{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.IkMHGuvN/b1/pandas_2.2.3+dfsg-5_armhf.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.IkMHGuvN/b2/pandas_2.2.3+dfsg-5_armhf.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,5 +1,5 @@\n \n- e1c545f92a2e7eb97bcfdf82677745f5 9246856 doc optional python-pandas-doc_2.2.3+dfsg-5_all.deb\n- 8f7aca554351c1cbbcdc2a8f571c9731 36793956 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-5_armhf.deb\n- ef80959f4207ec91b097863c6b360397 4010420 python optional python3-pandas-lib_2.2.3+dfsg-5_armhf.deb\n+ f91b05cb98fa85e354c43ca8d0620dbf 9246816 doc optional python-pandas-doc_2.2.3+dfsg-5_all.deb\n+ 86749090ede5415db737843afe6589a6 36790748 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-5_armhf.deb\n+ d0f7be4df0a0e858e3de045635acc224 4010408 python optional python3-pandas-lib_2.2.3+dfsg-5_armhf.deb\n 82393119d6d8cb1b1ef15e3b71c2d0a7 3096356 python optional python3-pandas_2.2.3+dfsg-5_all.deb\n"}, {"source1": "python-pandas-doc_2.2.3+dfsg-5_all.deb", "source2": "python-pandas-doc_2.2.3+dfsg-5_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2024-10-21 18:43:11.000000 debian-binary\n--rw-r--r-- 0 0 0 146944 2024-10-21 18:43:11.000000 control.tar.xz\n--rw-r--r-- 0 0 0 9099720 2024-10-21 18:43:11.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 146908 2024-10-21 18:43:11.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 9099716 2024-10-21 18:43:11.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./control", "source2": "./control", "unified_diff": "@@ -1,13 +1,13 @@\n Package: python-pandas-doc\n Source: pandas\n Version: 2.2.3+dfsg-5\n Architecture: all\n Maintainer: Debian Science Team \n-Installed-Size: 200023\n+Installed-Size: 200024\n Depends: libjs-sphinxdoc (>= 7.4), libjs-mathjax\n Suggests: python3-pandas\n Section: doc\n Priority: optional\n Multi-Arch: foreign\n Homepage: https://pandas.pydata.org/\n Description: data structures for \"relational\" or \"labeled\" data - documentation\n"}, {"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -6230,61 +6230,61 @@\n -rw-r--r-- 0 root (0) root (0) 209237 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html\n -rw-r--r-- 0 root (0) root (0) 47718 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html\n -rw-r--r-- 0 root (0) root (0) 47710 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html\n -rw-r--r-- 0 root (0) root (0) 52348 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html\n -rw-r--r-- 0 root (0) root (0) 244 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/release.html\n -rw-r--r-- 0 root (0) root (0) 269 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 16236 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/search.html\n--rw-r--r-- 0 root (0) root (0) 2359274 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n+-rw-r--r-- 0 root (0) root (0) 2359338 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n -rw-r--r-- 0 root (0) root (0) 259 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html\n -rw-r--r-- 0 root (0) root (0) 244 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/style.html\n -rw-r--r-- 0 root (0) root (0) 255 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/text.html\n -rw-r--r-- 0 root (0) root (0) 256 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 277 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 272 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html\n drwxr-xr-x 0 root (0) root (0) 0 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/\n -rw-r--r-- 0 root (0) root (0) 170385 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/10min.html\n--rw-r--r-- 0 root (0) root (0) 282855 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n+-rw-r--r-- 0 root (0) root (0) 282856 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html\n -rw-r--r-- 0 root (0) root (0) 434916 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html\n -rw-r--r-- 0 root (0) root (0) 35684 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html\n -rw-r--r-- 0 root (0) root (0) 216526 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html\n -rw-r--r-- 0 root (0) root (0) 17366 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html\n -rw-r--r-- 0 root (0) root (0) 65217 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html\n -rw-r--r-- 0 root (0) root (0) 159345 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html\n -rw-r--r-- 0 root (0) root (0) 80419 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html\n--rw-r--r-- 0 root (0) root (0) 120021 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n+-rw-r--r-- 0 root (0) root (0) 120026 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n -rw-r--r-- 0 root (0) root (0) 106902 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html\n -rw-r--r-- 0 root (0) root (0) 299886 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html\n -rw-r--r-- 0 root (0) root (0) 58768 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html\n -rw-r--r-- 0 root (0) root (0) 394407 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html\n -rw-r--r-- 0 root (0) root (0) 40816 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html\n -rw-r--r-- 0 root (0) root (0) 1144274 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html\n -rw-r--r-- 0 root (0) root (0) 207911 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html\n -rw-r--r-- 0 root (0) root (0) 177680 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html\n -rw-r--r-- 0 root (0) root (0) 111206 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html\n -rw-r--r-- 0 root (0) root (0) 146554 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html\n -rw-r--r-- 0 root (0) root (0) 161712 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html\n--rw-r--r-- 0 root (0) root (0) 114623 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n+-rw-r--r-- 0 root (0) root (0) 114625 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n -rw-r--r-- 0 root (0) root (0) 64660 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html\n -rw-r--r-- 0 root (0) root (0) 697282 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html\n--rw-r--r-- 0 root (0) root (0) 87925 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 88018 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 164343 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html\n -rw-r--r-- 0 root (0) root (0) 99980 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 485612 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 203394 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html\n -rw-r--r-- 0 root (0) root (0) 141000 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html\n -rw-r--r-- 0 root (0) root (0) 270 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html\n drwxr-xr-x 0 root (0) root (0) 0 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/\n -rw-r--r-- 0 root (0) root (0) 106734 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html\n -rw-r--r-- 0 root (0) root (0) 10079 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html.gz\n -rw-r--r-- 0 root (0) root (0) 83016 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.0.html\n -rw-r--r-- 0 root (0) root (0) 65522 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.1.html\n -rw-r--r-- 0 root (0) root (0) 81344 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.11.0.html\n -rw-r--r-- 0 root (0) root (0) 103349 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.12.0.html\n--rw-r--r-- 0 root (0) root (0) 221533 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n+-rw-r--r-- 0 root (0) root (0) 221532 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n -rw-r--r-- 0 root (0) root (0) 88415 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.1.html\n -rw-r--r-- 0 root (0) root (0) 242763 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.0.html\n -rw-r--r-- 0 root (0) root (0) 82295 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.1.html\n -rw-r--r-- 0 root (0) root (0) 251323 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.0.html\n -rw-r--r-- 0 root (0) root (0) 67310 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.1.html\n -rw-r--r-- 0 root (0) root (0) 74157 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.2.html\n -rw-r--r-- 0 root (0) root (0) 144231 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.0.html\n"}, {"source1": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "source2": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -21571,15 +21571,14 @@\n \"009783\": 2207,\n \"009797\": 2186,\n \"009826\": [102, 1158, 2205],\n \"009920\": [2184, 2195, 2214],\n \"00am\": 2230,\n \"00index\": 2218,\n \"01\": [3, 15, 16, 17, 19, 29, 30, 31, 79, 80, 82, 88, 107, 121, 182, 187, 207, 213, 218, 219, 230, 242, 261, 270, 271, 276, 277, 278, 283, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 326, 329, 330, 331, 332, 333, 345, 362, 363, 423, 445, 510, 511, 513, 514, 515, 516, 517, 519, 521, 523, 525, 529, 531, 532, 533, 534, 535, 536, 537, 541, 542, 543, 544, 545, 546, 547, 548, 549, 551, 554, 556, 557, 558, 560, 561, 562, 563, 564, 565, 566, 575, 591, 592, 593, 600, 629, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 684, 685, 686, 688, 689, 696, 760, 763, 781, 788, 793, 804, 817, 874, 893, 898, 899, 902, 903, 904, 905, 909, 910, 917, 919, 922, 929, 934, 939, 940, 943, 944, 945, 948, 949, 953, 954, 957, 959, 960, 969, 972, 982, 984, 997, 1000, 1001, 1003, 1004, 1005, 1011, 1014, 1016, 1017, 1020, 1021, 1024, 1051, 1075, 1078, 1106, 1118, 1122, 1141, 1144, 1145, 1147, 1157, 1164, 1170, 1171, 1176, 1180, 1185, 1192, 1195, 1197, 1206, 1214, 1221, 1227, 1228, 1233, 1239, 1245, 1246, 1253, 1256, 1258, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1344, 1345, 1367, 1391, 1392, 1393, 1436, 1447, 1452, 1475, 1488, 1490, 1498, 1500, 1501, 1506, 1524, 1542, 1560, 1620, 1699, 1720, 1741, 1793, 1815, 1857, 1930, 1947, 1982, 2036, 2054, 2090, 2108, 2127, 2163, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2209, 2210, 2212, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2261, 2264, 2265, 2271, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"010\": 2193,\n \"0100\": [575, 893, 957, 970, 997, 1004, 1014, 1016, 1020, 1021, 1498, 2186, 2199, 2210, 2246, 2271],\n \"010000\": [954, 1894],\n \"010010012\": [923, 2209],\n \"010026\": 2191,\n \"010081\": 15,\n \"010165\": 2199,\n \"010589\": 2193,\n@@ -21593,14 +21592,15 @@\n \"011374\": 2195,\n \"011470\": 2207,\n \"011736\": 2186,\n \"011829\": 2207,\n \"01183\": 2229,\n \"011860\": [182, 760],\n \"011975\": 2207,\n+ \"012\": 2193,\n \"012108\": 2207,\n \"012299\": 2207,\n \"0123456789123456\": [2164, 2165],\n \"012549\": 2207,\n \"012694\": 2199,\n \"012922\": 2219,\n \"013\": 2193,\n@@ -21622,14 +21622,15 @@\n \"014138\": 2191,\n \"014144\": [102, 1158],\n \"014648\": 2186,\n \"014752\": 2235,\n \"014805\": 2202,\n \"014871\": [2185, 2197, 2199, 2202],\n \"014888\": 2207,\n+ \"015\": 2193,\n \"015083\": 2186,\n \"015420\": 2195,\n \"015458\": 2207,\n \"015696\": [2220, 2228, 2230],\n \"015906\": 2186,\n \"015962\": [2184, 2214],\n \"015988\": 2186,\n@@ -21674,14 +21675,15 @@\n \"020208\": 2195,\n \"020376\": 2207,\n \"020399\": 2195,\n \"020485\": 2207,\n \"020544\": 2186,\n \"020762\": 2220,\n \"020940\": 2230,\n+ \"021\": 2193,\n \"021244\": 2207,\n \"021255\": 2230,\n \"021292\": 2186,\n \"021377\": 2207,\n \"021382\": 2184,\n \"021499\": 2186,\n \"02155\": 30,\n@@ -21730,15 +21732,15 @@\n \"028152\": 2207,\n \"028166\": 15,\n \"028182\": 2207,\n \"028578\": 2207,\n \"028603\": 2195,\n \"028662\": 28,\n \"028665\": 15,\n- \"029\": [2186, 2193, 2227],\n+ \"029\": [2186, 2227],\n \"029302\": 2191,\n \"029399\": 2184,\n \"029582\": 2207,\n \"029587\": 2193,\n \"029630\": 2195,\n \"029766\": 2197,\n \"02d\": 2205,\n@@ -21789,14 +21791,15 @@\n \"034512\": 2207,\n \"034523\": 2210,\n \"034571\": 2197,\n \"034838\": 2207,\n \"034870\": 2207,\n \"034899\": 2186,\n \"034905\": 2207,\n+ \"035\": 2193,\n \"035310\": 2220,\n \"035312\": 2210,\n \"035476\": 2210,\n \"035962\": 2186,\n \"036047\": 2214,\n \"036104\": 2207,\n \"036142\": [2220, 2231],\n@@ -21857,15 +21860,14 @@\n \"043877\": 2207,\n \"044125\": 2207,\n \"044184\": 2199,\n \"0442\": [2184, 2186],\n \"044236\": [16, 17, 18, 19, 2184, 2185, 2186, 2191, 2195, 2197, 2199, 2202, 2210, 2214, 2215, 2216, 2218, 2220, 2225, 2235, 2241, 2260],\n \"044522\": 586,\n \"044546\": 2207,\n- \"044869\": 2228,\n \"044933\": 2207,\n \"045691\": 2191,\n \"045759\": 2207,\n \"045976\": 2214,\n \"046\": 2207,\n \"046044\": 2199,\n \"046582\": 2207,\n@@ -21882,15 +21884,14 @@\n \"047609\": 2184,\n \"047704\": 2215,\n \"047902\": 2197,\n \"048\": [1447, 2200, 2232],\n \"048048\": 2197,\n \"048074\": 2207,\n \"048089\": 2197,\n- \"048198\": 2228,\n \"048543\": 2207,\n \"048553\": 2207,\n \"048693\": 2230,\n \"048777\": 2204,\n \"048788\": 2197,\n \"049\": [1447, 2200, 2232],\n \"049245\": 2195,\n@@ -22003,15 +22004,14 @@\n \"063850\": 2207,\n \"063922\": 2184,\n \"063933\": 2207,\n \"064\": 2207,\n \"064034\": [15, 2191],\n \"064423\": 2207,\n \"064434\": 2207,\n- \"065\": 2193,\n \"065587\": 2218,\n \"065761\": 2207,\n \"065818\": [2204, 2207],\n \"065934\": [182, 760],\n \"066126\": 2207,\n \"066510\": 2210,\n \"066533\": 2210,\n@@ -22129,14 +22129,15 @@\n \"082960\": 2207,\n \"083010\": 2207,\n \"083333\": 2222,\n \"083352\": 2191,\n \"08335394550\": 1371,\n \"083515\": 15,\n \"083675\": 2207,\n+ \"084\": 2193,\n \"084601\": 2191,\n \"084844\": [2185, 2191, 2197, 2202, 2204],\n \"084917\": 2195,\n \"084n\": 2202,\n \"084u\": 2202,\n \"085070\": 2207,\n \"085193\": 2207,\n@@ -22257,34 +22258,34 @@\n \"0n\": [1489, 2298],\n \"0px\": 2207,\n \"0rc0\": 13,\n \"0th\": [26, 249, 882, 1202, 2185, 2197, 2199, 2235],\n \"0x00\": 2294,\n \"0x40\": 2294,\n \"0x7efd0c0b0690\": 3,\n- \"0x8822b648\": 2246,\n- \"0x88c13930\": 2230,\n- \"0x9de2d520\": 2197,\n- \"0x9e86c390\": 2195,\n- \"0xa37b9be8\": 2199,\n- \"0xad7523e8\": 2210,\n+ \"0xc7652528\": 2246,\n+ \"0xc807c028\": 2210,\n+ \"0xc938db10\": 2230,\n+ \"0xdce13270\": 2199,\n+ \"0xdf306e28\": 2195,\n+ \"0xe4255fd0\": 2197,\n \"1\": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309, 2310],\n \"10\": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308],\n \"100\": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307],\n \"1000\": [9, 10, 15, 16, 17, 18, 19, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294],\n \"10000\": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266],\n \"100000\": [1354, 1372, 2199, 2201, 2210],\n \"1000000\": [144, 2199, 2228],\n \"1000000000000000\": 1039,\n \"100000d\": 1497,\n \"100001\": 1497,\n \"10001\": 2232,\n \"10008\": [2231, 2232],\n \"1000x5\": 2206,\n- \"1001\": [16, 17, 18, 19, 2195, 2199, 2235],\n+ \"1001\": [16, 17, 18, 19, 2193, 2195, 2199, 2235],\n \"100123\": 2225,\n \"1001m\": [917, 919, 922, 929],\n \"1002\": [16, 17, 18, 19, 2199, 2205, 2235],\n \"10022\": 2226,\n \"100230\": 2184,\n \"10024\": 2226,\n \"10025\": 2226,\n@@ -22471,15 +22472,15 @@\n \"10477\": 2228,\n \"104803\": 2195,\n \"10482\": 2228,\n \"10483\": 2228,\n \"10485\": 2228,\n \"10486\": 2230,\n \"104971\": 2207,\n- \"105\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235, 2246, 2271],\n+ \"105\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235, 2246, 2271],\n \"10503\": 2230,\n \"10505\": 2228,\n \"10508\": 2228,\n \"10510\": 2229,\n \"10511\": 2249,\n \"1051201\": 2205,\n \"1051355\": 2205,\n@@ -22515,15 +22516,15 @@\n \"10577\": 2228,\n \"10581\": 2228,\n \"10583\": 2228,\n \"105845\": 2207,\n \"10587\": 2228,\n \"10590\": 2228,\n \"10591\": 2228,\n- \"106\": [28, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235, 2246],\n+ \"106\": [28, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235, 2246],\n \"1060\": 2212,\n \"10604\": 2228,\n \"106068\": 2207,\n \"1061\": [2194, 2212],\n \"10610\": 2228,\n \"10611\": 2246,\n \"10618\": 2228,\n@@ -23058,15 +23059,15 @@\n \"11974\": 2230,\n \"11981\": 2232,\n \"11986\": 2230,\n \"11990\": 2230,\n \"11995\": 2230,\n \"11h\": 2210,\n \"12\": [15, 16, 17, 18, 19, 22, 24, 25, 26, 28, 29, 30, 31, 32, 69, 72, 73, 77, 78, 84, 88, 102, 107, 109, 111, 113, 129, 133, 134, 160, 162, 171, 173, 183, 187, 188, 189, 190, 193, 199, 202, 204, 206, 207, 208, 213, 215, 216, 217, 220, 221, 222, 244, 253, 259, 265, 275, 288, 292, 294, 296, 303, 308, 309, 313, 316, 318, 332, 333, 345, 362, 363, 420, 423, 509, 513, 514, 515, 516, 522, 524, 526, 530, 532, 535, 541, 557, 575, 586, 595, 600, 629, 635, 639, 644, 646, 652, 655, 660, 661, 666, 670, 673, 688, 689, 708, 738, 761, 763, 764, 765, 766, 768, 781, 782, 788, 799, 873, 886, 890, 893, 895, 923, 926, 940, 943, 948, 953, 976, 980, 987, 1017, 1075, 1154, 1158, 1162, 1164, 1169, 1189, 1192, 1195, 1205, 1219, 1221, 1226, 1250, 1253, 1256, 1267, 1274, 1276, 1290, 1292, 1336, 1344, 1392, 1431, 1433, 1452, 1482, 1487, 1497, 1498, 1560, 1578, 1598, 1620, 1637, 1657, 1677, 1699, 1720, 1758, 