{"diffoscope-json-version": 1, "source1": "/srv/reproducible-results/rbuild-debian/r-b-build.vBc8SDDR/b1/pandas_2.2.3+dfsg-5_arm64.changes", "source2": "/srv/reproducible-results/rbuild-debian/r-b-build.vBc8SDDR/b2/pandas_2.2.3+dfsg-5_arm64.changes", "unified_diff": null, "details": [{"source1": "Files", "source2": "Files", "unified_diff": "@@ -1,5 +1,5 @@\n \n- 26b4e86d88ff8f6ad03e46c30e6e0748 9245152 doc optional python-pandas-doc_2.2.3+dfsg-5_all.deb\n+ 2947723adfeac70579aec04f50421b04 9245376 doc optional python-pandas-doc_2.2.3+dfsg-5_all.deb\n 45b43e9b2c44df89166dbf5e5f35bea4 35730884 debug optional python3-pandas-lib-dbgsym_2.2.3+dfsg-5_arm64.deb\n 0a17061d8f9a7da203ea2cc62f4b17ce 3746080 python optional python3-pandas-lib_2.2.3+dfsg-5_arm64.deb\n 82393119d6d8cb1b1ef15e3b71c2d0a7 3096356 python optional python3-pandas_2.2.3+dfsg-5_all.deb\n"}, {"source1": "python-pandas-doc_2.2.3+dfsg-5_all.deb", "source2": "python-pandas-doc_2.2.3+dfsg-5_all.deb", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -1,3 +1,3 @@\n -rw-r--r-- 0 0 0 4 2024-10-21 18:43:11.000000 debian-binary\n--rw-r--r-- 0 0 0 146908 2024-10-21 18:43:11.000000 control.tar.xz\n--rw-r--r-- 0 0 0 9098052 2024-10-21 18:43:11.000000 data.tar.xz\n+-rw-r--r-- 0 0 0 146924 2024-10-21 18:43:11.000000 control.tar.xz\n+-rw-r--r-- 0 0 0 9098260 2024-10-21 18:43:11.000000 data.tar.xz\n"}, {"source1": "control.tar.xz", "source2": "control.tar.xz", "unified_diff": null, "details": [{"source1": "control.tar", "source2": "control.tar", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "unified_diff": null, "details": [{"source1": "./md5sums", "source2": "./md5sums", "comments": ["Files differ"], "unified_diff": null}]}]}]}, {"source1": "data.tar.xz", "source2": "data.tar.xz", "unified_diff": null, "details": [{"source1": "data.tar", "source2": "data.tar", "unified_diff": null, "details": [{"source1": "file list", "source2": "file list", "unified_diff": "@@ -6230,15 +6230,15 @@\n -rw-r--r-- 0 root (0) root (0) 209237 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reference/series.html\n -rw-r--r-- 0 root (0) root (0) 47718 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reference/style.html\n -rw-r--r-- 0 root (0) root (0) 47710 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reference/testing.html\n -rw-r--r-- 0 root (0) root (0) 52348 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reference/window.html\n -rw-r--r-- 0 root (0) root (0) 244 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/release.html\n -rw-r--r-- 0 root (0) root (0) 269 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 16236 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/search.html\n--rw-r--r-- 0 root (0) root (0) 2358556 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n+-rw-r--r-- 0 root (0) root (0) 2358515 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/searchindex.js\n -rw-r--r-- 0 root (0) root (0) 259 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/sparse.html\n -rw-r--r-- 0 root (0) root (0) 244 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/style.html\n -rw-r--r-- 0 root (0) root (0) 255 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/text.html\n -rw-r--r-- 0 root (0) root (0) 256 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 277 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 272 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/tutorials.html\n drwxr-xr-x 0 root (0) root (0) 0 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/\n@@ -6247,44 +6247,44 @@\n -rw-r--r-- 0 root (0) root (0) 434987 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/basics.html\n -rw-r--r-- 0 root (0) root (0) 35684 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/boolean.html\n -rw-r--r-- 0 root (0) root (0) 216528 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/categorical.html\n -rw-r--r-- 0 root (0) root (0) 17366 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/cookbook.html\n -rw-r--r-- 0 root (0) root (0) 65178 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/copy_on_write.html\n -rw-r--r-- 0 root (0) root (0) 159345 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/dsintro.html\n -rw-r--r-- 0 root (0) root (0) 80419 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/duplicates.html\n--rw-r--r-- 0 root (0) root (0) 114396 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n+-rw-r--r-- 0 root (0) root (0) 114404 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html\n -rw-r--r-- 0 root (0) root (0) 106902 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/gotchas.html\n -rw-r--r-- 0 root (0) root (0) 299886 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/groupby.html\n -rw-r--r-- 0 root (0) root (0) 58768 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/index.html\n -rw-r--r-- 0 root (0) root (0) 394407 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/indexing.html\n -rw-r--r-- 0 root (0) root (0) 40816 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/integer_na.html\n -rw-r--r-- 0 root (0) root (0) 1144274 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/io.html\n -rw-r--r-- 0 root (0) root (0) 207911 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/merging.html\n -rw-r--r-- 0 root (0) root (0) 177680 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/missing_data.html\n -rw-r--r-- 0 root (0) root (0) 111206 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/options.html\n -rw-r--r-- 0 root (0) root (0) 146554 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/pyarrow.html\n -rw-r--r-- 0 root (0) root (0) 161699 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/reshaping.html\n -rw-r--r-- 0 root (0) root (0) 114622 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/scale.html\n -rw-r--r-- 0 root (0) root (0) 64712 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/sparse.html\n -rw-r--r-- 0 root (0) root (0) 697293 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.html\n--rw-r--r-- 0 root (0) root (0) 87860 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n+-rw-r--r-- 0 root (0) root (0) 87866 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz\n -rw-r--r-- 0 root (0) root (0) 164343 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/text.html\n -rw-r--r-- 0 root (0) root (0) 99980 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timedeltas.html\n -rw-r--r-- 0 root (0) root (0) 485612 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/timeseries.html\n -rw-r--r-- 0 root (0) root (0) 203394 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/visualization.html\n -rw-r--r-- 0 root (0) root (0) 141000 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/user_guide/window.html\n -rw-r--r-- 0 root (0) root (0) 270 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/visualization.html\n drwxr-xr-x 0 root (0) root (0) 0 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/\n -rw-r--r-- 0 root (0) root (0) 106734 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html\n -rw-r--r-- 0 root (0) root (0) 10079 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/index.html.gz\n -rw-r--r-- 0 root (0) root (0) 83016 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.0.html\n -rw-r--r-- 0 root (0) root (0) 65522 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.10.1.html\n -rw-r--r-- 0 root (0) root (0) 81344 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.11.0.html\n -rw-r--r-- 0 root (0) root (0) 103349 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.12.0.html\n--rw-r--r-- 0 root (0) root (0) 221508 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n+-rw-r--r-- 0 root (0) root (0) 221509 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.0.html\n -rw-r--r-- 0 root (0) root (0) 88415 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.13.1.html\n -rw-r--r-- 0 root (0) root (0) 242763 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.0.html\n -rw-r--r-- 0 root (0) root (0) 82295 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.14.1.html\n -rw-r--r-- 0 root (0) root (0) 