ],\n- \"zero (minieigen.matrix3 attribute)\": [\n- [0, \"minieigen.Matrix3.Zero\", false]\n- ],\n- \"zero (minieigen.matrix3c attribute)\": [\n- [0, \"minieigen.Matrix3c.Zero\", false]\n- ],\n- \"zero (minieigen.matrix6 attribute)\": [\n- [0, \"minieigen.Matrix6.Zero\", false]\n- ],\n- \"zero (minieigen.matrix6c attribute)\": [\n- [0, \"minieigen.Matrix6c.Zero\", false]\n- ],\n- \"zero (minieigen.vector2 attribute)\": [\n- [0, \"minieigen.Vector2.Zero\", false]\n- ],\n- \"zero (minieigen.vector2c attribute)\": [\n- [0, \"minieigen.Vector2c.Zero\", false]\n- ],\n- \"zero (minieigen.vector2i attribute)\": [\n- [0, \"minieigen.Vector2i.Zero\", false]\n- ],\n- \"zero (minieigen.vector3 attribute)\": [\n- [0, \"minieigen.Vector3.Zero\", false]\n- ],\n- \"zero (minieigen.vector3c attribute)\": [\n- [0, \"minieigen.Vector3c.Zero\", false]\n- ],\n- \"zero (minieigen.vector3i attribute)\": [\n- [0, \"minieigen.Vector3i.Zero\", false]\n- ],\n- \"zero (minieigen.vector4 attribute)\": [\n- [0, \"minieigen.Vector4.Zero\", false]\n- ],\n- \"zero (minieigen.vector6 attribute)\": [\n- [0, \"minieigen.Vector6.Zero\", false]\n- ],\n- \"zero (minieigen.vector6c attribute)\": [\n- [0, \"minieigen.Vector6c.Zero\", false]\n- ],\n- \"zero (minieigen.vector6i attribute)\": [\n- [0, \"minieigen.Vector6i.Zero\", false]\n- ],\n- \"zero() (minieigen.matrixx static method)\": [\n- [0, \"minieigen.MatrixX.Zero\", false]\n- ],\n- \"zero() (minieigen.matrixxc static method)\": [\n- [0, \"minieigen.MatrixXc.Zero\", false]\n- ],\n- \"zero() (minieigen.vectorx static method)\": [\n- [0, \"minieigen.VectorX.Zero\", false]\n- ],\n- \"zero() (minieigen.vectorxc static method)\": [\n- [0, \"minieigen.VectorXc.Zero\", false]\n- ],\n- \"zx() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.zx\", false]\n- ],\n- \"zx() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.zx\", false]\n- ],\n- \"zx() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.zx\", false]\n- ],\n- \"zy() (minieigen.vector3 method)\": [\n- [0, \"minieigen.Vector3.zy\", false]\n- ],\n- \"zy() (minieigen.vector3c method)\": [\n- [0, \"minieigen.Vector3c.zy\", false]\n- ],\n- \"zy() (minieigen.vector3i method)\": [\n- [0, \"minieigen.Vector3i.zy\", false]\n- ]\n- },\n- \"objects\": {\n- \"\": [\n- [0, 0, 0, \"-\", \"minieigen\"]\n- ],\n- \"minieigen\": [\n- [0, 1, 1, \"\", \"AlignedBox2\"],\n- [0, 1, 1, \"\", \"AlignedBox3\"],\n- [0, 1, 1, \"\", \"Matrix3\"],\n- [0, 1, 1, \"\", \"Matrix3c\"],\n- [0, 1, 1, \"\", \"Matrix6\"],\n- [0, 1, 1, \"\", \"Matrix6c\"],\n- [0, 1, 1, \"\", \"MatrixX\"],\n- [0, 1, 1, \"\", \"MatrixXc\"],\n- [0, 1, 1, \"\", \"Quaternion\"],\n- [0, 1, 1, \"\", \"Vector2\"],\n- [0, 1, 1, \"\", \"Vector2c\"],\n- [0, 1, 1, \"\", \"Vector2i\"],\n- [0, 1, 1, \"\", \"Vector3\"],\n- [0, 1, 1, \"\", \"Vector3c\"],\n- [0, 1, 1, \"\", \"Vector3i\"],\n- [0, 1, 1, \"\", \"Vector4\"],\n- [0, 1, 1, \"\", \"Vector6\"],\n- [0, 1, 1, \"\", \"Vector6c\"],\n- [0, 1, 1, \"\", \"Vector6i\"],\n- [0, 1, 1, \"\", \"VectorX\"],\n- [0, 1, 1, \"\", \"VectorXc\"],\n- [0, 5, 1, \"\", \"float2str\"]\n- ],\n- \"minieigen.AlignedBox2\": [\n- [0, 2, 1, \"\", \"center\"],\n- [0, 2, 1, \"\", \"clamp\"],\n- [0, 2, 1, \"\", \"contains\"],\n- [0, 2, 1, \"\", \"empty\"],\n- [0, 2, 1, \"\", \"extend\"],\n- [0, 2, 1, \"\", \"intersection\"],\n- [0, 3, 