1793, 1815, 1839, 1876, 1894, 1912, 1930, 1964, 2018, 2127, 2145, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2215, 2216, 2218, 2219, 2220, 2221, 2222, 2223, 2225, 2226, 2228, 2229, 2230, 2231, 2232, 2235, 2238, 2240, 2241, 2246, 2249, 2257, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302, 2307],\n- \"120\": [15, 78, 162, 273, 359, 360, 587, 588, 900, 930, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2220, 2230, 2232],\n+ \"120\": [15, 78, 162, 273, 359, 360, 587, 588, 900, 930, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2220, 2230, 2232],\n \"12000\": [2185, 2188, 2220],\n \"12004\": 2265,\n \"120055\": 2228,\n \"12011\": [176, 179],\n \"12014\": 2230,\n \"12017\": 2230,\n \"12019\": 2230,\n@@ -23203,27 +23204,28 @@\n \"12386\": 2230,\n \"12388\": 2232,\n \"1239\": [2185, 2191, 2194],\n \"12392\": 2238,\n \"12396\": 2241,\n \"12397\": 2235,\n \"12399\": 2232,\n- \"124\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2210, 2211, 2220, 2232],\n+ \"124\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2205, 2208, 2210, 2211, 2220, 2232],\n \"1240\": [2185, 2191, 2194],\n \"12401\": 2238,\n \"12405\": 2236,\n \"12409\": 2230,\n \"12411\": 2231,\n \"124124\": 2207,\n \"12424\": 2232,\n \"12425\": 2241,\n \"12448\": 2230,\n \"124518\": 2230,\n \"12467\": 2231,\n \"12468\": 2199,\n+ \"1247\": 2193,\n \"12471\": 2230,\n \"12473\": 2231,\n \"12486\": 2231,\n \"124862\": 2191,\n \"12489\": 2230,\n \"12492\": 2230,\n \"12493\": 2231,\n@@ -26223,15 +26225,15 @@\n \"219673\": 15,\n \"21978\": 2246,\n \"21980\": 2246,\n \"21997\": 2246,\n \"21998\": 2246,\n \"21st\": 31,\n \"22\": [10, 15, 17, 18, 19, 22, 23, 25, 29, 30, 31, 32, 133, 144, 208, 213, 230, 345, 513, 515, 535, 708, 782, 788, 804, 993, 1010, 1019, 1259, 1274, 1397, 1430, 1498, 1598, 1657, 1677, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2217, 2218, 2219, 2220, 2222, 2223, 2226, 2227, 2228, 2230, 2231, 2232, 2235, 2238, 2241, 2242, 2246, 2249, 2265, 2271, 2277, 2283, 2294, 2298, 2302, 2307],\n- \"220\": [118, 132, 135, 159, 161, 175, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2211, 2220, 2257],\n+ \"220\": [118, 132, 135, 159, 161, 175, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2220, 2257],\n \"2200\": [2210, 2265],\n \"22000\": 150,\n \"22001\": 2246,\n \"220026\": 2207,\n \"22004\": 2246,\n \"22005\": 2246,\n \"22015\": 2246,\n@@ -26322,15 +26324,14 @@\n \"22468\": 2246,\n \"22476\": 2246,\n \"22477\": 2246,\n \"224824\": 2207,\n \"224826\": 2210,\n \"22484\": [2246, 2249],\n \"22487\": 2246,\n- \"2248838272\": 2246,\n \"2249\": [2194, 2201, 2203, 2294, 2302, 2307],\n \"224904\": 2230,\n \"22492\": 2246,\n \"225\": [118, 132, 135, 159, 161, 175, 2185, 2186, 2188, 2195, 2197, 2199, 2210, 2227],\n \"2250\": [2194, 2201, 2203, 2294, 2302, 2307],\n \"225000\": [121, 696],\n \"22501\": 2249,\n@@ -26405,15 +26406,14 @@\n \"228\": [2185, 2186, 2188, 2195, 2197, 2199, 2210],\n \"22801\": 2246,\n \"22803\": 2246,\n \"228039\": [2184, 2257, 2260],\n \"22805\": 2246,\n \"22818\": [2283, 2298],\n \"22835\": 2246,\n- \"2283564640\": 2246,\n \"22858\": 2246,\n \"22860\": 2246,\n \"22862\": 2246,\n \"22880\": 2246,\n \"22887\": 2246,\n \"229\": [2185, 2186, 2188, 2195, 2197, 2199, 2210],\n \"22903\": 2246,\n@@ -27051,15 +27051,15 @@\n \"25851\": 2249,\n \"25860\": 2249,\n \"258648\": 2210,\n \"25871\": 2249,\n \"25880\": 2298,\n \"25893\": 2249,\n \"258993\": 2197,\n- \"259\": [2186, 2188, 2195, 2197, 2199, 2210],\n+ \"259\": [2186, 2188, 2193, 2195, 2197, 2199, 2210],\n \"25905\": 2249,\n \"25913\": 2249,\n \"259200\": [683, 2298],\n \"259200000000000\": [931, 933, 937],\n \"25922\": 2249,\n \"259260\": 2228,\n \"25928\": 2249,\n@@ -27290,15 +27290,15 @@\n \"2698\": 2215,\n \"26987\": 2249,\n \"26988\": 2265,\n \"26989\": 2271,\n \"2699\": 2215,\n \"26996\": 2265,\n \"27\": [15, 17, 18, 19, 25, 26, 27, 28, 29, 31, 77, 80, 108, 148, 149, 177, 178, 213, 230, 304, 305, 327, 345, 592, 656, 657, 725, 726, 755, 756, 788, 804, 1057, 1344, 1720, 2036, 2054, 2184, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2213, 2216, 2217, 2218, 2220, 2222, 2225, 2226, 2228, 2230, 2231, 2232, 2235, 2241, 2246, 2249, 2265, 2271, 2277, 2283, 2289, 2294, 2298, 2302],\n- \"270\": [2186, 2188, 2193, 2195, 2197, 2199, 2207, 2210],\n+ \"270\": [2186, 2188, 2195, 2197, 2199, 2207, 2210],\n \"2700\": 2215,\n \"27001\": 2249,\n \"27006\": 2249,\n \"27008\": 2249,\n \"270099\": 2197,\n \"27011\": 2250,\n \"27017\": 2265,\n@@ -27706,15 +27706,15 @@\n \"29072\": 2283,\n \"290720\": 2235,\n \"2908\": [2185, 2222],\n \"2909\": 2185,\n \"290936\": 2207,\n \"290990\": 2207,\n \"290994\": [2186, 2212],\n- \"291\": [2186, 2193, 2197, 2199, 2210, 2255],\n+ \"291\": [2186, 2197, 2199, 2210, 2255],\n \"2910\": [2185, 2199],\n \"29102\": 2294,\n \"2911\": [2185, 2199],\n \"2912\": 2199,\n \"29122\": 2265,\n \"29128\": 2265,\n \"29129\": 2289,\n@@ -27760,15 +27760,15 @@\n \"2936\": [2199, 2249],\n \"293601\": 2199,\n \"293786\": 2191,\n \"2938\": 2199,\n \"29388\": 2265,\n \"293906\": 2207,\n \"293926\": 2204,\n- \"294\": [2186, 2193, 2197, 2199, 2210],\n+ \"294\": [2186, 2197, 2199, 2210],\n \"29403\": 2265,\n \"29405\": 2298,\n \"294122\": 2199,\n \"294348\": 2199,\n \"294389\": 2207,\n \"29442\": 2275,\n \"2945\": 2191,\n@@ -27828,15 +27828,15 @@\n \"29773\": 2277,\n \"297780\": 2197,\n \"29787\": 2265,\n \"297879\": 2207,\n \"297894\": 2207,\n \"2979\": 2216,\n \"29791\": 2265,\n- \"298\": [81, 2186, 2197, 2199, 2210, 2227],\n+ \"298\": [81, 2185, 2186, 2197, 2199, 2210, 2227],\n \"29801\": 2265,\n \"29812\": [2265, 2298],\n \"29820\": 2265,\n \"298329\": 2197,\n \"29853\": 2265,\n \"29857\": 2265,\n \"298599\": 2186,\n@@ -28304,15 +28304,15 @@\n \"321604\": 2186,\n \"32166\": 2267,\n \"32167\": 2271,\n \"3217\": 2218,\n \"32173\": 2271,\n \"32174\": 2298,\n \"32194\": 2269,\n- \"322\": [2186, 2197, 2199, 2210],\n+ \"322\": [2186, 2193, 2197, 2199, 2210],\n \"32207\": 2271,\n \"32213\": 2267,\n \"32219\": 2267,\n \"322262\": 2186,\n \"32240\": 2271,\n \"32255\": 2271,\n \"32259\": 2283,\n@@ -28332,15 +28332,15 @@\n \"323510\": 2207,\n \"32377\": [2271, 2274],\n \"32380\": [2271, 2298],\n \"32385\": 2267,\n \"32392\": 2277,\n \"32394\": 2271,\n \"32395\": [2269, 2271],\n- \"324\": [2186, 2193, 2197, 2199, 2210, 2227, 2235, 2255],\n+ \"324\": [2186, 2197, 2199, 2210, 2227, 2235, 2255],\n \"32402\": 2271,\n \"324071\": 2199,\n \"32408\": 2271,\n \"32409\": 2269,\n \"32420\": 2271,\n \"32423\": 2271,\n \"32426\": 2271,\n@@ -28414,15 +28414,15 @@\n \"32766\": 30,\n \"327710\": 2191,\n \"32779\": 2271,\n \"32782\": 2271,\n \"327863\": 2186,\n \"3279\": 2199,\n \"32792\": 2271,\n- \"328\": [2184, 2186, 2191, 2197, 2199, 2205, 2210, 2246],\n+ \"328\": [2184, 2186, 2191, 2193, 2197, 2199, 2205, 2210, 2246],\n \"3280\": 2199,\n \"32800\": 2269,\n \"32803\": 2289,\n \"32806\": 2271,\n \"32809\": 2271,\n \"3281\": 2199,\n \"32815\": 2271,\n@@ -28605,14 +28605,16 @@\n \"33610\": 2271,\n \"336222\": 2228,\n \"33623\": 2271,\n \"336252\": 2199,\n \"3363\": 2257,\n \"33634\": 2283,\n \"33637\": 2298,\n+ \"3364066032\": 2246,\n+ \"3364066560\": 2246,\n \"33646\": 2271,\n \"336505\": 2215,\n \"33654\": 2271,\n \"33655\": 2271,\n \"33660\": 2271,\n \"336606\": 2199,\n \"33666\": 2274,\n@@ -28962,15 +28964,15 @@\n \"35462\": 2272,\n \"35471\": 2273,\n \"35486\": 2272,\n \"35488\": 2272,\n \"35490\": 2272,\n \"35493\": 2272,\n \"35499\": 2272,\n- \"355\": [2185, 2186, 2197, 2199, 2210, 2255, 2298],\n+ \"355\": [2186, 2197, 2199, 2210, 2255, 2298],\n \"35509\": 2275,\n \"355203\": 2207,\n \"35521\": 2273,\n \"35529\": 2277,\n \"3553\": 2193,\n \"35534\": 2274,\n \"355392\": 2186,\n@@ -29153,15 +29155,15 @@\n \"362838\": [1148, 1149],\n \"36289\": 2283,\n \"36291\": 2274,\n \"36293\": 2283,\n \"36294\": 2274,\n \"362949\": [2184, 2195, 2214],\n \"36296\": 2274,\n- \"363\": [2186, 2193, 2197, 2199, 2210, 2249, 2255, 2298],\n+ \"363\": [2186, 2197, 2199, 2210, 2249, 2255, 2298],\n \"36304\": 2277,\n \"36308\": 2277,\n \"363098\": 2207,\n \"3631\": 2217,\n \"36310\": 2277,\n \"36317\": 2277,\n \"36319\": 2277,\n@@ -31119,15 +31121,15 @@\n \"45162\": 2294,\n \"45170\": 2289,\n \"45174\": 2289,\n \"45180\": 2289,\n \"451849\": 2199,\n \"4519\": 2218,\n \"451921\": 2207,\n- \"452\": [2199, 2207, 2210, 2249],\n+ \"452\": [2193, 2199, 2207, 2210, 2249],\n \"4520\": [176, 179, 2218],\n \"452012\": 2207,\n \"45218\": 2294,\n \"452214\": 2199,\n \"45224\": 2294,\n \"45227\": 2289,\n \"45236\": 2294,\n@@ -31401,15 +31403,15 @@\n \"46382\": 2294,\n \"46383\": 2293,\n \"46384\": 2291,\n \"46389\": 2291,\n \"46396\": 2294,\n \"463966\": 2207,\n \"46398\": 2298,\n- \"464\": [2185, 2186, 2199, 2210],\n+ \"464\": [2186, 2199, 2210],\n \"46400\": 2294,\n \"464000\": 2202,\n \"46406\": 2293,\n \"46408\": 2294,\n \"46425\": 2294,\n \"46430\": [2294, 2298],\n \"46431\": 2294,\n@@ -31423,15 +31425,15 @@\n \"46471\": 2298,\n \"46476\": [2294, 2298],\n \"464776\": 2210,\n \"46479\": 2294,\n \"4648\": [2199, 2218],\n \"464804\": 2207,\n \"46485\": 2294,\n- \"465\": [2199, 2210],\n+ \"465\": [2193, 2199, 2210],\n \"4651\": 2218,\n \"46518\": [2294, 2298],\n \"46519\": 2294,\n \"465222\": 2199,\n \"46527\": 2294,\n \"46551\": 2294,\n \"465520\": 2207,\n@@ -31886,15 +31888,15 @@\n \"48976\": 2298,\n \"489811\": 2219,\n \"48996\": 2296,\n \"489961\": 2207,\n \"489981\": 2207,\n \"48e\": [2186, 2227],\n \"48hr\": 234,\n- \"49\": [15, 17, 19, 28, 242, 283, 817, 910, 1323, 1433, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283],\n+ \"49\": [15, 17, 19, 28, 242, 283, 817, 910, 1323, 1433, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2265, 2271, 2283],\n \"490\": [16, 17, 18, 19, 2194, 2199, 2201, 2203, 2210, 2235, 2249, 2283, 2294, 2298, 2307],\n \"49008\": 2298,\n \"49010\": 2298,\n \"49014\": 2298,\n \"4902\": 2218,\n \"49021\": 2298,\n \"49037\": 2298,\n@@ -32039,15 +32041,15 @@\n \"49769\": 2296,\n \"49771\": 2297,\n \"497767\": 2193,\n \"497796\": 2207,\n \"49793\": 2298,\n \"49795\": 2298,\n \"497968\": 2186,\n- \"498\": [2184, 2199, 2205, 2210, 2249, 2257],\n+ \"498\": [2184, 2185, 2199, 2205, 2210, 2249, 2257],\n \"498073\": 2207,\n \"4982\": 2218,\n \"49824\": 2298,\n \"49825\": 2298,\n \"49830\": 2298,\n \"49834\": 2297,\n \"49835\": 2298,\n@@ -32135,15 +32137,15 @@\n \"50161\": 2298,\n \"50162\": 2298,\n \"501668\": 2207,\n \"50183\": 2298,\n \"50185\": 2298,\n \"501957\": 2207,\n \"501979\": 2207,\n- \"502\": [2185, 2193, 2199, 2210],\n+ \"502\": [2185, 2199, 2210],\n \"502042\": 2199,\n \"502065\": 2197,\n \"5021\": 2218,\n \"50232\": 2298,\n \"50237\": 2297,\n \"50243\": 2298,\n \"50245\": 2298,\n@@ -32487,15 +32489,15 @@\n \"519726\": 2193,\n \"51977\": 2302,\n \"51979\": 2302,\n \"5198\": 2220,\n \"519818\": 2235,\n \"519970\": [2185, 2197, 2204],\n \"52\": [17, 19, 31, 188, 189, 213, 230, 345, 764, 765, 788, 804, 956, 957, 962, 970, 973, 982, 983, 990, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1013, 1014, 1018, 1447, 1793, 1815, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2271, 2283],\n- \"520\": 2199,\n+ \"520\": [2193, 2199],\n \"5200\": [754, 757, 1242, 1243],\n \"52008\": 2298,\n \"520091\": 2184,\n \"5203\": 2218,\n \"52033\": 2302,\n \"52036\": 2298,\n \"520478\": 2199,\n@@ -33414,15 +33416,15 @@\n \"56945\": 2308,\n \"5695\": 2219,\n \"569522\": 2207,\n \"569605\": [2185, 2197, 2199, 2202, 2204, 2215],\n \"569718\": 2207,\n \"5698\": 2218,\n \"56991\": 2308,\n- \"57\": [15, 17, 18, 19, 276, 902, 1192, 1253, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2225, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2271],\n+ \"57\": [15, 17, 18, 19, 276, 902, 1192, 1253, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2225, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2271],\n \"570\": 2199,\n \"57006\": 2308,\n \"57010\": 2308,\n \"57019\": 2308,\n \"5702\": 2218,\n \"57027\": 2308,\n \"5703\": 2218,\n@@ -33445,15 +33447,15 @@\n \"5713\": 2202,\n \"57130\": 2308,\n \"5713290\": 2202,\n \"571429\": [2195, 2201, 2222],\n \"57150\": 2308,\n \"57151\": 2308,\n \"5717\": 2218,\n- \"572\": [2193, 2199, 2298],\n+ \"572\": [2199, 2298],\n \"572182\": 2193,\n \"57224\": 2308,\n \"5724\": 2235,\n \"5725\": 2218,\n \"5727\": 2219,\n \"57276\": 2308,\n \"573\": [1444, 2199],\n@@ -33517,15 +33519,15 @@\n \"5775\": 2192,\n \"577569\": 2195,\n \"577585\": [2184, 2214],\n \"5776\": 2192,\n \"57761\": 2309,\n \"57762\": 2309,\n \"577693\": 2207,\n- \"578\": [2193, 2194, 2199, 2201, 2203, 2232, 2283, 2294, 2298, 2302, 2307],\n+ \"578\": [2194, 2199, 2201, 2203, 2232, 2283, 2294, 2298, 2302, 2307],\n \"5786\": 2229,\n \"578615\": 2207,\n \"578798\": 2210,\n \"578900\": 2207,\n \"579\": [2199, 2232],\n \"5797\": 2219,\n \"58\": [17, 19, 23, 213, 276, 345, 788, 902, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2238, 2241, 2246, 2249, 2271, 2307],\n@@ -33802,15 +33804,15 @@\n \"613\": 2199,\n \"613172\": 2186,\n \"6134\": 2220,\n \"6136\": 2219,\n \"613616\": 2202,\n \"613897\": 2230,\n \"613898\": 2207,\n- \"614\": [2199, 2232],\n+ \"614\": [2193, 2199, 2232],\n \"6140\": 2219,\n \"614215\": 2218,\n \"614264\": 2207,\n \"614266\": 2199,\n \"614523\": 2191,\n \"614533\": 2197,\n \"614581\": [2184, 2195],\n@@ -33858,15 +33860,15 @@\n \"619104\": 2207,\n \"619366\": 2207,\n \"6194\": 2232,\n \"61941\": 2257,\n \"6199759194\": 2199,\n \"619976\": [2185, 2191, 2197, 2199, 2202, 2204],\n \"619993\": 2235,\n- \"62\": [15, 17, 18, 19, 81, 187, 213, 242, 283, 763, 788, 817, 910, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"62\": [15, 17, 18, 19, 81, 187, 213, 242, 283, 763, 788, 817, 910, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"620\": [16, 17, 18, 19, 2199, 2203, 2232, 2235, 2262, 2298],\n \"620145\": 2191,\n \"62036035\": [624, 1215],\n \"620399\": 2199,\n \"620498\": 2207,\n \"6205\": 2220,\n \"620544\": 2191,\n@@ -34033,15 +34035,15 @@\n \"640556\": 2215,\n \"6407\": 2220,\n \"640843\": 2199,\n \"640875\": 2207,\n \"640880\": 2235,\n \"640898\": 2219,\n \"640x480\": 1457,\n- \"641\": [2185, 2199],\n+ \"641\": 2199,\n \"641184\": 2186,\n \"641360\": 2199,\n \"6415\": 2238,\n \"641602\": 2230,\n \"6418\": 2220,\n \"641817\": 2216,\n \"642\": [2197, 2199],\n@@ -34286,15 +34288,15 @@\n \"669052\": [2184, 2214],\n \"669567\": 2207,\n \"669692\": 2197,\n \"6697\": 2298,\n \"669700\": 2207,\n \"669934\": 2216,\n \"67\": [17, 19, 28, 29, 81, 219, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2231, 2232, 2235, 2241, 2246, 2271],\n- \"670\": 2199,\n+ \"670\": [2193, 2199],\n \"6700\": 2220,\n \"670047\": 2186,\n \"670153\": 2197,\n \"670213\": [121, 696],\n \"670284\": 1334,\n \"670477\": 2217,\n \"671\": 2199,\n@@ -34754,15 +34756,15 @@\n \"723768\": 2184,\n \"723780\": 2193,\n \"7242\": 2221,\n \"724370\": 2186,\n \"7246\": [182, 760],\n \"724832\": 2207,\n \"724913\": 2191,\n- \"725\": [16, 17, 18, 19, 2185, 2199, 2235],\n+ \"725\": [16, 17, 18, 19, 2199, 2235],\n \"725238\": 15,\n \"725411\": 2214,\n \"725974\": 2191,\n \"7261\": 2221,\n \"726280\": 2199,\n \"726645\": 28,\n \"727\": [16, 17, 18, 19, 2199, 2235],\n@@ -34959,23 +34961,23 @@\n \"7511\": 2222,\n \"7512\": 2221,\n \"751208\": 2207,\n \"751328\": 2195,\n \"7516\": 2221,\n \"751694\": 2207,\n \"751976\": 2214,\n+ \"752\": 2185,\n \"752102\": 2207,\n \"752239\": 2207,\n \"7523\": 2221,\n \"752332\": 2186,\n \"752441\": 2207,\n \"7528\": 2222,\n \"752861\": 2195,\n \"7529\": 2221,\n- \"753\": 2193,\n \"7534\": 2221,\n \"753444\": 2207,\n \"753606\": 2199,\n \"753611\": 2207,\n \"753623\": 2191,\n \"753747\": 2207,\n \"7539\": 2221,\n@@ -35013,15 +35015,15 @@\n \"759104\": 2185,\n \"7592\": 2221,\n \"759328\": 2199,\n \"759606\": 2199,\n \"759644\": 2222,\n \"7599\": 2228,\n \"75th\": [107, 629, 1164, 1221],\n- \"76\": [18, 190, 193, 766, 768, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"76\": [18, 190, 193, 766, 768, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"760\": [32, 2298],\n \"7601\": 2221,\n \"760109\": 2195,\n \"7606\": 2221,\n \"760643\": 2199,\n \"7609\": 2221,\n \"760970\": 2207,\n@@ -35148,14 +35150,15 @@\n \"7777\": 2222,\n \"7778\": 2222,\n \"7780\": 2222,\n \"778425\": 2210,\n \"778461\": 2217,\n \"7785\": 2222,\n \"778852\": 2195,\n+ \"779\": 2193,\n \"779064\": 2207,\n \"7791\": 2229,\n \"7792\": 2222,\n \"779280\": 2186,\n \"7793\": 2222,\n \"779333\": 2195,\n \"7794\": 2222,\n@@ -35209,15 +35212,15 @@\n \"785103\": 2191,\n \"785359\": 2230,\n \"7856\": 2226,\n \"7857\": 2222,\n \"7858\": 2222,\n \"785939\": 2211,\n \"785980\": 2195,\n- \"786\": 2185,\n+ \"786\": [2185, 2193],\n \"7860\": 2223,\n \"786076\": [242, 817],\n \"786173\": 2199,\n \"7864\": 2222,\n \"786476\": 2195,\n \"7866\": 2222,\n \"786796\": 1318,\n@@ -35593,14 +35596,15 @@\n \"838258\": 2207,\n \"838665\": 2207,\n \"8387\": 2222,\n \"839002\": 2207,\n \"84\": [31, 228, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n \"8400\": 2222,\n \"840123\": 2215,\n+ \"840200\": 2228,\n \"840255\": 