251323 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.0.html\n -rw-r--r-- 0 root (0) root (0) 67310 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.1.html\n -rw-r--r-- 0 root (0) root (0) 74144 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.15.2.html\n -rw-r--r-- 0 root (0) root (0) 144231 2024-10-21 18:43:11.000000 ./usr/share/doc/python-pandas-doc/html/whatsnew/v0.16.0.html\n"}, {"source1": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "source2": "./usr/share/doc/python-pandas-doc/html/searchindex.js", "unified_diff": null, "details": [{"source1": "js-beautify {}", "source2": "js-beautify {}", "unified_diff": "@@ -21523,15 +21523,15 @@\n \"004194\": 2186,\n \"004201\": 2186,\n \"004229\": 2186,\n \"004474\": 2184,\n \"004580\": 2210,\n \"00486\": 30,\n \"004956\": 2207,\n- \"005\": [2193, 2209],\n+ \"005\": 2209,\n \"005000\": 2218,\n \"005361\": 2207,\n \"005383\": 2220,\n \"005446\": 2219,\n \"005462\": 2191,\n \"005977\": 2199,\n \"005979\": 2186,\n@@ -21580,14 +21580,15 @@\n \"010026\": 2191,\n \"010081\": 15,\n \"010165\": 2199,\n \"010589\": 2193,\n \"010670\": [102, 1158],\n \"0108\": 2257,\n \"010903\": 2207,\n+ \"011\": 2193,\n \"011111\": [182, 760],\n \"011342\": 2207,\n \"011351\": 2207,\n \"011374\": 2195,\n \"011470\": 2207,\n \"011736\": 2186,\n \"011829\": 2207,\n@@ -21639,15 +21640,15 @@\n \"017106\": 2207,\n \"017118\": 2199,\n \"017152\": 2186,\n \"017263\": 2207,\n \"017276\": 2191,\n \"017587\": [2184, 2195, 2214],\n \"017796\": 2207,\n- \"018\": [2193, 2199],\n+ \"018\": 2199,\n \"018007\": 2207,\n \"018117\": 2191,\n \"018193\": 2207,\n \"018409\": 2207,\n \"018601\": [2184, 2214],\n \"018808\": 2207,\n \"018904\": 2207,\n@@ -21936,15 +21937,14 @@\n \"055556\": [69, 109, 129, 171, 173, 182, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 760],\n \"055758\": 2197,\n \"055914\": 2207,\n \"056367\": [283, 910],\n \"056780\": 2210,\n \"056842\": 2207,\n \"056909\": 2210,\n- \"057\": 2193,\n \"057165\": 2207,\n \"057490\": 2193,\n \"057737\": 2235,\n \"057974\": 2257,\n \"058006\": 2199,\n \"058176\": 2207,\n \"0582\": 2202,\n@@ -22210,15 +22210,15 @@\n \"096364\": 2235,\n \"096576\": 2207,\n \"096701\": 2214,\n \"096705\": 2207,\n \"096706\": 2186,\n \"096946\": 2210,\n \"096959\": 2207,\n- \"097\": 2207,\n+ \"097\": [2193, 2207],\n \"097318\": 2207,\n \"097384\": 2230,\n \"097554\": 2204,\n \"097771\": 2199,\n \"0978826728\": 2199,\n \"097883\": [2185, 2197, 2199, 2202, 2204],\n \"098108\": 2207,\n@@ -22251,20 +22251,20 @@\n \"0n\": [1489, 2298],\n \"0px\": 2207,\n \"0rc0\": 13,\n \"0th\": [26, 249, 882, 1202, 2185, 2197, 2199, 2235],\n \"0x00\": 2294,\n \"0x40\": 2294,\n \"0x7efd0c0b0690\": 3,\n- \"0xffff1712ae80\": 2210,\n- \"0xffff4fa02d80\": 2199,\n- \"0xffff54079060\": 2197,\n- \"0xffff57d6be60\": 2195,\n- \"0xffff6c884aa0\": 2246,\n- \"0xffff6f1709e0\": 2230,\n+ \"0xffff33858b80\": 2210,\n+ \"0xffff34c2f800\": 2230,\n+ \"0xffff705556c0\": 2197,\n+ \"0xffff780a3ad0\": 2199,\n+ \"0xffff78285760\": 2195,\n+ \"0xffff88e74230\": 2246,\n \"1\": [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 39, 42, 44, 46, 49, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 321, 323, 324, 325, 326, 327, 328, 329, 331, 332, 333, 337, 339, 341, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 361, 363, 364, 366, 367, 370, 371, 372, 375, 376, 377, 378, 380, 382, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 414, 415, 416, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 446, 449, 450, 451, 455, 456, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 473, 475, 476, 477, 478, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 499, 500, 501, 502, 503, 505, 509, 510, 511, 514, 516, 519, 525, 531, 532, 533, 534, 536, 540, 543, 545, 547, 548, 549, 551, 557, 558, 561, 565, 568, 569, 571, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 609, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 748, 749, 750, 751, 752, 753, 755, 756, 758, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 912, 913, 914, 916, 918, 921, 923, 927, 930, 938, 939, 940, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 957, 959, 960, 970, 977, 979, 981, 984, 994, 997, 1003, 1004, 1005, 1006, 1011, 1012, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1091, 1092, 1093, 1095, 1096, 1097, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1118, 1119, 1121, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1347, 1348, 1350, 1354, 1355, 1358, 1359, 1362, 1363, 1368, 1369, 1372, 1373, 1374, 1375, 1377, 1380, 1381, 1382, 1383, 1384, 1385, 1387, 1388, 1389, 1390, 1391, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1413, 1414, 1415, 1416, 1417, 1419, 1421, 1422, 1423, 1424, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1453, 1454, 1455, 1457, 1458, 1459, 1460, 1462, 1463, 1464, 1466, 1467, 1468, 1469, 1470, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1482, 1483, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1502, 1506, 1507, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1524, 1525, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1542, 1543, 1545, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1553, 1560, 1561, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1578, 1580, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1598, 1600, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1620, 1621, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1631, 1637, 1638, 1640, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1648, 1657, 1659, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1677, 1679, 1683, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1691, 1699, 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1720, 1722, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1741, 1742, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1758, 1759, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1776, 1777, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1793, 1794, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1815, 1816, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1839, 1840, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1857, 1858, 1860, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1876, 1877, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1888, 1894, 1895, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1912, 1913, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1924, 1930, 1931, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1947, 1948, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1964, 1965, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1982, 1983, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2018, 2019, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2036, 2037, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2054, 2055, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2073, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2090, 2091, 2093, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2108, 2109, 2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2127, 2128, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2145, 2146, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2163, 2164, 2165, 2166, 2184, 2185, 2186, 2187, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2208, 2209, 2210, 2211, 2212, 2214, 2216, 2217, 2218, 2220, 2222, 2224, 2225, 2227, 2228, 2230, 2232, 2238, 2240, 2241, 2243, 2245, 2246, 2249, 2257, 2259, 2260, 2263, 2298, 2307, 2309, 2310],\n \"10\": [2, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 68, 69, 74, 80, 83, 84, 85, 88, 91, 94, 97, 98, 102, 105, 109, 111, 113, 119, 120, 121, 129, 133, 137, 138, 139, 140, 142, 144, 160, 163, 171, 173, 187, 188, 189, 190, 192, 193, 199, 202, 203, 204, 206, 207, 212, 213, 215, 216, 217, 220, 221, 222, 223, 228, 230, 234, 244, 258, 265, 268, 275, 276, 278, 284, 286, 288, 289, 293, 295, 296, 298, 300, 302, 316, 317, 318, 322, 323, 324, 329, 330, 331, 345, 395, 423, 427, 440, 445, 509, 514, 516, 534, 536, 544, 546, 551, 554, 556, 560, 562, 568, 569, 570, 