1, \"\", \"max\"],\n- [0, 2, 1, \"\", \"merged\"],\n- [0, 3, 1, \"\", \"min\"],\n- [0, 2, 1, \"\", \"sizes\"],\n- [0, 2, 1, \"\", \"volume\"]\n- ],\n- \"minieigen.AlignedBox3\": [\n- [0, 2, 1, \"\", \"center\"],\n- [0, 2, 1, \"\", \"clamp\"],\n- [0, 2, 1, \"\", \"contains\"],\n- [0, 2, 1, \"\", \"empty\"],\n- [0, 2, 1, \"\", \"extend\"],\n- [0, 2, 1, \"\", \"intersection\"],\n- [0, 3, 1, \"\", \"max\"],\n- [0, 2, 1, \"\", \"merged\"],\n- [0, 3, 1, \"\", \"min\"],\n- [0, 2, 1, \"\", \"sizes\"],\n- [0, 2, 1, \"\", \"volume\"]\n- ],\n- \"minieigen.Matrix3\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 4, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 4, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"col\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"computeUnitaryPositive\"],\n- [0, 2, 1, \"\", \"determinant\"],\n- [0, 2, 1, \"\", \"diagonal\"],\n- [0, 2, 1, \"\", \"inverse\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"jacobiSVD\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"maxCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"minCoeff\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"polarDecomposition\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"row\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"selfAdjointEigenDecomposition\"],\n- [0, 2, 1, \"\", \"spectralDecomposition\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"],\n- [0, 2, 1, \"\", \"svd\"],\n- [0, 2, 1, \"\", \"trace\"],\n- [0, 2, 1, \"\", \"transpose\"]\n- ],\n- \"minieigen.Matrix3c\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 4, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 4, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"col\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"determinant\"],\n- [0, 2, 1, \"\", \"diagonal\"],\n- [0, 2, 1, \"\", \"inverse\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"row\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"],\n- [0, 2, 1, \"\", \"trace\"],\n- [0, 2, 1, \"\", \"transpose\"]\n- ],\n- \"minieigen.Matrix6\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 4, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 4, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"col\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"computeUnitaryPositive\"],\n- [0, 2, 1, \"\", \"determinant\"],\n- [0, 2, 1, \"\", \"diagonal\"],\n- [0, 2, 1, \"\", \"inverse\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"jacobiSVD\"],\n- [0, 2, 1, \"\", \"ll\"],\n- [0, 2, 1, \"\", \"lr\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"maxCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"minCoeff\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"polarDecomposition\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"row\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"selfAdjointEigenDecomposition\"],\n- [0, 2, 1, \"\", \"spectralDecomposition\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"],\n- [0, 2, 1, \"\", \"svd\"],\n- [0, 2, 1, \"\", \"trace\"],\n- [0, 2, 1, \"\", \"transpose\"],\n- [0, 2, 1, \"\", \"ul\"],\n- [0, 2, 1, \"\", \"ur\"]\n- ],\n- \"minieigen.Matrix6c\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 4, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 4, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"col\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"determinant\"],\n- [0, 