2228,\n \"840449\": 15,\n \"840607\": 2186,\n \"840870\": 2197,\n \"840938\": 2207,\n \"8409608\": 2205,\n \"841\": 2193,\n@@ -35618,14 +35622,15 @@\n \"8428\": 2223,\n \"8430\": 2222,\n \"843157\": 2184,\n \"8435\": [2199, 2294],\n \"843575\": 2207,\n \"8437\": 2222,\n \"843767\": 2207,\n+ \"843776\": 2228,\n \"843822\": 2207,\n \"844115\": 2207,\n \"844274\": 15,\n \"8444\": 2222,\n \"8445\": 2225,\n \"844569\": 2191,\n \"844885\": [15, 2185, 2186, 2191, 2197, 2199, 2202, 2215, 2216, 2219, 2235, 2241, 2264],\n@@ -35818,15 +35823,14 @@\n \"8685\": 2228,\n \"868579\": 2207,\n \"868584\": 2197,\n \"8687\": 2223,\n \"8688\": 2225,\n \"8689\": 2223,\n \"868951\": 2207,\n- \"869\": 2193,\n \"869081\": 2199,\n \"869127\": 2230,\n \"869226\": 2186,\n \"869339\": 2207,\n \"869551\": 2191,\n \"8697\": 2224,\n \"87\": [15, 18, 133, 196, 208, 242, 283, 586, 708, 771, 782, 817, 910, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n@@ -36109,15 +36113,15 @@\n \"9093\": 2271,\n \"909316\": 2230,\n \"9094\": 2225,\n \"909500\": 2195,\n \"9096\": 2225,\n \"909872\": 2185,\n \"9099\": 2225,\n- \"91\": [15, 182, 760, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2294, 2298],\n+ \"91\": [15, 182, 760, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2294, 2298],\n \"9100\": 2225,\n \"910199\": 2199,\n \"910400\": 28,\n \"911055\": 2195,\n \"911128\": 2207,\n \"911385\": 2207,\n \"9114\": 2232,\n@@ -36222,15 +36226,15 @@\n \"9247\": 2225,\n \"924868\": 2230,\n \"9250\": [24, 25, 28, 29, 32, 2225],\n \"925372\": 2215,\n \"9255\": 2225,\n \"925544\": 2207,\n \"9258\": 2225,\n- \"926\": [2197, 2231],\n+ \"926\": [2193, 2197, 2231],\n \"926075\": 2197,\n \"926087\": 2218,\n \"926089\": 2216,\n \"9263\": 2230,\n \"9266\": 2228,\n \"926790\": 2199,\n \"927\": 2205,\n@@ -36291,15 +36295,14 @@\n \"9352\": 2225,\n \"935220\": 1317,\n \"935834\": 2229,\n \"935890\": 2207,\n \"936077\": 2186,\n \"936154\": 2230,\n \"936856\": 15,\n- \"937\": 2193,\n \"937266\": 2207,\n \"937326\": 2207,\n \"937976\": 2207,\n \"938153\": 2235,\n \"9382\": 2228,\n \"938225\": 2191,\n \"9386\": 2225,\n@@ -36638,15 +36641,15 @@\n \"988693\": [155, 156, 730, 731],\n \"9890\": 2226,\n \"9894\": 2228,\n \"9895\": 2235,\n \"989634\": 2204,\n \"989726\": 2207,\n \"989859\": 2185,\n- \"99\": [15, 22, 145, 163, 284, 532, 741, 912, 1447, 1456, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2226, 2230, 2232, 2235, 2246, 2294, 2307],\n+ \"99\": [15, 22, 145, 163, 284, 532, 741, 912, 1447, 1456, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2218, 2222, 2226, 2230, 2232, 2235, 2246, 2294, 2307],\n \"990\": [2199, 2230],\n \"9900\": 2199,\n \"990000\": 1894,\n \"990317\": 2199,\n \"990340\": 2207,\n \"9905\": 2226,\n \"990582\": [2184, 2195, 2214],\n@@ -43757,15 +43760,15 @@\n \"seri\": [2, 3, 7, 8, 10, 12, 13, 14, 15, 18, 21, 24, 25, 26, 29, 32, 33, 34, 35, 41, 45, 46, 51, 52, 53, 56, 57, 61, 62, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 132, 134, 135, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 181, 182, 183, 186, 190, 191, 193, 194, 195, 196, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 240, 241, 242, 243, 244, 245, 249, 252, 256, 258, 261, 271, 273, 275, 276, 277, 278, 279, 280, 281, 283, 284, 285, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 321, 323, 324, 325, 328, 329, 331, 332, 333, 342, 343, 344, 345, 346, 351, 355, 356, 357, 359, 360, 362, 369, 373, 376, 377, 378, 385, 392, 401, 402, 403, 405, 406, 408, 411, 412, 414, 416, 417, 419, 420, 423, 424, 427, 428, 431, 432, 433, 435, 436, 439, 441, 442, 443, 444, 465, 484, 489, 503, 519, 540, 547, 548, 549, 568, 914, 931, 940, 942, 943, 945, 946, 947, 948, 949, 950, 952, 1027, 1028, 1029, 1030, 1031, 1034, 1035, 1040, 1052, 1060, 1064, 1069, 1071, 1072, 1078, 1081, 1084, 1088, 1093, 1097, 1101, 1104, 1110, 1111, 1112, 1113, 1115, 1117, 1118, 1120, 1122, 1141, 1143, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1199, 1200, 1201, 1202, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1242, 1243, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1345, 1349, 1350, 1352, 1355, 1358, 1360, 1377, 1382, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1394, 1395, 1396, 1397, 1411, 1430, 1436, 1441, 1442, 1446, 1447, 1448, 1449, 1450, 1456, 1457, 1458, 1460, 1463, 1466, 1467, 1476, 1479, 1488, 1490, 1493, 1494, 1496, 1498, 1499, 1500, 2163, 2165, 2167, 2171, 2172, 2173, 2174, 2179, 2183, 2186, 2187, 2190, 2192, 2193, 2194, 2196, 2197, 2198, 2199, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2209, 2211, 2212, 2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2223, 2224, 2225, 2226, 2227, 2229, 2230, 2231, 2233, 2234, 2236, 2237, 2239, 2240, 2242, 2243, 2245, 2247, 2248, 2250, 2251, 2253, 2254, 2255, 2256, 2258, 2259, 2260, 2262, 2263, 2264, 2266, 2267, 2269, 2272, 2273, 2274, 2275, 2276, 2277, 2278, 2279, 2280, 2282, 2284, 2285, 2286, 2287, 2288, 2290, 2291, 2293, 2295, 2296, 2297, 2299, 2300, 2301, 2303, 2304, 2306, 2308, 2309],\n \"serial\": [9, 10, 16, 253, 265, 341, 352, 886, 895, 1431, 1474, 1478, 1479, 2172, 2199, 2202, 2215, 2218, 2226, 2228, 2230, 2231, 2235, 2238, 2239, 2261, 2271, 2285, 2289, 2298, 2302],\n \"serialis\": [258, 889, 2225, 2231],\n \"serializ\": 2199,\n \"series1\": 2185,\n \"series2\": [2185, 2211],\n \"series_gen\": 2194,\n- \"series_gener\": 2194,\n+ \"series_gener\": [2193, 2194],\n \"series_minut\": 2210,\n \"series_monthli\": 2210,\n \"series_second\": 2210,\n \"seriesformatt\": [1345, 1391, 1488, 1490, 2202],\n \"seriesgroupbi\": [186, 205, 223, 709, 762, 778, 798, 1147, 1150, 1151, 1157, 1160, 1161, 1162, 1163, 1165, 1166, 1170, 1171, 1176, 1178, 1180, 1181, 1185, 1186, 1188, 1189, 1195, 1196, 1197, 1199, 1200, 1204, 1205, 1268, 1273, 1277, 1278, 1279, 1284, 1287, 1288, 1292, 1293, 2172, 2195, 2220, 2221, 2228, 2232, 2238, 2241, 2246, 2249, 2265, 2266, 2267, 2269, 2271, 2275, 2276, 2277, 2278, 2284, 2286, 2287, 2288, 2289, 2297, 2299, 2302, 2304, 2307, 2308],\n \"serif\": 2207,\n \"seriou\": 2,\n@@ -44988,15 +44991,15 @@\n \"tzfile\": [286, 329, 330, 331, 684, 685, 686, 953, 956, 972, 1013, 1014, 2210, 2221],\n \"tzinfo\": [277, 278, 286, 324, 329, 330, 331, 334, 575, 679, 684, 685, 686, 903, 904, 953, 983, 995, 1001, 1004, 1012, 1344, 2210, 2221, 2222, 2238, 2239, 2241, 2283, 2294, 2303],\n \"tzlocal\": [2232, 2246, 2298],\n \"tzname\": 2294,\n \"tzoffset\": 2222,\n \"tzser\": 575,\n \"tzutc\": [2210, 2246],\n- \"u\": [1, 3, 4, 5, 7, 13, 17, 18, 31, 203, 258, 287, 311, 330, 331, 532, 663, 664, 685, 686, 889, 905, 909, 916, 917, 918, 920, 921, 927, 930, 938, 939, 941, 946, 953, 954, 957, 995, 1017, 1085, 1087, 1088, 1204, 1476, 1482, 1483, 1484, 1498, 1500, 2163, 2184, 2185, 2186, 2193, 2194, 2195, 2199, 2203, 2207, 2208, 2209, 2210, 2222, 2226, 2228, 2230, 2235, 2238, 2241, 2246, 2249, 2294, 2298, 2302, 2307],\n+ \"u\": [1, 3, 4, 5, 7, 13, 17, 18, 31, 203, 258, 287, 311, 330, 331, 532, 663, 664, 685, 686, 889, 905, 909, 916, 917, 918, 920, 921, 927, 930, 938, 939, 941, 946, 953, 954, 957, 995, 1017, 1085, 1087, 1088, 1204, 1476, 1482, 1483, 1484, 1498, 1500, 2163, 2184, 2185, 2186, 2193, 2194, 2195, 2199, 2203, 2205, 2207, 2208, 2209, 2210, 2222, 2226, 2228, 2230, 2235, 2238, 2241, 2246, 2249, 2294, 2298, 2302, 2307],\n \"u1\": [131, 1118, 2185, 2186, 2199],\n \"u4\": 2197,\n \"u5\": 2197,\n \"u8\": 2186,\n \"ubuntu\": 5,\n \"udf\": [72, 73, 77, 273, 581, 582, 586, 900, 1148, 1149, 1152, 1168, 1203, 1207, 1208, 1211, 1225, 1264, 1269, 1270, 1304, 1321, 2195, 2196, 2294],\n \"ufunc\": [10, 586, 808, 1031, 2185, 2186, 2191, 2206, 2213, 2219, 2221, 2232, 2246, 2265, 2277, 2281, 2289, 2293, 2294, 2298, 2307],\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "unified_diff": "@@ -1856,25 +1856,25 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....: \n-1.67 ms +- 355 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-464 us +- 11.4 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+2.39 ms +- 498 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+752 us +- 122 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n \n \n
In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n    .....: %timeit ser.take(indexer)\n    .....: \n-725 us +- 52 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-641 us +- 14.3 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+1.26 ms +- 298 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+1.29 ms +- 168 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n 
\n
\n \n
\n