571, 572, 577, 583, 592, 594, 595, 596, 600, 620, 621, 627, 635, 639, 641, 645, 647, 648, 649, 650, 652, 670, 671, 673, 677, 678, 679, 681, 684, 685, 686, 695, 696, 708, 713, 714, 738, 741, 763, 764, 765, 766, 768, 781, 787, 788, 798, 804, 808, 836, 837, 838, 839, 840, 841, 842, 843, 844, 849, 852, 863, 868, 874, 889, 895, 902, 904, 912, 923, 940, 942, 943, 944, 948, 957, 959, 960, 970, 982, 984, 995, 997, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1069, 1071, 1072, 1075, 1109, 1154, 1158, 1162, 1163, 1173, 1174, 1175, 1180, 1185, 1189, 1195, 1200, 1205, 1219, 1220, 1230, 1239, 1246, 1250, 1256, 1261, 1264, 1267, 1284, 1288, 1291, 1292, 1294, 1297, 1298, 1299, 1306, 1308, 1319, 1324, 1343, 1344, 1345, 1350, 1367, 1387, 1391, 1403, 1411, 1416, 1418, 1420, 1421, 1440, 1447, 1451, 1452, 1458, 1462, 1467, 1473, 1478, 1479, 1482, 1485, 1488, 1490, 1491, 1498, 1598, 1657, 1677, 1699, 1720, 1741, 1758, 1894, 1912, 2018, 2185, 2186, 2188, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2230, 2231, 2232, 2234, 2235, 2238, 2240, 2241, 2246, 2249, 2254, 2257, 2260, 2261, 2264, 2265, 2271, 2277, 2283, 2289, 2290, 2294, 2298, 2302, 2307, 2308],\n \"100\": [3, 15, 17, 22, 30, 68, 97, 98, 111, 118, 132, 135, 141, 142, 145, 159, 161, 175, 182, 192, 202, 207, 212, 213, 233, 273, 303, 345, 359, 360, 427, 577, 587, 588, 620, 621, 655, 709, 717, 760, 781, 787, 788, 900, 1345, 1391, 1398, 1447, 1457, 1472, 1473, 1488, 1490, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2194, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2225, 2226, 2230, 2231, 2232, 2235, 2241, 2242, 2246, 2249, 2302, 2307],\n \"1000\": [9, 10, 15, 16, 17, 18, 19, 24, 25, 28, 29, 32, 102, 141, 183, 191, 193, 194, 427, 717, 761, 767, 768, 769, 874, 1154, 1158, 1456, 1465, 1467, 1876, 1964, 2184, 2185, 2186, 2188, 2193, 2195, 2199, 2205, 2206, 2207, 2210, 2211, 2220, 2223, 2229, 2230, 2235, 2238, 2246, 2249, 2261, 2294],\n \"10000\": [192, 1485, 2185, 2201, 2206, 2210, 2220, 2228, 2266],\n \"100000\": [1354, 1372, 2199, 2201, 2210],\n \"1000000\": [144, 2199, 2228],\n@@ -22385,15 +22385,15 @@\n \"102889\": 18,\n \"10289\": 2227,\n \"1029\": 2199,\n \"10291\": 2230,\n \"10292\": 2227,\n \"10295\": 2228,\n \"10299\": 2229,\n- \"103\": [139, 140, 1174, 1175, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2227, 2230, 2232, 2235, 2246, 2255],\n+ \"103\": [139, 140, 1174, 1175, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2227, 2230, 2232, 2235, 2246, 2255],\n \"1030\": 2199,\n \"10303\": 2227,\n \"1031\": 2199,\n \"103104\": 2235,\n \"10317\": 2227,\n \"10319\": 2277,\n \"103219\": 2207,\n@@ -22465,15 +22465,15 @@\n \"10477\": 2228,\n \"104803\": 2195,\n \"10482\": 2228,\n \"10483\": 2228,\n \"10485\": 2228,\n \"10486\": 2230,\n \"104971\": 2207,\n- \"105\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235, 2246, 2271],\n+ \"105\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2218, 2220, 2222, 2230, 2232, 2235, 2246, 2271],\n \"10503\": 2230,\n \"10505\": 2228,\n \"10508\": 2228,\n \"10510\": 2229,\n \"10511\": 2249,\n \"1051201\": 2205,\n \"1051471\": 2205,\n@@ -22778,15 +22778,15 @@\n \"11283\": 2229,\n \"11285\": 2229,\n \"11287\": 2232,\n \"112932\": 15,\n \"11295\": 2229,\n \"11296\": 2241,\n \"11299\": 2231,\n- \"113\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2230, 2232, 2246],\n+ \"113\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2230, 2232, 2246],\n \"11300\": [176, 179, 754, 757, 1242, 1243],\n \"11302\": 2229,\n \"11305\": 2229,\n \"113063\": 2207,\n \"11308\": [2229, 2235],\n \"11310\": 2238,\n \"11312\": 2298,\n@@ -22982,15 +22982,15 @@\n \"11788\": 2199,\n \"117887\": 2195,\n \"11790\": 2230,\n \"11792\": 2246,\n \"11794\": 2230,\n \"117949\": 2214,\n \"117967\": 2216,\n- \"118\": [268, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2220, 2228, 2230, 2232, 2242, 2249, 2265],\n+ \"118\": [268, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2208, 2209, 2210, 2211, 2220, 2228, 2230, 2232, 2242, 2249, 2265],\n \"11804\": 2230,\n \"11805\": 2230,\n \"11806\": 2199,\n \"118076\": 2186,\n \"11808\": 2230,\n \"118091\": 2207,\n \"11818\": 2230,\n@@ -23133,15 +23133,15 @@\n \"12180\": 2230,\n \"12182\": 2230,\n \"12185\": 2232,\n \"12190\": 2238,\n \"121950\": 2207,\n \"12198\": 2230,\n \"121991\": 2207,\n- \"122\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2207, 2208, 2209, 2210, 2211, 2220, 2232],\n+ \"122\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2220, 2232],\n \"1220\": [2193, 2298],\n \"12202\": 2230,\n \"12203\": 2231,\n \"1221\": 2298,\n \"12211\": 2231,\n \"12213\": 2265,\n \"12216\": 2232,\n@@ -23375,15 +23375,15 @@\n \"12887\": 2231,\n \"12888\": 2230,\n \"1289\": 2197,\n \"128907\": 2186,\n \"12893\": 2231,\n \"12896\": 2232,\n \"128hr\": 234,\n- \"129\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2214, 2225, 2232, 2283],\n+ \"129\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2203, 2208, 2210, 2211, 2214, 2225, 2232, 2283],\n \"1290\": 2197,\n \"12902\": 2231,\n \"12903\": 2231,\n \"12907\": 2232,\n \"12908\": 2231,\n \"1291\": 2197,\n \"12910\": 2231,\n@@ -23633,15 +23633,15 @@\n \"1349720105200\": 2210,\n \"1349720105300\": 2210,\n \"1349720105400\": 2210,\n \"1349720105500\": 2210,\n \"1349806505\": 2210,\n \"1349892905\": 2210,\n \"1349979305\": 2210,\n- \"135\": [2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2210, 2211, 2232, 2235, 2249, 2253],\n+ \"135\": [2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2208, 2210, 2211, 2232, 2235, 2249, 2253],\n \"13500\": 2232,\n \"1350065705\": 2210,\n \"13503\": 2249,\n \"13509\": 2232,\n \"13511\": 2232,\n \"135110\": 2186,\n \"13514\": 2232,\n@@ -24905,15 +24905,15 @@\n \"1747\": 2197,\n \"17471\": 2238,\n \"17474\": 2238,\n \"1748\": 2263,\n \"17493\": 2249,\n \"174950\": 15,\n \"17496\": 2238,\n- \"175\": [118, 132, 135, 159, 161, 175, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2283, 2298],\n+ \"175\": [118, 132, 135, 159, 161, 175, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2283, 2298],\n \"1750\": 2246,\n \"17504\": 2238,\n \"17508\": 2238,\n \"17509\": 2238,\n \"17513\": 2238,\n \"17525\": 2238,\n \"17527\": 2238,\n@@ -24998,15 +24998,14 @@\n \"17855\": 2239,\n \"17858\": [2199, 2294],\n \"1787\": 2257,\n \"17871\": 2238,\n \"17876\": 2241,\n \"17877\": 2249,\n \"178774\": 2207,\n- \"178819\": 2228,\n \"17884\": 2238,\n \"178875\": 2186,\n \"17892\": 2241,\n \"17896\": 2241,\n \"178987\": 2207,\n \"179\": [69, 109, 129, 171, 173, 199, 204, 206, 215, 216, 217, 220, 221, 222, 244, 275, 2185, 2186, 2188, 2195, 2197, 2199, 2200, 2203, 2210, 2211, 2212, 2283, 2298],\n \"17901\": 2238,\n@@ -25048,15 +25047,14 @@\n \"18004\": 2239,\n \"18020\": 2239,\n \"18021\": 2302,\n \"18034\": 2241,\n \"180355\": 2193,\n \"18044\": 2239,\n \"18051\": 2239,\n- \"180510\": 2228,\n \"18058\": 2241,\n \"18062\": 2241,\n \"180632\": 2207,\n \"18068\": 2239,\n \"18069\": 2239,\n \"18071\": 2239,\n \"18079\": 2241,\n@@ -25738,31 +25736,29 @@\n \"2017q4\": 2238,\n \"2018\": [13, 35, 80, 84, 88, 127, 157, 187, 213, 271, 277, 278, 288, 291, 296, 298, 302, 304, 305, 308, 309, 314, 318, 322, 327, 331, 418, 421, 445, 512, 513, 515, 517, 518, 522, 524, 529, 530, 534, 535, 536, 551, 562, 592, 595, 600, 639, 643, 652, 656, 657, 660, 661, 667, 673, 677, 681, 686, 703, 732, 763, 788, 899, 903, 904, 940, 943, 944, 948, 1109, 1145, 1272, 1275, 1286, 1296, 1344, 1452, 1498, 2185, 2199, 2210, 2212, 2213, 2238, 2246, 2298],\n \"20180101\": [1272, 1275, 1286, 1296],\n \"20180310\": [115, 681],\n \"2018q1\": [529, 2238],\n \"2018q2\": 2238,\n \"2019\": [13, 26, 27, 29, 30, 31, 418, 421, 1344, 1487, 1560, 2199, 2210, 2213, 2241, 2242, 2243, 2245, 2271, 2302],\n- \"202\": [2184, 2185, 2186, 2188, 2193, 2195, 2197, 2199, 2207, 2210, 2211],\n+ \"202\": [2184, 2185, 2186, 2188, 2195, 2197, 2199, 2207, 2210, 2211],\n \"2020\": [22, 82, 121, 218, 230, 268, 286, 287, 289, 293, 295, 298, 300, 317, 323, 324, 329, 519, 521, 523, 542, 547, 548, 549, 551, 593, 641, 645, 647, 649, 650, 651, 671, 678, 679, 684, 696, 793, 804, 