2, 1, \"\", \"diagonal\"],\n- [0, 2, 1, \"\", \"inverse\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"ll\"],\n- [0, 2, 1, \"\", \"lr\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"row\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"],\n- [0, 2, 1, \"\", \"trace\"],\n- [0, 2, 1, \"\", \"transpose\"],\n- [0, 2, 1, \"\", \"ul\"],\n- [0, 2, 1, \"\", \"ur\"]\n- ],\n- \"minieigen.MatrixX\": [\n- [0, 2, 1, \"\", \"Identity\"],\n- [0, 2, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 2, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"col\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"computeUnitaryPositive\"],\n- [0, 2, 1, \"\", \"determinant\"],\n- [0, 2, 1, \"\", \"diagonal\"],\n- [0, 2, 1, \"\", \"inverse\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"jacobiSVD\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"maxCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"minCoeff\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"polarDecomposition\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"resize\"],\n- [0, 2, 1, \"\", \"row\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"selfAdjointEigenDecomposition\"],\n- [0, 2, 1, \"\", \"spectralDecomposition\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"],\n- [0, 2, 1, \"\", \"svd\"],\n- [0, 2, 1, \"\", \"trace\"],\n- [0, 2, 1, \"\", \"transpose\"]\n- ],\n- \"minieigen.MatrixXc\": [\n- [0, 2, 1, \"\", \"Identity\"],\n- [0, 2, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 2, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"col\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"determinant\"],\n- [0, 2, 1, \"\", \"diagonal\"],\n- [0, 2, 1, \"\", \"inverse\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"resize\"],\n- [0, 2, 1, \"\", \"row\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"],\n- [0, 2, 1, \"\", \"trace\"],\n- [0, 2, 1, \"\", \"transpose\"]\n- ],\n- \"minieigen.Quaternion\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 2, 1, \"\", \"Rotate\"],\n- [0, 2, 1, \"\", \"angularDistance\"],\n- [0, 2, 1, \"\", \"conjugate\"],\n- [0, 2, 1, \"\", \"inverse\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"setFromTwoVectors\"],\n- [0, 2, 1, \"\", \"slerp\"],\n- [0, 2, 1, \"\", \"toAngleAxis\"],\n- [0, 2, 1, \"\", \"toAxisAngle\"],\n- [0, 2, 1, \"\", \"toRotationMatrix\"],\n- [0, 2, 1, \"\", \"toRotationVector\"]\n- ],\n- \"minieigen.Vector2\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 4, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 2, 1, \"\", \"Unit\"],\n- [0, 4, 1, \"\", \"UnitX\"],\n- [0, 4, 1, \"\", \"UnitY\"],\n- [0, 4, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"asDiagonal\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"dot\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"maxCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"minCoeff\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"outer\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"]\n- ],\n- \"minieigen.Vector2c\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 4, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 2, 1, \"\", \"Unit\"],\n- [0, 4, 1, \"\", \"UnitX\"],\n- [0, 4, 1, \"\", \"UnitY\"],\n- [0, 4, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"asDiagonal\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"dot\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"outer\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"]\n- ],\n- \"minieigen.Vector2i\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 4, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 2, 1, \"\", \"Unit\"],\n- [0, 4, 1, \"\", \"UnitX\"],\n- [0, 4, 1, \"\", \"UnitY\"],\n- [0, 4, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"asDiagonal\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"dot\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"maxCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"minCoeff\"],\n- [0, 2, 1, \"\", \"outer\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"sum\"]\n- ],\n- \"minieigen.Vector3\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 4, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 2, 1, \"\", \"Unit\"],\n- [0, 4, 1, \"\", \"UnitX\"],\n- [0, 4, 1, \"\", \"UnitY\"],\n- [0, 4, 1, \"\", \"UnitZ\"],\n- [0, 4, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"asDiagonal\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"cross\"],\n- [0, 2, 1, \"\", \"dot\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"maxCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"minCoeff\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"outer\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"],\n- [0, 2, 1, \"\", \"xy\"],\n- [0, 2, 1, \"\", \"xz\"],\n- [0, 2, 1, \"\", \"yx\"],\n- [0, 2, 1, \"\", \"yz\"],\n- [0, 2, 1, \"\", \"zx\"],\n- [0, 2, 1, \"\", \"zy\"]\n- ],\n- \"minieigen.Vector3c\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 4, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 2, 1, \"\", \"Unit\"],\n- [0, 4, 1, \"\", \"UnitX\"],\n- [0, 4, 1, \"\", \"UnitY\"],\n- [0, 4, 1, \"\", \"UnitZ\"],\n- [0, 4, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"asDiagonal\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"cross\"],\n- [0, 2, 1, \"\", \"dot\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"outer\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"],\n- [0, 2, 1, \"\", \"xy\"],\n- [0, 2, 1, \"\", \"xz\"],\n- [0, 2, 1, \"\", \"yx\"],\n- [0, 2, 1, \"\", \"yz\"],\n- [0, 2, 1, \"\", \"zx\"],\n- [0, 2, 1, \"\", \"zy\"]\n- ],\n- \"minieigen.Vector3i\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 4, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 2, 1, \"\", \"Unit\"],\n- [0, 4, 1, \"\", \"UnitX\"],\n- [0, 4, 1, \"\", \"UnitY\"],\n- [0, 4, 1, \"\", \"UnitZ\"],\n- [0, 4, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"asDiagonal\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"cross\"],\n- [0, 2, 1, \"\", \"dot\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"maxCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"minCoeff\"],\n- [0, 2, 1, \"\", \"outer\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"sum\"],\n- [0, 2, 1, \"\", \"xy\"],\n- [0, 2, 1, \"\", \"xz\"],\n- [0, 2, 1, \"\", \"yx\"],\n- [0, 2, 1, \"\", \"yz\"],\n- [0, 2, 1, \"\", \"zx\"],\n- [0, 2, 1, \"\", \"zy\"]\n- ],\n- \"minieigen.Vector4\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 4, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 2, 1, \"\", \"Unit\"],\n- [0, 4, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"asDiagonal\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"dot\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"maxCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"minCoeff\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"outer\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"]\n- ],\n- \"minieigen.Vector6\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 4, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 2, 1, \"\", \"Unit\"],\n- [0, 4, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"asDiagonal\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"dot\"],\n- [0, 2, 1, \"\", \"head\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"maxCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"minCoeff\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"outer\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"],\n- [0, 2, 1, \"\", \"tail\"]\n- ],\n- \"minieigen.Vector6c\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 4, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 2, 1, \"\", \"Unit\"],\n- [0, 4, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"asDiagonal\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"dot\"],\n- [0, 2, 1, \"\", \"head\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"outer\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"],\n- [0, 2, 1, \"\", \"tail\"]\n- ],\n- \"minieigen.Vector6i\": [\n- [0, 4, 1, \"\", \"Identity\"],\n- [0, 4, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 2, 1, \"\", \"Unit\"],\n- [0, 4, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"asDiagonal\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"dot\"],\n- [0, 2, 1, \"\", \"head\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"maxCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"minCoeff\"],\n- [0, 2, 1, \"\", \"outer\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"sum\"],\n- [0, 2, 1, \"\", \"tail\"]\n- ],\n- \"minieigen.VectorX\": [\n- [0, 2, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 2, 1, \"\", \"Unit\"],\n- [0, 2, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"asDiagonal\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"dot\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"maxCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"minCoeff\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"outer\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"resize\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"]\n- ],\n- \"minieigen.VectorXc\": [\n- [0, 2, 1, \"\", \"Ones\"],\n- [0, 2, 1, \"\", \"Random\"],\n- [0, 2, 1, \"\", \"Unit\"],\n- [0, 2, 1, \"\", \"Zero\"],\n- [0, 2, 1, \"\", \"asDiagonal\"],\n- [0, 2, 1, \"\", \"cols\"],\n- [0, 2, 1, \"\", \"dot\"],\n- [0, 2, 1, \"\", \"isApprox\"],\n- [0, 2, 1, \"\", \"maxAbsCoeff\"],\n- [0, 2, 1, \"\", \"mean\"],\n- [0, 2, 1, \"\", \"norm\"],\n- [0, 2, 1, \"\", \"normalize\"],\n- [0, 2, 1, \"\", \"normalized\"],\n- [0, 2, 1, \"\", \"outer\"],\n- [0, 2, 1, \"\", \"prod\"],\n- [0, 2, 1, \"\", \"pruned\"],\n- [0, 2, 1, \"\", \"resize\"],\n- [0, 2, 1, \"\", \"rows\"],\n- [0, 2, 1, \"\", \"squaredNorm\"],\n- [0, 2, 1, \"\", \"sum\"]\n- ]\n- },\n- \"objnames\": {\n- \"0\": [\"py\", \"module\", \"Python module\"],\n- \"1\": [\"py\", \"class\", \"Python class\"],\n- \"2\": [\"py\", \"method\", \"Python