Index types#

\n

We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown here,\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -1241,23 +1241,23 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....:\n-1.67 ms +- 355 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-464 us +- 11.4 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+2.39 ms +- 498 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+752 us +- 122 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n .....: %timeit ser.take(indexer)\n .....:\n-725 us +- 52 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n-641 us +- 14.3 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+1.26 ms +- 298 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+1.29 ms +- 168 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n *\b**\b**\b**\b**\b* I\bIn\bnd\bde\bex\bx t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b**\b*\n We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown _\bh_\be_\br_\be, and\n documentation about TimedeltaIndex is found _\bh_\be_\br_\be.\n In the following sub-sections we will highlight some other index types.\n *\b**\b**\b**\b* C\bCa\bat\bte\beg\bgo\bor\bri\bic\bca\bal\blI\bIn\bnd\bde\bex\bx_\b#\b# *\b**\b**\b**\b*\n _\bC_\ba_\bt_\be_\bg_\bo_\br_\bi_\bc_\ba_\bl_\bI_\bn_\bd_\be_\bx is a type of index that is useful for supporting indexing with\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "unified_diff": "@@ -601,31 +601,31 @@\n ...: s += f(a + i * dx)\n ...: return s * dx\n ...: \n \n \n

We achieve our result by using DataFrame.apply() (row-wise):

\n
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)\n-324 ms +- 2.25 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+452 ms +- 42.2 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n

Let\u2019s take a look and see where the time is spent during this operation\n using the prun ipython magic function:

\n
# most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)  # noqa E999\n-         605951 function calls (605933 primitive calls) in 0.869 seconds\n+         605951 function calls (605933 primitive calls) in 0.926 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.502    0.001    0.753    0.001 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n-   552423    0.251    0.000    0.251    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n-     3000    0.019    0.000    0.072    0.000 series.py:1095(__getitem__)\n-     3000    0.013    0.000    0.033    0.000 series.py:1220(_get_value)\n+     1000    0.520    0.001    0.779    0.001 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n+   552423    0.259    0.000    0.259    0.000 <ipython-input-3-c138bdd570e3>:1(f)\n+     3000    0.021    0.000    0.084    0.000 series.py:1095(__getitem__)\n+     1001    0.017    0.000    0.035    0.000 apply.py:1247(series_generator)\n 
\n
\n

By far the majority of time is spend inside either integrate_f or f,\n hence we\u2019ll concentrate our efforts cythonizing these two functions.

\n
\n
\n

Plain Cython#

\n@@ -643,15 +643,15 @@\n ...: for i in range(N):\n ...: s += f_plain(a + i * dx)\n ...: return s * dx\n ...: \n \n \n
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)\n-294 ms +- 2.5 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+322 ms +- 2.34 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n 
\n
\n

This has improved the performance compared to the pure Python approach by one-third.