939, 955, 956, 957, 958, 962, 963, 964, 965, 966, 967, 968, 970, 972, 973, 975, 976, 977, 978, 979, 980, 981, 983, 990, 992, 993, 994, 995, 997, 999, 1002, 1006, 1007, 1008, 1009, 1010, 1013, 1014, 1017, 1018, 1019, 1023, 1025, 1075, 1392, 1459, 1464, 1498, 1506, 1524, 1542, 1560, 2199, 2201, 2204, 2210, 2212, 2213, 2283, 2289, 2294, 2298, 2302, 2307],\n \"20200101\": [82, 593],\n \"2020q1\": 1008,\n \"2021\": [288, 296, 318, 639, 652, 673, 940, 943, 948, 957, 970, 997, 1542, 2201, 2207, 2213, 2277, 2289, 2294],\n \"2022\": [5, 22, 523, 525, 528, 537, 982, 1185, 1246, 1288, 1491, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1542, 1546, 1547, 1548, 1549, 1550, 1551, 1552, 1560, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1578, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1598, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1620, 1624, 1625, 1626, 1627, 1628, 1629, 1630, 1637, 1641, 1642, 1643, 1644, 1645, 1646, 1647, 1657, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1677, 1684, 1685, 1686, 1687, 1688, 1689, 1690, 1699, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1720, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1758, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1776, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1793, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1815, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1839, 1844, 1845, 1846, 1847, 1848, 1849, 1850, 1857, 1861, 1862, 1863, 1864, 1865, 1866, 1867, 1876, 1881, 1882, 1883, 1884, 1885, 1886, 1887, 1894, 1899, 1900, 1901, 1902, 1903, 1904, 1905, 1912, 1917, 1918, 1919, 1920, 1921, 1922, 1923, 1930, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1947, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1964, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1982, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 2000, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2018, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2036, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2054, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2094, 2095, 2096, 2097, 2098, 2099, 2100, 2108, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2127, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2145, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2186, 2203, 2213, 2227, 2298, 2302, 2307],\n \"2022a\": 2294,\n \"2023\": [34, 270, 298, 301, 320, 363, 511, 519, 526, 533, 543, 544, 545, 546, 547, 548, 549, 551, 554, 555, 556, 557, 558, 560, 563, 564, 565, 566, 567, 651, 894, 898, 954, 959, 960, 982, 984, 1000, 1001, 1003, 1004, 1005, 1011, 1016, 1020, 1021, 1024, 1122, 1141, 1147, 1157, 1170, 1171, 1176, 1180, 1185, 1195, 1197, 1206, 1214, 1227, 1228, 1233, 1239, 1245, 1246, 1256, 1258, 1268, 1271, 1273, 1274, 1277, 1278, 1279, 1280, 1282, 1283, 1284, 1285, 1287, 1288, 1290, 1291, 1292, 1293, 1294, 1295, 1297, 1501, 1620, 1930, 2090, 2127, 2145, 2213],\n \"202380\": 2207,\n \"20239\": [2241, 2265],\n- \"2024\": [36, 270, 544, 546, 555, 567, 894, 898, 2127, 2213],\n- \"2025\": [544, 546, 555, 567, 894, 898],\n+ \"2024\": [36, 270, 544, 546, 555, 567, 894, 898, 2127, 2213, 2228],\n+ \"2025\": [544, 546, 555, 567, 894, 898, 2228],\n \"20251\": 2307,\n- \"2026\": 2228,\n \"202602\": 2205,\n \"202646\": 2230,\n- \"2027\": 2228,\n \"20271\": 2241,\n \"202872\": [2184, 2214],\n \"202946\": 2207,\n \"203\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2211, 2231, 2253],\n \"2030\": 2265,\n \"20303\": 2265,\n \"20306\": 2302,\n@@ -26281,15 +26277,15 @@\n \"22256\": 2246,\n \"22270\": 2246,\n \"222743\": 29,\n \"22280\": 2246,\n \"22290\": 2246,\n \"22295\": 2246,\n \"22298\": 2246,\n- \"223\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220, 2254],\n+ \"223\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2220, 2254],\n \"223019\": 2235,\n \"22305\": 2249,\n \"223065\": 2228,\n \"22311\": 2246,\n \"22313\": 2246,\n \"22315\": 2283,\n \"22318\": 2265,\n@@ -26631,15 +26627,15 @@\n \"238636\": 15,\n \"23868\": 2249,\n \"23874\": 2246,\n \"23878\": 2246,\n \"2388\": 2185,\n \"23882\": 2246,\n \"238919\": 2207,\n- \"239\": [2185, 2186, 2188, 2195, 2197, 2199, 2210, 2220, 2298],\n+ \"239\": [2185, 2186, 2188, 2193, 2195, 2197, 2199, 2210, 2220, 2298],\n \"239000\": [2185, 2220],\n \"239072\": 2235,\n \"23917\": [2246, 2265],\n \"23919\": [2246, 2265],\n \"23925\": 2265,\n \"23931\": 2248,\n \"23932\": 2246,\n@@ -27304,15 +27300,15 @@\n \"2707\": 2199,\n \"27080\": 2250,\n \"27081\": 2271,\n \"27082\": 2249,\n \"27083\": 2249,\n \"27084\": 2249,\n \"27088\": 2249,\n- \"271\": [2186, 2188, 2195, 2197, 2199, 2210],\n+ \"271\": [2186, 2188, 2193, 2195, 2197, 2199, 2210],\n \"2710\": [2202, 2216],\n \"27101\": 2277,\n \"2710197\": 2202,\n \"27103\": 2265,\n \"27104\": 2277,\n \"27106\": 2265,\n \"27110\": 2249,\n@@ -27515,15 +27511,15 @@\n \"28115\": 2265,\n \"28118\": 2265,\n \"281247\": [2185, 2191, 2197, 2199, 2202, 2204],\n \"28130\": 2265,\n \"28139\": 2265,\n \"281461\": 2191,\n \"28147\": 2251,\n- \"281472513095120\": 2246,\n+ \"281473142846832\": 2246,\n \"28150\": 2265,\n \"28156\": 2271,\n \"28163\": 2265,\n \"2817\": 1344,\n \"281885\": 2186,\n \"28189\": 2271,\n \"28192\": 2265,\n@@ -28586,15 +28582,15 @@\n \"33569\": 2269,\n \"335712\": 2207,\n \"33573\": 2271,\n \"335844\": 2199,\n \"33589\": 2283,\n \"33594\": 2269,\n \"33595\": [2271, 2298],\n- \"336\": [2186, 2197, 2199, 2210],\n+ \"336\": [2186, 2193, 2197, 2199, 2210],\n \"33600\": 2271,\n \"33604\": 2271,\n \"336040\": 2207,\n \"33607\": 2271,\n \"33610\": 2271,\n \"336222\": 2228,\n \"33623\": 2271,\n@@ -29236,15 +29232,15 @@\n \"36758\": 2277,\n \"3676\": 2217,\n \"36760\": 2277,\n \"3678\": [1433, 2222],\n \"3679\": 2217,\n \"36795\": 2298,\n \"36799\": 2277,\n- \"368\": [2186, 2193, 2197, 2199, 2210, 2255],\n+ \"368\": [2186, 2197, 2199, 2210, 2255],\n \"3682\": [183, 761, 2217],\n \"36838\": 2298,\n \"36840\": 2277,\n \"36843\": 2277,\n \"368449\": 2191,\n \"36870\": 2277,\n \"368714\": 2184,\n@@ -29440,15 +29436,15 @@\n \"378528\": 2197,\n \"37867\": 2277,\n \"3787\": 2228,\n \"37877\": [2277, 2298],\n \"378782\": 993,\n \"378849\": 2191,\n \"37899\": 2289,\n- \"379\": [2185, 2186, 2197, 2199, 2210, 2231],\n+ \"379\": [2186, 2197, 2199, 2210, 2231],\n \"37901\": 2277,\n \"37909\": 2277,\n \"379098\": 2207,\n \"37910\": 2276,\n \"37918\": 2298,\n \"37932\": 2277,\n \"3794\": 2220,\n@@ -29601,15 +29597,15 @@\n \"386717\": 2207,\n \"38672\": 2283,\n \"386734\": 2207,\n \"386849\": 29,\n \"386902\": 2207,\n \"3869563279212530728\": 2165,\n \"386998\": 2207,\n- \"387\": [16, 17, 18, 19, 2186, 2197, 2199, 2207, 2210, 2235, 2255],\n+ \"387\": [16, 17, 18, 19, 2186, 2193, 2197, 2199, 2207, 2210, 2235, 2255],\n \"38701\": [2294, 2298],\n \"387015\": 2235,\n \"38708\": 2278,\n \"38709\": 2283,\n \"38714\": 2278,\n \"38723\": 2278,\n \"387275\": 2197,\n@@ -30265,15 +30261,15 @@\n \"41570\": 2298,\n \"41574\": 2294,\n \"41575\": 2294,\n \"41580\": 2298,\n \"41596\": 2287,\n \"41598\": 2289,\n \"41599\": 2283,\n- \"416\": [2185, 2186, 2199, 2210],\n+ \"416\": [2185, 2186, 2199, 2210, 2218],\n \"4160\": 2235,\n \"41602\": 2283,\n \"4161\": 2220,\n \"416106\": 2207,\n \"41619\": 2283,\n \"416201\": 2207,\n \"416203\": 2186,\n@@ -30380,15 +30376,15 @@\n \"421422\": 2207,\n \"4215\": 2217,\n \"4216\": 2217,\n \"421655\": 2207,\n \"421830\": 2219,\n \"42185\": 2289,\n \"4219\": 2218,\n- \"422\": [2186, 2199, 2210],\n+ \"422\": [2186, 2193, 2199, 2210],\n \"4220\": 2218,\n \"422008\": 2207,\n \"42201\": 2289,\n \"422022\": 2207,\n \"422060\": 2210,\n \"422064\": 2207,\n \"422106\": 2207,\n@@ -32178,14 +32174,15 @@\n \"50413\": 2298,\n \"50417\": 2298,\n \"504292\": 2207,\n \"50430\": 2298,\n \"50437\": 2298,\n \"50447\": 2298,\n \"504472\": 2207,\n+ \"504502\": 2228,\n \"50453\": 2298,\n \"50465\": 2298,\n \"50467\": 2298,\n \"50471\": 2298,\n \"5048\": 2218,\n \"50482\": 2298,\n \"50486\": 2298,\n@@ -32220,14 +32217,15 @@\n \"50643\": 2298,\n \"50648\": 2298,\n \"50658\": 2298,\n \"5066\": 2218,\n \"50667\": 2298,\n \"506674\": 2207,\n \"50668\": 2298,\n+ \"506803\": 2228,\n \"50681\": 2297,\n \"50684\": 2302,\n \"507\": [2192, 2199],\n \"5070\": 2218,\n \"507027\": 2186,\n \"5071\": 2241,\n \"50712\": 2298,\n@@ -32735,15 +32733,15 @@\n \"53258\": 2302,\n \"5326\": 2218,\n \"53265\": 2302,\n \"532779\": 2207,\n \"532785\": 2219,\n \"53291\": 2302,\n \"53295\": 2300,\n- \"533\": [16, 17, 18, 19, 2199, 2205, 2207, 2235],\n+ \"533\": [16, 17, 18, 19, 2199, 2207, 2235],\n \"533026\": 2195,\n \"533145\": 2207,\n \"53325\": 2302,\n \"53326\": 2302,\n \"53328\": 2300,\n \"533340\": 2207,\n \"5334\": 2218,\n@@ -33764,15 +33762,15 @@\n \"6098\": 2219,\n \"609836\": 2186,\n \"61\": [15, 17, 19, 26, 27, 31, 242, 283, 532, 817, 910, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2206, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2231, 2232, 2235, 2241, 2246, 2271],\n \"610\": 2199,\n \"6105\": 2219,\n \"610691\": 2199,\n \"610871\": 2207,\n- \"611\": 2199,\n+ \"611\": [2199, 2205],\n \"6111\": 2186,\n \"611107\": 2207,\n \"611112\": 2218,\n \"611185\": 2197,\n \"6113\": [2186, 2228],\n \"6114\": 2186,\n \"611510\": 2184,\n@@ -33897,15 +33895,15 @@\n \"6256\": [2192, 2202],\n \"6257\": 2192,\n \"625733\": 2230,\n \"625771\": 2199,\n \"6258\": [2192, 2220],\n \"6259\": 2192,\n \"625909\": 2207,\n- \"626\": [2199, 2203, 2298],\n+ \"626\": [2199, 2203, 2205, 2298],\n \"6260\": 2192,\n \"6262\": 2192,\n \"6263\": 2192,\n \"626300\": 1323,\n \"6263001\": 1323,\n \"6264\": 2192,\n \"626404\": 2235,\n@@ -33975,15 +33973,15 @@\n \"6345\": 2220,\n \"634509\": 2191,\n \"634686\": 2207,\n \"6348\": 2220,\n \"635\": 2199,\n \"6351\": 2220,\n \"6355\": 2220,\n- \"636\": [2199, 2205],\n+ \"636\": 2199,\n \"6360\": 2246,\n \"636123\": 2207,\n \"636524\": [2220, 2228, 2230, 2231],\n \"6366\": 2220,\n \"637\": [2197, 2199],\n \"6371\": 2220,\n \"6372\": 2220,\n@@ -34174,15 +34172,15 @@\n \"658444\": [2184, 2257],\n \"658537\": 2184,\n \"658598\": 2207,\n \"6587\": 2220,\n \"6588664275960427\": 2206,\n \"658899\": 2207,\n \"6589\": 2206,\n- \"659\": [2199, 2205],\n+ \"659\": 2199,\n \"659221\": 2207,\n \"659369\": 2207,\n \"659584\": 2207,\n \"659955\": 2207,\n \"66\": [17, 19, 139, 140, 219, 273, 900, 1174, 1175, 1433, 2184, 2185, 2186, 2188, 2190, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2214, 2218, 2220, 2222, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"660\": [2199, 2201],\n \"6600\": 2220,\n@@ -34352,15 +34350,15 @@\n \"678253\": 2207,\n \"678365\": 2191,\n \"6785\": 2220,\n \"6787\": 2222,\n \"678711\": 2186,\n \"678805\": 2235,\n \"678886\": 2229,\n- \"679\": [2185, 2197],\n+ \"679\": [2185, 2193, 2197],\n \"6790\": 2197,\n \"6792\": 2197,\n \"6793\": 2197,\n \"6794\": 2197,\n \"679430\": 2207,\n \"6796\": [2185, 2197],\n \"6797\": [2185, 2197],\n@@ -34856,15 +34854,15 @@\n \"739013\": 2207,\n \"7391\": 2221,\n \"739185\": 2207,\n \"7394\": 2221,\n \"739537\": 2195,\n \"7398\": 2202,\n \"7399\": 2221,\n- \"74\": [31, 182, 190, 193, 760, 766, 768, 964, 966, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n+ \"74\": [31, 182, 190, 193, 760, 766, 768, 964, 966, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2205, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2220, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246, 2271],\n \"740\": 2199,\n \"7400\": 2221,\n \"740050\": 29,\n \"7401\": 2225,\n \"740139\": 2186,\n \"7402\": 22,\n \"7403\": 2225,\n@@ -35434,15 +35432,15 @@\n \"814788\": 2207,\n \"814869\": 2207,\n \"815\": [2199, 2298],\n \"8152\": 2222,\n \"815703\": 2185,\n \"8158\": 2231,\n \"815826\": 2195,\n- \"816\": [2218, 2298],\n+ \"816\": [2193, 2218, 2298],\n \"816397\": 2210,\n \"8164\": 2222,\n \"816482\": 2184,\n \"816622\": 2216,\n \"8169\": 2222,\n \"816983\": 2199,\n \"817027\": 2220,\n@@ -35484,15 +35482,14 @@\n \"822320\": 2207,\n \"822320e\": 2191,\n \"8226\": 2222,\n \"8227\": 2232,\n \"822726\": 2199,\n \"822756\": 2207,\n \"822775\": 2207,\n- \"823\": 2193,\n \"8230\": 2222,\n \"823014\": 2207,\n \"823197\": 2207,\n \"823242\": 2186,\n \"823540\": 2207,\n \"823553\": 2210,\n \"8236\": 2222,\n@@ -35536,15 +35533,14 @@\n \"8302\": 2224,\n \"8303\": 2222,\n \"830429\": 2207,\n \"8305\": 2222,\n \"830545\": 2199,\n \"8306\": [2243, 2246],\n \"830957\": 2207,\n- \"831\": 2193,\n \"831269\": 2186,\n \"831973\": 2207,\n \"8325\": [2224, 2228],\n \"832585\": 2204,\n \"8327\": 2226,\n \"832706\": 2207,\n \"833069\": 2207,\n@@ -35720,15 +35716,15 @@\n \"8592\": 2223,\n \"8594\": 2265,\n \"859511\": 2207,\n \"859588\": [2220, 2228, 2230, 2231],\n \"8596\": 2232,\n \"859691\": 2191,\n \"85a3\": 2241,\n- \"86\": [16, 1433, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n+ \"86\": [16, 1433, 2184, 2185, 2186, 2188, 2191, 2195, 2197, 2199, 2200, 2201, 2202, 2204, 2207, 2208, 2209, 2210, 2211, 2212, 2218, 2222, 2223, 2226, 2228, 2230, 2232, 2235, 2241, 2246],\n \"860\": [182, 760, 2199],\n \"860059\": 2204,\n \"8601\": [662, 923, 983, 2199, 2209, 2210, 2230, 2235, 2241, 2271, 2277, 2283, 2298],\n \"8602\": 2224,\n \"860312\": 2199,\n \"8607\": 2223,\n \"860736\": 15,\n@@ -35782,15 +35778,15 @@\n \"864890\": 2186,\n \"865\": [16, 17, 18, 19, 2199, 2235],\n \"86520000003042\": 918,\n \"8653\": 2225,\n \"865414\": 2228,\n \"865621\": 2210,\n \"8658\": 2223,\n- \"866\": [16, 17, 18, 19, 2193, 2199, 2235],\n+ \"866\": [16, 17, 18, 19, 2199, 2235],\n \"8661\": 2224,\n \"866184\": 2199,\n \"866240\": 2219,\n \"8664\": 2230,\n \"866554\": 2207,\n \"866667\": 2195,\n \"8667\": 2224,\n@@ -36064,15 +36060,15 @@\n \"903450\": 1340,\n \"9037\": 2225,\n \"903794\": 2186,\n \"904\": 2199,\n \"9046\": 2277,\n \"904807\": 2191,\n \"9049\": 2225,\n- \"905\": [2193, 2199],\n+ \"905\": 2199,\n \"905029\": 2207,\n \"905122\": 2199,\n \"9052\": 2230,\n \"9054\": 2226,\n \"9057\": 2227,\n \"905793e\": 2204,\n \"905836\": 2215,\n@@ -36246,14 +36242,15 @@\n \"93\": [15, 718, 1447, 2184, 2185, 2186, 2188, 2191, 2193, 2195, 2197, 2199, 2200, 2201, 2202, 2203, 2204, 2207, 2208, 2209, 2210, 2211, 2214, 2218, 2220, 2222, 2226, 2230, 2232, 2235, 2246, 2257, 2298],\n \"930\": 2289,\n \"930201\": 2191,\n \"9304\": 2283,\n \"930687\": 2217,\n \"930806\": 2210,\n \"9309\": 2271,\n+ \"931\": 2193,\n \"9311\": [2225, 2228],\n \"931203\": 2204,\n \"931253\": 2210,\n \"9313\": 2238,\n \"931536\": 2210,\n \"931802\": 2207,\n \"932\": 2202,\n@@ -37081,15 +37078,15 @@\n \"_validate_integ\": 2197,\n \"_validate_kei\": [2185, 2197],\n \"_validate_nam\": [16, 17, 18, 19, 2199, 2203, 2232, 2235, 2298],\n \"_validate_parse_dates_pres\": 2199,\n \"_validate_tuple_index\": 2197,\n \"_validate_usecols_nam\": 2199,\n \"_validate_validate_kwd\": 2200,\n- \"_valu\": [12, 1031, 2185, 2186, 2191, 2193, 2194],\n+ \"_valu\": [12, 1031, 2185, 2186, 2191, 2194],\n \"_values_for_argsort\": 1031,\n \"_values_for_factor\": [1031, 1039],\n \"_verbose_info\": 2218,\n \"_verify_integr\": 2249,\n \"_where\": 2199,\n \"_window\": 2235,\n \"_wrap_arrai\": 2218,\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/advanced.html", "unified_diff": "@@ -1856,25 +1856,25 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....: \n-201 us +- 3.13 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n-75.7 us +- 1.15 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+200 us +- 240 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+72.3 us +- 66.4 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n \n \n
In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n .....: %timeit ser.take(indexer)\n .....: \n-379 us +- 118 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n-154 us +- 14.2 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+146 us +- 8.19 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+123 us +- 6.61 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n
We have discussed MultiIndex
in the previous sections pretty extensively.\n Documentation about DatetimeIndex
and PeriodIndex