method\"],\n- \"3\": [\"py\", \"property\", \"Python property\"],\n- \"4\": [\"py\", \"attribute\", \"Python attribute\"],\n- \"5\": [\"py\", \"function\", \"Python function\"]\n- },\n- \"objtypes\": {\n- \"0\": \"py:module\",\n- \"1\": \"py:class\",\n- \"2\": \"py:method\",\n- \"3\": \"py:property\",\n- \"4\": \"py:attribute\",\n- \"5\": \"py:function\"\n- },\n+ \"indexentries\": {},\n+ \"objects\": {},\n+ \"objnames\": {},\n+ \"objtypes\": {},\n \"terms\": {\n- \"\": 0,\n \"0\": 0,\n- \"06\": 0,\n \"1\": 0,\n- \"12\": 0,\n- \"1e\": 0,\n \"2\": 0,\n- \"2d\": 0,\n \"3\": 0,\n \"3d\": 0,\n- \"3x3\": 0,\n- \"4\": 0,\n- \"6\": 0,\n- \"6x6\": 0,\n- \"6xvector6\": 0,\n \"It\": 0,\n- \"Ones\": 0,\n- \"absolut\": 0,\n- \"abstol\": 0,\n \"add\": 0,\n \"algebra\": 0,\n- \"alia\": 0,\n \"align\": 0,\n- \"alignedbox2\": 0,\n \"alignedbox3\": 0,\n- \"all\": 0,\n- \"an\": 0,\n- \"angulardist\": 0,\n \"anoth\": 0,\n \"answer\": 0,\n- \"approxim\": 0,\n \"ar\": 0,\n- \"arg1\": 0,\n- \"arg2\": 0,\n- \"asdiagon\": 0,\n- \"attribut\": 0,\n \"automat\": 0,\n- \"axi\": 0,\n- \"back\": 0,\n \"behav\": 0,\n- \"between\": 0,\n- \"block\": 0,\n- \"bool\": 0,\n \"boost\": 0,\n \"both\": 0,\n \"box\": 0,\n \"bug\": 0,\n \"c\": 0,\n \"call\": 0,\n \"can\": 0,\n \"cannot\": 0,\n \"case\": 0,\n- \"center\": 0,\n- \"chang\": 0,\n- \"clamp\": 0,\n \"class\": 0,\n \"code\": 0,\n- \"col\": 0,\n \"column\": 0,\n- \"comparison\": 0,\n \"compil\": 0,\n \"complex\": 0,\n- \"composit\": 0,\n \"comput\": 0,\n- \"computeunitaryposit\": 0,\n \"concis\": 0,\n- \"conjug\": 0,\n \"const\": 0,\n \"constant\": 0,\n- \"construct\": 0,\n- \"contain\": 0,\n \"convers\": 0,\n- \"convert\": 0,\n- \"copi\": 0,\n- \"corner\": 0,\n- \"correspond\": 0,\n \"crash\": 0,\n- \"creat\": 0,\n- \"cross\": 0,\n \"data\": 0,\n \"debian\": 0,\n- \"decomposit\": 0,\n- \"defin\": 0,\n- \"definit\": 0,\n- \"detail\": 0,\n- \"determin\": 0,\n- \"diag\": 0,\n \"diagon\": 0,\n \"difficult\": 0,\n- \"dimens\": 0,\n- \"dimension\": 0,\n \"distribut\": 0,\n \"do\": 0,\n \"doe\": 0,\n \"don\": 0,\n \"done\": 0,\n- \"dot\": 0,\n \"dynam\": 0,\n \"e\": 0,\n \"easi\": 0,\n \"easy_instal\": 0,\n \"eigen\": 0,\n \"eigen_dont_align\": 0,\n- \"eigenvalu\": 0,\n- \"eigenvector\": 0,\n- \"eigval\": 0,\n- \"eigvec\": 0,\n \"element\": 0,\n- \"empti\": 0,\n \"end\": 0,\n- \"equal\": 0,\n- \"euclidean\": 0,\n- \"exist\": 0,\n \"expos\": 0,\n- \"extend\": 0,\n- \"f\": 0,\n \"fairli\": 0,\n \"float\": 0,\n- \"float2str\": 0,\n \"follow\": 0,\n \"from\": 0,\n- \"function\": 0,\n \"g\": 0,\n- \"given\": 0,\n \"go\": 0,\n- \"greater\": 0,\n- \"head\": 0,\n \"here\": 0,\n \"http\": 0,\n \"i\": 0,\n \"idea\": 0,\n \"ident\": 0,\n \"immut\": 0,\n- \"implicit\": 0,\n \"index\": 0,\n \"indic\": 0,\n \"instanc\": 0,\n \"instruct\": 0,\n- \"int\": 0,\n \"integ\": 0,\n \"interfac\": 0,\n- \"intersect\": 0,\n \"invers\": 0,\n- \"invert\": 0,\n- \"isapprox\": 0,\n \"issu\": 0,\n- \"its\": 0,\n \"itself\": 0,\n- \"jacobisvd\": 0,\n- \"just\": 0,\n- \"keep\": 0,\n \"last\": 0,\n \"launchpad\": 0,\n- \"left\": 0,\n- \"len\": 0,\n- \"length\": 0,\n- \"librari\": 0,\n \"like\": 0,\n- \"list\": 0,\n- \"ll\": 0,\n \"lower\": 0,\n- \"lr\": 0,\n- \"m\": 0,\n \"make\": 0,\n \"mani\": 0,\n \"matric\": 0,\n \"matrix\": 0,\n \"matrix3\": 0,\n \"matrix3c\": 0,\n \"matrix3i\": 0,\n- \"matrix6\": 0,\n- \"matrix6c\": 