\n
\n
\n

Declaring C types#

\n

We can annotate the function variables and return types as well as use cdef\n@@ -667,36 +667,36 @@\n ....: for i in range(N):\n ....: s += f_typed(a + i * dx)\n ....: return s * dx\n ....: \n \n \n

In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-45.7 ms +- 578 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+51.1 ms +- 1.91 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

Annotating the functions with C types yields an over ten times performance improvement compared to\n the original Python implementation.

\n
\n
\n

Using ndarray#

\n

When re-profiling, time is spent creating a Series from each row, and calling __getitem__ from both\n the index and the series (three times for each row). These Python function calls are expensive and\n can be improved by passing an np.ndarray.

\n
In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-         52528 function calls (52510 primitive calls) in 0.105 seconds\n+         52528 function calls (52510 primitive calls) in 0.120 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.017    0.000    0.065    0.000 series.py:1095(__getitem__)\n-     3000    0.011    0.000    0.029    0.000 series.py:1220(_get_value)\n-     3000    0.010    0.000    0.011    0.000 base.py:3777(get_loc)\n-    16098    0.010    0.000    0.013    0.000 {built-in method builtins.isinstance}\n+     3000    0.019    0.000    0.072    0.000 series.py:1095(__getitem__)\n+     3000    0.013    0.000    0.033    0.000 series.py:1220(_get_value)\n+     3000    0.012    0.000    0.013    0.000 base.py:3777(get_loc)\n+    16098    0.011    0.000    0.015    0.000 {built-in method builtins.isinstance}\n 
\n
\n
In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n@@ -731,15 +731,15 @@\n 
\n

This implementation creates an array of zeros and inserts the result\n of integrate_f_typed applied over each row. Looping over an ndarray is faster\n in Cython than looping over a Series object.

\n

Since apply_integrate_f is typed to accept an np.ndarray, Series.to_numpy()\n calls are needed to utilize this function.

\n
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-5.76 ms +- 16.1 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+5.8 ms +- 19.6 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n 
\n
\n

Performance has improved from the prior implementation by almost ten times.

\n
\n
\n

Disabling compiler directives#

\n

The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s boundscheck\n@@ -748,16 +748,16 @@\n 78 function calls in 0.007 seconds\n \n Ordered by: internal time\n List reduced from 21 to 4 due to restriction <4>\n \n ncalls tottime percall cumtime percall filename:lineno(function)\n 1 0.006 0.006 0.006 0.006 <string>:1(<module>)\n- 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}\n 1 0.000 0.000 0.006 0.006 {built-in method builtins.exec}\n+ 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}\n 3 0.000 0.000 0.000 0.000 frame.py:4062(__getitem__)\n \n \n

In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n@@ -1189,19 +1189,19 @@\n compared to standard Python syntax for large DataFrame. This engine requires the\n optional dependency numexpr to be installed.

\n

The 'python' engine is generally not useful except for testing\n other evaluation engines against it. You will achieve no performance\n benefits using eval() with engine='python' and may\n incur a performance hit.

\n
In [40]: %timeit df1 + df2 + df3 + df4\n-60.6 ms +- 363 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+37.9 ms +- 786 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")\n-62.3 ms +- 63.3 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+40.4 ms +- 670 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
\n
\n

The DataFrame.eval() method#

\n

In addition to the top level pandas.eval() function you can also\n evaluate an expression in the \u201ccontext\u201d of a DataFrame.

\n@@ -1316,39 +1316,39 @@\n
In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]\n 
\n
\n

DataFrame arithmetic:

\n
In [60]: %timeit df1 + df2 + df3 + df4\n-60.7 ms +- 291 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+37.7 ms +- 614 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")\n-29.1 ms +- 220 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+24.4 ms +- 328 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

DataFrame comparison:

\n
In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-55.6 ms +- 937 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+61.8 ms +- 2.23 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")\n-26.1 ms +- 572 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+45.2 ms +- 1.1 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n

DataFrame arithmetic with unaligned axes.

\n
In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-106 ms +- 1.53 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+68 ms +- 465 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")\n-32.3 ms +- 270 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+29.4 ms +- 1.99 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n 
\n
\n
\n

Note

\n

Operations such as

\n
1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -106,32 +106,32 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f(a + i * dx)\n    ...:     return s * dx\n    ...:\n We achieve our result by using _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\ba_\bp_\bp_\bl_\by_\b(_\b) (row-wise):\n In [5]: %timeit df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]), axis=1)\n-324 ms +- 2.25 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+452 ms +- 42.2 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n Let\u2019s take a look and see where the time is spent during this operation using\n the _\bp_\br_\bu_\bn_\b _\bi_\bp_\by_\bt_\bh_\bo_\bn_\b _\bm_\ba_\bg_\bi_\bc_\b _\bf_\bu_\bn_\bc_\bt_\bi_\bo_\bn:\n # most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)  # noqa E999\n-         605951 function calls (605933 primitive calls) in 0.869 seconds\n+         605951 function calls (605933 primitive calls) in 0.926 seconds\n \n    Ordered by: internal time\n    List reduced from 159 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     1000    0.502    0.001    0.753    0.001 :1\n+     1000    0.520    0.001    0.779    0.001 :1\n (integrate_f)\n-   552423    0.251    0.000    0.251    0.000 :1\n+   552423    0.259    0.000    0.259    0.000 :1\n (f)\n-     3000    0.019    0.000    0.072    0.000 series.py:1095(__getitem__)\n-     3000    0.013    0.000    0.033    0.000 series.py:1220(_get_value)\n+     3000    0.021    0.000    0.084    0.000 series.py:1095(__getitem__)\n+     1001    0.017    0.000    0.035    0.000 apply.py:1247(series_generator)\n By far the majority of time is spend inside either integrate_f or f, hence\n we\u2019ll concentrate our efforts cythonizing these two functions.\n *\b**\b**\b**\b* P\bPl\bla\bai\bin\bn C\bCy\byt\bth\bho\bon\bn_\b#\b# *\b**\b**\b**\b*\n First we\u2019re going to need to import the Cython magic function to IPython:\n In [7]: %load_ext Cython\n Now, let\u2019s simply copy our functions over to Cython:\n In [8]: %%cython\n@@ -142,15 +142,15 @@\n    ...:     dx = (b - a) / N\n    ...:     for i in range(N):\n    ...:         s += f_plain(a + i * dx)\n    ...:     return s * dx\n    ...:\n In [9]: %timeit df.apply(lambda x: integrate_f_plain(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-294 ms +- 2.5 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n+322 ms +- 2.34 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)\n This has improved the performance compared to the pure Python approach by one-\n third.\n *\b**\b**\b**\b* D\bDe\bec\bcl\bla\bar\bri\bin\bng\bg C\bC t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b*\n We can annotate the function variables and return types as well as use cdef and\n cpdef to improve performance:\n In [10]: %%cython\n    ....: cdef double f_typed(double x) except? -2:\n@@ -162,34 +162,34 @@\n    ....:     dx = (b - a) / N\n    ....:     for i in range(N):\n    ....:         s += f_typed(a + i * dx)\n    ....:     return s * dx\n    ....:\n In [11]: %timeit df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-45.7 ms +- 578 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+51.1 ms +- 1.91 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Annotating the functions with C types yields an over ten times performance\n improvement compared to the original Python implementation.\n *\b**\b**\b**\b* U\bUs\bsi\bin\bng\bg n\bnd\bda\bar\brr\bra\bay\by_\b#\b# *\b**\b**\b**\b*\n When re-profiling, time is spent creating a _\bS_\be_\br_\bi_\be_\bs from each row, and calling\n __getitem__ from both the index and the series (three times for each row).\n These Python function calls are expensive and can be improved by passing an\n np.ndarray.\n In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x\n [\"N\"]), axis=1)\n-         52528 function calls (52510 primitive calls) in 0.105 seconds\n+         52528 function calls (52510 primitive calls) in 0.120 seconds\n \n    Ordered by: internal time\n    List reduced from 157 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n-     3000    0.017    0.000    0.065    0.000 series.py:1095(__getitem__)\n-     3000    0.011    0.000    0.029    0.000 series.py:1220(_get_value)\n-     3000    0.010    0.000    0.011    0.000 base.py:3777(get_loc)\n-    16098    0.010    0.000    0.013    0.000 {built-in method\n+     3000    0.019    0.000    0.072    0.000 series.py:1095(__getitem__)\n+     3000    0.013    0.000    0.033    0.000 series.py:1220(_get_value)\n+     3000    0.012    0.000    0.013    0.000 base.py:3777(get_loc)\n+    16098    0.011    0.000    0.015    0.000 {built-in method\n builtins.isinstance}\n In [13]: %%cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef double f_typed(double x) except? -2:\n    ....:     return x * (x - 1)\n    ....: cpdef double integrate_f_typed(double a, double b, int N):\n@@ -231,31 +231,31 @@\n This implementation creates an array of zeros and inserts the result of\n integrate_f_typed applied over each row. Looping over an ndarray is faster in\n Cython than looping over a _\bS_\be_\br_\bi_\be_\bs object.\n Since apply_integrate_f is typed to accept an np.ndarray, _\bS_\be_\br_\bi_\be_\bs_\b._\bt_\bo_\b__\bn_\bu_\bm_\bp_\by_\b(_\b)\n calls are needed to utilize this function.\n In [14]: %timeit apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(), df\n [\"N\"].to_numpy())\n-5.76 ms +- 16.1 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+5.8 ms +- 19.6 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n Performance has improved from the prior implementation by almost ten times.\n *\b**\b**\b**\b* D\bDi\bis\bsa\bab\bbl\bli\bin\bng\bg c\bco\bom\bmp\bpi\bil\ble\ber\br d\bdi\bir\bre\bec\bct\bti\biv\bve\bes\bs_\b#\b# *\b**\b**\b**\b*\n The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s\n boundscheck and wraparound checks can yield more performance.\n In [15]: %prun -l 4 apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(),\n df[\"N\"].to_numpy())\n          78 function calls in 0.007 seconds\n \n    Ordered by: internal time\n    List reduced from 21 to 4 due to restriction <4>\n \n    ncalls  tottime  percall  cumtime  percall filename:lineno(function)\n         1    0.006    0.006    0.006    0.006 :1()\n+        1    0.000    0.000    0.006    0.006 {built-in method builtins.exec}\n         1    0.000    0.000    0.000    0.000 {method 'disable' of\n '_lsprof.Profiler' objects}\n-        1    0.000    0.000    0.006    0.006 {built-in method builtins.exec}\n         3    0.000    0.000    0.000    0.000 frame.py:4062(__getitem__)\n In [16]: %%cython\n    ....: cimport cython\n    ....: cimport numpy as np\n    ....: import numpy as np\n    ....: cdef np.float64_t f_typed(np.float64_t x) except? -2:\n    ....:     return x * (x - 1)\n@@ -642,17 +642,17 @@\n The 'numexpr' engine is the more performant engine that can yield performance\n improvements compared to standard Python syntax for large _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be. This\n engine requires the optional dependency numexpr to be installed.\n The 'python' engine is generally n\bno\bot\bt useful except for testing other evaluation\n engines against it. You will achieve n\bno\bo performance benefits using _\be_\bv_\ba_\bl_\b(_\b) with\n engine='python' and may incur a performance hit.\n In [40]: %timeit df1 + df2 + df3 + df4\n-60.6 ms +- 363 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+37.9 ms +- 786 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n In [41]: %timeit pd.eval(\"df1 + df2 + df3 + df4\", engine=\"python\")\n-62.3 ms +- 63.3 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+40.4 ms +- 670 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n *\b**\b**\b**\b* T\bTh\bhe\be _\bD\bD_\ba\ba_\bt\bt_\ba\ba_\bF\bF_\br\br_\ba\ba_\bm\bm_\be\be_\b.\b._\be\be_\bv\bv_\ba\ba_\bl\bl_\b(\b(_\b)\b) m\bme\bet\bth\bho\bod\bd_\b#\b# *\b**\b**\b**\b*\n In addition to the top level _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) function you can also evaluate an\n expression in the \u201ccontext\u201d of a _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be.\n In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=[\"a\", \"b\"])\n \n In [43]: df.eval(\"a + b\")\n Out[43]:\n@@ -749,29 +749,29 @@\n _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) works well with expressions containing large arrays.\n In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for\n _ in range(4)]\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic:\n In [60]: %timeit df1 + df2 + df3 + df4\n-60.7 ms +- 291 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+37.7 ms +- 614 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n In [61]: %timeit pd.eval(\"df1 + df2 + df3 + df4\")\n-29.1 ms +- 220 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+24.4 ms +- 328 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be comparison:\n In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-55.6 ms +- 937 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+61.8 ms +- 2.23 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n In [63]: %timeit pd.eval(\"(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\")\n-26.1 ms +- 572 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+45.2 ms +- 1.1 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic with unaligned axes.\n In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-106 ms +- 1.53 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+68 ms +- 465 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n In [66]: %timeit pd.eval(\"df1 + df2 + df3 + df4 + s\")\n-32.3 ms +- 270 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+29.4 ms +- 1.99 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Note\n Operations such as\n 1 and 2  # would parse to 1 & 2, but should evaluate to 2\n 3 or 4  # would parse to 3 | 4, but should evaluate to 3\n ~1  # this is okay, but slower when using eval\n should be performed in Python. An exception will be raised if you try to\n perform any boolean/bitwise operations with scalar operands that are not of\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "unified_diff": "@@ -1095,16 +1095,16 @@\n    ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")\n    ....: counts = pd.Series(dtype=int)\n    ....: for path in files:\n    ....:     df = pd.read_parquet(path)\n    ....:     counts = counts.add(df["name"].value_counts(), fill_value=0)\n    ....: counts.astype(int)\n    ....: \n-CPU times: user 1.57 ms, sys: 0 ns, total: 1.57 ms\n-Wall time: 1.59 ms\n+CPU times: user 1.49 ms, sys: 124 us, total: 1.62 ms\n+Wall time: 1.64 ms\n Out[32]: Series([], dtype: int32)\n 
\n
\n