are shown here,\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -1241,23 +1241,23 @@\n In [141]: indexer = np.arange(10000)\n \n In [142]: random.shuffle(indexer)\n \n In [143]: %timeit arr[indexer]\n .....: %timeit arr.take(indexer, axis=0)\n .....:\n-201 us +- 3.13 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n-75.7 us +- 1.15 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+200 us +- 240 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+72.3 us +- 66.4 ns per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n In [144]: ser = pd.Series(arr[:, 0])\n \n In [145]: %timeit ser.iloc[indexer]\n .....: %timeit ser.take(indexer)\n .....:\n-379 us +- 118 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n-154 us +- 14.2 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+146 us +- 8.19 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n+123 us +- 6.61 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each)\n *\b**\b**\b**\b**\b* I\bIn\bnd\bde\bex\bx t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b**\b*\n We have discussed MultiIndex in the previous sections pretty extensively.\n Documentation about DatetimeIndex and PeriodIndex are shown _\bh_\be_\br_\be, and\n documentation about TimedeltaIndex is found _\bh_\be_\br_\be.\n In the following sub-sections we will highlight some other index types.\n *\b**\b**\b**\b* C\bCa\bat\bte\beg\bgo\bor\bri\bic\bca\bal\blI\bIn\bnd\bde\bex\bx_\b#\b# *\b**\b**\b**\b*\n _\bC_\ba_\bt_\be_\bg_\bo_\br_\bi_\bc_\ba_\bl_\bI_\bn_\bd_\be_\bx is a type of index that is useful for supporting indexing with\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/enhancingperf.html", "unified_diff": "@@ -601,31 +601,31 @@\n ...: s += f(a + i * dx)\n ...: return s * dx\n ...: \n \n \n
We achieve our result by using DataFrame.apply()
(row-wise):
In [5]: %timeit df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1)\n-97.1 ms +- 24.4 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+105 ms +- 18.6 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n
Let\u2019s take a look and see where the time is spent during this operation\n using the prun ipython magic function:
\n# most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x["a"], x["b"], x["N"]), axis=1) # noqa E999\n- 605951 function calls (605933 primitive calls) in 0.202 seconds\n+ 605951 function calls (605933 primitive calls) in 0.387 seconds\n \n Ordered by: internal time\n List reduced from 159 to 4 due to restriction <4>\n \n ncalls tottime percall cumtime percall filename:lineno(function)\n- 1000 0.118 0.000 0.175 0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n- 552423 0.057 0.000 0.057 0.000 <ipython-input-3-c138bdd570e3>:1(f)\n- 3000 0.004 0.000 0.005 0.000 series.py:831(_values)\n- 3000 0.004 0.000 0.018 0.000 series.py:1095(__getitem__)\n+ 1000 0.239 0.000 0.336 0.000 <ipython-input-4-c2a74e076cf0>:1(integrate_f)\n+ 552423 0.097 0.000 0.097 0.000 <ipython-input-3-c138bdd570e3>:1(f)\n+ 3000 0.011 0.000 0.011 0.000 base.py:3777(get_loc)\n+ 16098 0.007 0.000 0.007 0.000 {built-in method builtins.isinstance}\n
By far the majority of time is spend inside either integrate_f
or f
,\n hence we\u2019ll concentrate our efforts cythonizing these two functions.
In [9]: %timeit df.apply(lambda x: integrate_f_plain(x["a"], x["b"], x["N"]), axis=1)\n-74.7 ms +- 866 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+105 ms +- 37.9 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n
This has improved the performance compared to the pure Python approach by one-third.
\nWe can annotate the function variables and return types as well as use cdef
\n@@ -667,15 +667,15 @@\n ....: for i in range(N):\n ....: s += f_typed(a + i * dx)\n ....: return s * dx\n ....: \n \n \n
In [11]: %timeit df.apply(lambda x: integrate_f_typed(x["a"], x["b"], x["N"]), axis=1)\n-9.16 ms +- 129 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+12.8 ms +- 4.63 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n
Annotating the functions with C types yields an over ten times performance improvement compared to\n the original Python implementation.
\nThis implementation creates an array of zeros and inserts the result\n of integrate_f_typed
applied over each row. Looping over an ndarray
is faster\n in Cython than looping over a Series
object.
Since apply_integrate_f
is typed to accept an np.ndarray
, Series.to_numpy()
\n calls are needed to utilize this function.
In [14]: %timeit apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-1.18 ms +- 10.4 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+2.28 ms +- 679 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n
Performance has improved from the prior implementation by almost ten times.
\nThe majority of the time is now spent in apply_integrate_f
. Disabling Cython\u2019s boundscheck
\n and wraparound
checks can yield more performance.
In [15]: %prun -l 4 apply_integrate_f(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n- 78 function calls in 0.002 seconds\n+ 78 function calls in 0.001 seconds\n \n Ordered by: internal time\n List reduced from 21 to 4 due to restriction <4>\n \n ncalls tottime percall cumtime percall filename:lineno(function)\n 1 0.001 0.001 0.001 0.001 <string>:1(<module>)\n 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}\n- 1 0.000 0.000 0.002 0.002 {built-in method builtins.exec}\n+ 1 0.000 0.000 0.001 0.001 {built-in method builtins.exec}\n 3 0.000 0.000 0.000 0.000 frame.py:4062(__getitem__)\n
In [16]: %%cython\n ....: cimport cython\n ....: cimport numpy as np\n ....: import numpy as np\n@@ -791,15 +791,15 @@\n from /build/reproducible-path/pandas-2.2.3+dfsg/buildtmp/.cache/ipython/cython/_cython_magic_95bcc11439016533d3590607eaecdc6ac7b11832.c:1251:\n /usr/lib/python3/dist-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API, disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]\n 17 | #warning "Using deprecated NumPy API, disable it with " \\\n | ^~~~~~~\n
In [17]: %timeit apply_integrate_f_wrap(df["a"].to_numpy(), df["b"].to_numpy(), df["N"].to_numpy())\n-823 us +- 5.2 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+816 us +- 223 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n
However, a loop indexer i
accessing an invalid location in an array would cause a segfault because memory access isn\u2019t checked.\n For more about boundscheck
and wraparound
, see the Cython docs on\n compiler directives.
DataFrame
. This engine requires the\n optional dependency numexpr
to be installed.\n The 'python'
engine is generally not useful except for testing\n other evaluation engines against it. You will achieve no performance\n benefits using eval()
with engine='python'
and may\n incur a performance hit.
In [40]: %timeit df1 + df2 + df3 + df4\n-8.86 ms +- 368 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+8.68 ms +- 422 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n
In [41]: %timeit pd.eval("df1 + df2 + df3 + df4", engine="python")\n-26.9 ms +- 4.95 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+14.5 ms +- 7.19 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n
DataFrame.eval()
method#In addition to the top level pandas.eval()
function you can also\n evaluate an expression in the \u201ccontext\u201d of a DataFrame
.
In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]\n
DataFrame
arithmetic:
In [60]: %timeit df1 + df2 + df3 + df4\n-30.2 ms +- 1.64 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+8.42 ms +- 135 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n
In [61]: %timeit pd.eval("df1 + df2 + df3 + df4")\n-12.4 ms +- 905 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+6.82 ms +- 113 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n
DataFrame
comparison:
In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-34.5 ms +- 2.1 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+12.7 ms +- 1.22 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n
In [63]: %timeit pd.eval("(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)")\n-20.4 ms +- 2.21 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+10.8 ms +- 931 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n
DataFrame
arithmetic with unaligned axes.