0,\n \"matrixx\": 0,\n- \"matrixxc\": 0,\n- \"max\": 0,\n- \"maxabscoeff\": 0,\n- \"maxcoeff\": 0,\n- \"maximum\": 0,\n- \"mean\": 0,\n- \"merg\": 0,\n \"method\": 0,\n \"might\": 0,\n- \"min\": 0,\n- \"mincoeff\": 0,\n- \"minimum\": 0,\n \"miss\": 0,\n \"modifi\": 0,\n- \"modul\": 0,\n \"must\": 0,\n \"necess\": 0,\n- \"neg\": 0,\n \"net\": 0,\n- \"new\": 0,\n \"non\": 0,\n \"none\": 0,\n- \"norm\": 0,\n \"normal\": 0,\n \"noth\": 0,\n \"nullari\": 0,\n \"number\": 0,\n \"object\": 0,\n- \"onli\": 0,\n- \"oper\": 0,\n \"org\": 0,\n- \"orthogon\": 0,\n- \"other\": 0,\n \"otherwis\": 0,\n- \"outer\": 0,\n- \"over\": 0,\n- \"p\": 0,\n \"packag\": 0,\n- \"pad\": 0,\n \"page\": 0,\n- \"part\": 0,\n \"perform\": 0,\n- \"pickl\": 0,\n \"place\": 0,\n- \"plu\": 0,\n- \"polar\": 0,\n- \"polardecomposit\": 0,\n- \"posit\": 0,\n \"ppa\": 0,\n- \"prec\": 0,\n- \"precis\": 0,\n- \"prior\": 0,\n- \"prod\": 0,\n- \"product\": 0,\n \"proper\": 0,\n \"properti\": 0,\n- \"prune\": 0,\n \"pypi\": 0,\n \"python\": 0,\n- \"q\": 0,\n \"quaternion\": 0,\n \"random\": 0,\n- \"randomli\": 0,\n- \"rank\": 0,\n \"receiv\": 0,\n \"refer\": 0,\n \"report\": 0,\n \"repositori\": 0,\n- \"repres\": 0,\n- \"represent\": 0,\n \"requir\": 0,\n- \"resiz\": 0,\n- \"retun\": 0,\n \"return\": 0,\n- \"right\": 0,\n- \"rotat\": 0,\n- \"row\": 0,\n \"runtim\": 0,\n \"scalar\": 0,\n \"search\": 0,\n \"seem\": 0,\n- \"self\": 0,\n- \"selfadjointeigendecomposit\": 0,\n- \"semi\": 0,\n \"sens\": 0,\n- \"sequenc\": 0,\n \"set\": 0,\n \"setfromtwovector\": 0,\n- \"shortest\": 0,\n \"singifi\": 0,\n \"singleton\": 0,\n \"size\": 0,\n- \"slerp\": 0,\n- \"small\": 0,\n \"so\": 0,\n \"some\": 0,\n \"someth\": 0,\n- \"spectral\": 0,\n- \"spectraldecomposit\": 0,\n- \"squar\": 0,\n- \"squarednorm\": 0,\n- \"standard\": 0,\n- \"start\": 0,\n \"static\": 0,\n- \"str\": 0,\n- \"string\": 0,\n- \"sub\": 0,\n \"suffix\": 0,\n- \"sum\": 0,\n \"support\": 0,\n- \"svd\": 0,\n- \"symmetr\": 0,\n \"t\": 0,\n- \"tail\": 0,\n \"test\": 0,\n- \"than\": 0,\n \"thei\": 0,\n \"therefor\": 0,\n- \"thi\": 0,\n \"though\": 0,\n- \"toangleaxi\": 0,\n- \"toaxisangl\": 0,\n- \"torotationmatrix\": 0,\n- \"torotationvector\": 0,\n- \"trace\": 0,\n- \"transpos\": 0,\n- \"tupl\": 0,\n \"tuxfamili\": 0,\n \"type\": 0,\n- \"u\": 0,\n \"ubuntu\": 0,\n- \"ul\": 0,\n \"unalign\": 0,\n- \"uniformli\": 0,\n- \"unit\": 0,\n- \"unitari\": 0,\n- \"uniti\": 0,\n- \"unitx\": 0,\n- \"unitz\": 0,\n \"upper\": 0,\n \"upstream\": 0,\n- \"ur\": 0,\n \"us\": 0,\n- \"v\": 0,\n \"valu\": 0,\n \"vector\": 0,\n- \"vector2\": 0,\n- \"vector2c\": 0,\n- \"vector2i\": 0,\n \"vector3\": 0,\n- \"vector3c\": 0,\n- \"vector3i\": 0,\n- \"vector4\": 0,\n- \"vector6\": 0,\n- \"vector6c\": 0,\n- \"vector6i\": 0,\n \"vectorx\": 0,\n- \"vectorxc\": 0,\n- \"version\": 0,\n- \"volum\": 0,\n \"wai\": 0,\n \"want\": 0,\n \"we\": 0,\n \"well\": 0,\n \"what\": 0,\n \"when\": 0,\n \"where\": 0,\n \"wherea\": 0,\n \"which\": 0,\n \"would\": 0,\n \"wrap\": 0,\n- \"wrapper\": 0,\n \"www\": 0,\n \"x\": 0,\n- \"xxx\": 0,\n- \"xy\": 0,\n- \"xz\": 0,\n- \"yx\": 0,\n- \"yz\": 0,\n- \"zero\": 0,\n- \"zx\": 0,\n- \"zy\": 0\n+ \"zero\": 0\n },\n \"titles\": [\"minieigen documentation\"],\n \"titleterms\": {\n \"convent\": 0,\n \"document\": 0,\n \"exampl\": 0,\n \"limit\": 0,\n"}]}]}]}]}]}