Some readers, like pandas.read_csv(), offer parameters to control the\n chunksize when reading a single file.

\n

Manually chunking is an OK option for workflows that don\u2019t\n require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby(), are\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -640,16 +640,16 @@\n ....: files = pathlib.Path(\"data/timeseries/\").glob(\"ts*.parquet\")\n ....: counts = pd.Series(dtype=int)\n ....: for path in files:\n ....: df = pd.read_parquet(path)\n ....: counts = counts.add(df[\"name\"].value_counts(), fill_value=0)\n ....: counts.astype(int)\n ....:\n-CPU times: user 1.57 ms, sys: 0 ns, total: 1.57 ms\n-Wall time: 1.59 ms\n+CPU times: user 1.49 ms, sys: 124 us, total: 1.62 ms\n+Wall time: 1.64 ms\n Out[32]: Series([], dtype: int32)\n Some readers, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\br_\be_\ba_\bd_\b__\bc_\bs_\bv_\b(_\b), offer parameters to control the chunksize\n when reading a single file.\n Manually chunking is an OK option for workflows that don\u2019t require too\n sophisticated of operations. Some operations, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\bg_\br_\bo_\bu_\bp_\bb_\by_\b(_\b),\n are much harder to do chunkwise. In these cases, you may be better switching to\n a different library that implements these out-of-core algorithms for you.\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "unified_diff": null, "details": [{"source1": "style.ipynb", "source2": "style.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9985610875706213%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2024-11-08T06:47:06.631094Z', \"", " \"'iopub.status.busy': '2024-11-08T06:47:06.630191Z', 'iopub.status.idle': \"", " \"'2024-11-08T06:47:09.710846Z', 'shell.execute_reply': \"", " \"'2024-11-08T06:47:09.708512Z'}}}, 3: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2024-11-08T06:47:09.732241Z', 'iopub.status.busy': \"", " \"'2024-11-08T06:47:09.730413Z', 'iopub.status.idle': '2024-11-08T06:47:1 [\u2026]"], "unified_diff": "@@ -39,18 +39,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2024-11-08T03:24:49.545837Z\",\n- \"iopub.status.busy\": \"2024-11-08T03:24:49.545075Z\",\n- \"iopub.status.idle\": \"2024-11-08T03:24:51.166017Z\",\n- \"shell.execute_reply\": \"2024-11-08T03:24:51.164043Z\"\n+ \"iopub.execute_input\": \"2024-11-08T06:47:06.631094Z\",\n+ \"iopub.status.busy\": \"2024-11-08T06:47:06.630191Z\",\n+ \"iopub.status.idle\": \"2024-11-08T06:47:09.710846Z\",\n+ \"shell.execute_reply\": \"2024-11-08T06:47:09.708512Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"import matplotlib.pyplot\\n\",\n \"# We have this here to trigger matplotlib's font cache stuff.\\n\",\n@@ -77,36 +77,36 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2024-11-08T03:24:51.177501Z\",\n- \"iopub.status.busy\": \"2024-11-08T03:24:51.175941Z\",\n- \"iopub.status.idle\": \"2024-11-08T03:24:51.936124Z\",\n- \"shell.execute_reply\": \"2024-11-08T03:24:51.934006Z\"\n+ \"iopub.execute_input\": \"2024-11-08T06:47:09.732241Z\",\n+ \"iopub.status.busy\": \"2024-11-08T06:47:09.730413Z\",\n+ \"iopub.status.idle\": \"2024-11-08T06:47:10.882707Z\",\n+ \"shell.execute_reply\": \"2024-11-08T06:47:10.880500Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import pandas as pd\\n\",\n \"import numpy as np\\n\",\n \"import matplotlib as mpl\\n\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2024-11-08T03:24:51.946044Z\",\n- \"iopub.status.busy\": \"2024-11-08T03:24:51.945083Z\",\n- \"iopub.status.idle\": \"2024-11-08T03:24:52.158099Z\",\n- \"shell.execute_reply\": \"2024-11-08T03:24:52.156081Z\"\n+ \"iopub.execute_input\": \"2024-11-08T06:47:10.899402Z\",\n+ \"iopub.status.busy\": \"2024-11-08T06:47:10.898303Z\",\n+ \"iopub.status.idle\": \"2024-11-08T06:47:11.348500Z\",\n+ \"shell.execute_reply\": \"2024-11-08T06:47:11.332482Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\\n\",\n \"from pandas.io.formats.style import Styler\\n\",\n@@ -123,18 +123,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2024-11-08T03:24:52.168240Z\",\n- \"iopub.status.busy\": \"2024-11-08T03:24:52.167332Z\",\n- \"iopub.status.idle\": \"2024-11-08T03:24:52.209344Z\",\n- \"shell.execute_reply\": \"2024-11-08T03:24:52.207374Z\"\n+ \"iopub.execute_input\": \"2024-11-08T06:47:11.363211Z\",\n+ \"iopub.status.busy\": \"2024-11-08T06:47:11.362169Z\",\n+ \"iopub.status.idle\": \"2024-11-08T06:47:11.476523Z\",\n+ \"shell.execute_reply\": \"2024-11-08T06:47:11.460446Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/html\": [\n \"