In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-40.4 ms +- 1.82 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+19.5 ms +- 271 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n
In [66]: %timeit pd.eval("df1 + df2 + df3 + df4 + s")\n-13.8 ms +- 1.2 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+8.95 ms +- 93.6 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n
Note
\nOperations such as
\n1 and 2 # would parse to 1 & 2, but should evaluate to 2\n 3 or 4 # would parse to 3 | 4, but should evaluate to 3\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -106,32 +106,33 @@\n ...: dx = (b - a) / N\n ...: for i in range(N):\n ...: s += f(a + i * dx)\n ...: return s * dx\n ...:\n We achieve our result by using _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\ba_\bp_\bp_\bl_\by_\b(_\b) (row-wise):\n In [5]: %timeit df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]), axis=1)\n-97.1 ms +- 24.4 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+105 ms +- 18.6 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n Let\u2019s take a look and see where the time is spent during this operation using\n the _\bp_\br_\bu_\bn_\b _\bi_\bp_\by_\bt_\bh_\bo_\bn_\b _\bm_\ba_\bg_\bi_\bc_\b _\bf_\bu_\bn_\bc_\bt_\bi_\bo_\bn:\n # most time consuming 4 calls\n In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1) # noqa E999\n- 605951 function calls (605933 primitive calls) in 0.202 seconds\n+ 605951 function calls (605933 primitive calls) in 0.387 seconds\n \n Ordered by: internal time\n List reduced from 159 to 4 due to restriction <4>\n \n ncalls tottime percall cumtime percall filename:lineno(function)\n- 1000 0.118 0.000 0.175 0.000 :1\n+ 1000 0.239 0.000 0.336 0.000 :1\n (integrate_f)\n- 552423 0.057 0.000 0.057 0.000 :1\n+ 552423 0.097 0.000 0.097 0.000 :1\n (f)\n- 3000 0.004 0.000 0.005 0.000 series.py:831(_values)\n- 3000 0.004 0.000 0.018 0.000 series.py:1095(__getitem__)\n+ 3000 0.011 0.000 0.011 0.000 base.py:3777(get_loc)\n+ 16098 0.007 0.000 0.007 0.000 {built-in method\n+builtins.isinstance}\n By far the majority of time is spend inside either integrate_f or f, hence\n we\u2019ll concentrate our efforts cythonizing these two functions.\n *\b**\b**\b**\b* P\bPl\bla\bai\bin\bn C\bCy\byt\bth\bho\bon\bn_\b#\b# *\b**\b**\b**\b*\n First we\u2019re going to need to import the Cython magic function to IPython:\n In [7]: %load_ext Cython\n Now, let\u2019s simply copy our functions over to Cython:\n In [8]: %%cython\n@@ -142,15 +143,15 @@\n ...: dx = (b - a) / N\n ...: for i in range(N):\n ...: s += f_plain(a + i * dx)\n ...: return s * dx\n ...:\n In [9]: %timeit df.apply(lambda x: integrate_f_plain(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-74.7 ms +- 866 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+105 ms +- 37.9 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n This has improved the performance compared to the pure Python approach by one-\n third.\n *\b**\b**\b**\b* D\bDe\bec\bcl\bla\bar\bri\bin\bng\bg C\bC t\bty\byp\bpe\bes\bs_\b#\b# *\b**\b**\b**\b*\n We can annotate the function variables and return types as well as use cdef and\n cpdef to improve performance:\n In [10]: %%cython\n ....: cdef double f_typed(double x) except? -2:\n@@ -162,15 +163,15 @@\n ....: dx = (b - a) / N\n ....: for i in range(N):\n ....: s += f_typed(a + i * dx)\n ....: return s * dx\n ....:\n In [11]: %timeit df.apply(lambda x: integrate_f_typed(x[\"a\"], x[\"b\"], x[\"N\"]),\n axis=1)\n-9.16 ms +- 129 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+12.8 ms +- 4.63 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n Annotating the functions with C types yields an over ten times performance\n improvement compared to the original Python implementation.\n *\b**\b**\b**\b* U\bUs\bsi\bin\bng\bg n\bnd\bda\bar\brr\bra\bay\by_\b#\b# *\b**\b**\b**\b*\n When re-profiling, time is spent creating a _\bS_\be_\br_\bi_\be_\bs from each row, and calling\n __getitem__ from both the index and the series (three times for each row).\n These Python function calls are expensive and can be improved by passing an\n np.ndarray.\n@@ -231,31 +232,31 @@\n This implementation creates an array of zeros and inserts the result of\n integrate_f_typed applied over each row. Looping over an ndarray is faster in\n Cython than looping over a _\bS_\be_\br_\bi_\be_\bs object.\n Since apply_integrate_f is typed to accept an np.ndarray, _\bS_\be_\br_\bi_\be_\bs_\b._\bt_\bo_\b__\bn_\bu_\bm_\bp_\by_\b(_\b)\n calls are needed to utilize this function.\n In [14]: %timeit apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(), df\n [\"N\"].to_numpy())\n-1.18 ms +- 10.4 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+2.28 ms +- 679 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n Performance has improved from the prior implementation by almost ten times.\n *\b**\b**\b**\b* D\bDi\bis\bsa\bab\bbl\bli\bin\bng\bg c\bco\bom\bmp\bpi\bil\ble\ber\br d\bdi\bir\bre\bec\bct\bti\biv\bve\bes\bs_\b#\b# *\b**\b**\b**\b*\n The majority of the time is now spent in apply_integrate_f. Disabling Cython\u2019s\n boundscheck and wraparound checks can yield more performance.\n In [15]: %prun -l 4 apply_integrate_f(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(),\n df[\"N\"].to_numpy())\n- 78 function calls in 0.002 seconds\n+ 78 function calls in 0.001 seconds\n \n Ordered by: internal time\n List reduced from 21 to 4 due to restriction <4>\n \n ncalls tottime percall cumtime percall filename:lineno(function)\n 1 0.001 0.001 0.001 0.001 :1()\n 1 0.000 0.000 0.000 0.000 {method 'disable' of\n '_lsprof.Profiler' objects}\n- 1 0.000 0.000 0.002 0.002 {built-in method builtins.exec}\n+ 1 0.000 0.000 0.001 0.001 {built-in method builtins.exec}\n 3 0.000 0.000 0.000 0.000 frame.py:4062(__getitem__)\n In [16]: %%cython\n ....: cimport cython\n ....: cimport numpy as np\n ....: import numpy as np\n ....: cdef np.float64_t f_typed(np.float64_t x) except? -2:\n ....: return x * (x - 1)\n@@ -294,15 +295,15 @@\n /usr/lib/python3/dist-packages/numpy/core/include/numpy/\n npy_1_7_deprecated_api.h:17:2: warning: #warning \"Using deprecated NumPy API,\n disable it with \" \"#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION\" [-Wcpp]\n 17 | #warning \"Using deprecated NumPy API, disable it with \" \\\n | ^~~~~~~\n In [17]: %timeit apply_integrate_f_wrap(df[\"a\"].to_numpy(), df[\"b\"].to_numpy(),\n df[\"N\"].to_numpy())\n-823 us +- 5.2 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n+816 us +- 223 ns per loop (mean +- std. dev. of 7 runs, 1,000 loops each)\n However, a loop indexer i accessing an invalid location in an array would cause\n a segfault because memory access isn\u2019t checked. For more about boundscheck and\n wraparound, see the Cython docs on _\bc_\bo_\bm_\bp_\bi_\bl_\be_\br_\b _\bd_\bi_\br_\be_\bc_\bt_\bi_\bv_\be_\bs.\n *\b**\b**\b**\b**\b* N\bNu\bum\bmb\bba\ba (\b(J\bJI\bIT\bT c\bco\bom\bmp\bpi\bil\bla\bat\bti\bio\bon\bn)\b)_\b#\b# *\b**\b**\b**\b**\b*\n An alternative to statically compiling Cython code is to use a dynamic just-in-\n time (JIT) compiler with _\bN_\bu_\bm_\bb_\ba.\n Numba allows you to write a pure Python function which can be JIT compiled to\n@@ -605,17 +606,17 @@\n The 'numexpr' engine is the more performant engine that can yield performance\n improvements compared to standard Python syntax for large _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be. This\n engine requires the optional dependency numexpr to be installed.\n The 'python' engine is generally n\bno\bot\bt useful except for testing other evaluation\n engines against it. You will achieve n\bno\bo performance benefits using _\be_\bv_\ba_\bl_\b(_\b) with\n engine='python' and may incur a performance hit.\n In [40]: %timeit df1 + df2 + df3 + df4\n-8.86 ms +- 368 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+8.68 ms +- 422 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n In [41]: %timeit pd.eval(\"df1 + df2 + df3 + df4\", engine=\"python\")\n-26.9 ms +- 4.95 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+14.5 ms +- 7.19 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n *\b**\b**\b**\b* T\bTh\bhe\be _\bD\bD_\ba\ba_\bt\bt_\ba\ba_\bF\bF_\br\br_\ba\ba_\bm\bm_\be\be_\b.\b._\be\be_\bv\bv_\ba\ba_\bl\bl_\b(\b(_\b)\b) m\bme\bet\bth\bho\bod\bd_\b#\b# *\b**\b**\b**\b*\n In addition to the top level _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) function you can also evaluate an\n expression in the \u201ccontext\u201d of a _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be.\n In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=[\"a\", \"b\"])\n \n In [43]: df.eval(\"a + b\")\n Out[43]:\n@@ -712,29 +713,29 @@\n _\bp_\ba_\bn_\bd_\ba_\bs_\b._\be_\bv_\ba_\bl_\b(_\b) works well with expressions containing large arrays.\n In [58]: nrows, ncols = 20000, 100\n \n In [59]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for\n _ in range(4)]\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic:\n In [60]: %timeit df1 + df2 + df3 + df4\n-30.2 ms +- 1.64 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+8.42 ms +- 135 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n In [61]: %timeit pd.eval(\"df1 + df2 + df3 + df4\")\n-12.4 ms +- 905 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+6.82 ms +- 113 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be comparison:\n In [62]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\n-34.5 ms +- 2.1 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+12.7 ms +- 1.22 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n In [63]: %timeit pd.eval(\"(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)\")\n-20.4 ms +- 2.21 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+10.8 ms +- 931 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n _\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be arithmetic with unaligned axes.\n In [64]: s = pd.Series(np.random.randn(50))\n \n In [65]: %timeit df1 + df2 + df3 + df4 + s\n-40.4 ms +- 1.82 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)\n+19.5 ms +- 271 us per loop (mean +- std. dev. of 7 runs, 10 loops each)\n In [66]: %timeit pd.eval(\"df1 + df2 + df3 + df4 + s\")\n-13.8 ms +- 1.2 ms per loop (mean +- std. dev. of 7 runs, 100 loops each)\n+8.95 ms +- 93.6 us per loop (mean +- std. dev. of 7 runs, 100 loops each)\n Note\n Operations such as\n 1 and 2 # would parse to 1 & 2, but should evaluate to 2\n 3 or 4 # would parse to 3 | 4, but should evaluate to 3\n ~1 # this is okay, but slower when using eval\n should be performed in Python. An exception will be raised if you try to\n perform any boolean/bitwise operations with scalar operands that are not of\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/scale.html", "unified_diff": "@@ -1095,16 +1095,16 @@\n ....: files = pathlib.Path("data/timeseries/").glob("ts*.parquet")\n ....: counts = pd.Series(dtype=int)\n ....: for path in files:\n ....: df = pd.read_parquet(path)\n ....: counts = counts.add(df["name"].value_counts(), fill_value=0)\n ....: counts.astype(int)\n ....: \n-CPU times: user 533 us, sys: 103 us, total: 636 us\n-Wall time: 659 us\n+CPU times: user 489 us, sys: 122 us, total: 611 us\n+Wall time: 626 us\n Out[32]: Series([], dtype: int64)\n
Some readers, like pandas.read_csv()
, offer parameters to control the\n chunksize
when reading a single file.
Manually chunking is an OK option for workflows that don\u2019t\n require too sophisticated of operations. Some operations, like pandas.DataFrame.groupby()
, are\n", "details": [{"source1": "html2text {}", "source2": "html2text {}", "unified_diff": "@@ -640,16 +640,16 @@\n ....: files = pathlib.Path(\"data/timeseries/\").glob(\"ts*.parquet\")\n ....: counts = pd.Series(dtype=int)\n ....: for path in files:\n ....: df = pd.read_parquet(path)\n ....: counts = counts.add(df[\"name\"].value_counts(), fill_value=0)\n ....: counts.astype(int)\n ....:\n-CPU times: user 533 us, sys: 103 us, total: 636 us\n-Wall time: 659 us\n+CPU times: user 489 us, sys: 122 us, total: 611 us\n+Wall time: 626 us\n Out[32]: Series([], dtype: int64)\n Some readers, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\br_\be_\ba_\bd_\b__\bc_\bs_\bv_\b(_\b), offer parameters to control the chunksize\n when reading a single file.\n Manually chunking is an OK option for workflows that don\u2019t require too\n sophisticated of operations. Some operations, like _\bp_\ba_\bn_\bd_\ba_\bs_\b._\bD_\ba_\bt_\ba_\bF_\br_\ba_\bm_\be_\b._\bg_\br_\bo_\bu_\bp_\bb_\by_\b(_\b),\n are much harder to do chunkwise. In these cases, you may be better switching to\n a different library that implements these out-of-core algorithms for you.\n"}]}, {"source1": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "source2": "./usr/share/doc/python-pandas-doc/html/user_guide/style.ipynb.gz", "unified_diff": null, "details": [{"source1": "style.ipynb", "source2": "style.ipynb", "unified_diff": null, "details": [{"source1": "Pretty-printed", "source2": "Pretty-printed", "comments": ["Similarity: 0.9985610875706213%", "Differences: {\"'cells'\": \"{1: {'metadata': {'execution': {'iopub.execute_input': '2024-11-30T08:41:12.025755Z', \"", " \"'iopub.status.busy': '2024-11-30T08:41:12.025488Z', 'iopub.status.idle': \"", " \"'2024-11-30T08:41:12.601001Z', 'shell.execute_reply': \"", " \"'2024-11-30T08:41:12.584979Z'}}}, 3: {'metadata': {'execution': \"", " \"{'iopub.execute_input': '2024-11-30T08:41:12.614196Z', 'iopub.status.busy': \"", " \"'2024-11-30T08:41:12.613552Z', 'iopub.status.idle': '2024-11-30T08:41:1 [\u2026]"], "unified_diff": "@@ -39,18 +39,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T14:00:06.178360Z\",\n- \"iopub.status.busy\": \"2026-01-02T14:00:06.178086Z\",\n- \"iopub.status.idle\": \"2026-01-02T14:00:06.619306Z\",\n- \"shell.execute_reply\": \"2026-01-02T14:00:06.618697Z\"\n+ \"iopub.execute_input\": \"2024-11-30T08:41:12.025755Z\",\n+ \"iopub.status.busy\": \"2024-11-30T08:41:12.025488Z\",\n+ \"iopub.status.idle\": \"2024-11-30T08:41:12.601001Z\",\n+ \"shell.execute_reply\": \"2024-11-30T08:41:12.584979Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"import matplotlib.pyplot\\n\",\n \"# We have this here to trigger matplotlib's font cache stuff.\\n\",\n@@ -77,36 +77,36 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 2,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T14:00:06.622201Z\",\n- \"iopub.status.busy\": \"2026-01-02T14:00:06.621441Z\",\n- \"iopub.status.idle\": \"2026-01-02T14:00:06.855086Z\",\n- \"shell.execute_reply\": \"2026-01-02T14:00:06.853825Z\"\n+ \"iopub.execute_input\": \"2024-11-30T08:41:12.614196Z\",\n+ \"iopub.status.busy\": \"2024-11-30T08:41:12.613552Z\",\n+ \"iopub.status.idle\": \"2024-11-30T08:41:13.017017Z\",\n+ \"shell.execute_reply\": \"2024-11-30T08:41:13.001069Z\"\n }\n },\n \"outputs\": [],\n \"source\": [\n \"import pandas as pd\\n\",\n \"import numpy as np\\n\",\n \"import matplotlib as mpl\\n\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 3,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T14:00:06.858134Z\",\n- \"iopub.status.busy\": \"2026-01-02T14:00:06.857769Z\",\n- \"iopub.status.idle\": \"2026-01-02T14:00:06.914492Z\",\n- \"shell.execute_reply\": \"2026-01-02T14:00:06.913578Z\"\n+ \"iopub.execute_input\": \"2024-11-30T08:41:13.025989Z\",\n+ \"iopub.status.busy\": \"2024-11-30T08:41:13.025590Z\",\n+ \"iopub.status.idle\": \"2024-11-30T08:41:13.145016Z\",\n+ \"shell.execute_reply\": \"2024-11-30T08:41:13.128981Z\"\n },\n \"nbsphinx\": \"hidden\"\n },\n \"outputs\": [],\n \"source\": [\n \"# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\\n\",\n \"from pandas.io.formats.style import Styler\\n\",\n@@ -123,18 +123,18 @@\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 4,\n \"metadata\": {\n \"execution\": {\n- \"iopub.execute_input\": \"2026-01-02T14:00:06.917405Z\",\n- \"iopub.status.busy\": \"2026-01-02T14:00:06.917058Z\",\n- \"iopub.status.idle\": \"2026-01-02T14:00:06.930544Z\",\n- \"shell.execute_reply\": \"2026-01-02T14:00:06.929142Z\"\n+ \"iopub.execute_input\": \"2024-11-30T08:41:13.153988Z\",\n+ \"iopub.status.busy\": \"2024-11-30T08:41:13.153586Z\",\n+ \"iopub.status.idle\": \"2024-11-30T08:41:13.189693Z\",\n+ \"shell.execute_reply\": \"2024-11-30T08:41:13.188975Z\"\n }\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/html\": [\n \"