| | | |
Offset 24934, 15 lines modified | Offset 24934, 15 lines modified |
24934 | <span·class="kn">import</span>·<span·class="nn">numpy</span>·<span·class="k">as</span>·<span·class="nn">np</span> | 24934 | <span·class="kn">import</span>·<span·class="nn">numpy</span>·<span·class="k">as</span>·<span·class="nn">np</span> |
24935 | <span·class="n">plt</span><span·class="o">.</span><span·class="n">ion</span><span·class="p">()</span> | 24935 | <span·class="n">plt</span><span·class="o">.</span><span·class="n">ion</span><span·class="p">()</span> |
| |
24936 | <span·class="n">x</span>·<span·class="o">=</span>·<span·class="n">np</span><span·class="o">.</span><span·class="n">linspace</span><span·class="p">(</span><span·class="mi">0</span><span·class="p">,</span>·<span·class="mi">2</span>·<span·class="o">*</span>·<span·class="n">np</span><span·class="o">.</span><span·class="n">pi</span><span·class="p">,</span>·<span·class="mi">100</span><span·class="p">)</span> | 24936 | <span·class="n">x</span>·<span·class="o">=</span>·<span·class="n">np</span><span·class="o">.</span><span·class="n">linspace</span><span·class="p">(</span><span·class="mi">0</span><span·class="p">,</span>·<span·class="mi">2</span>·<span·class="o">*</span>·<span·class="n">np</span><span·class="o">.</span><span·class="n">pi</span><span·class="p">,</span>·<span·class="mi">100</span><span·class="p">)</span> |
24937 | <span·class="n">y</span>·<span·class="o">=</span>·<span·class="n">np</span><span·class="o">.</span><span·class="n">sin</span><span·class="p">(</span><span·class="n">x</span><span·class="p">)</span> | 24937 | <span·class="n">y</span>·<span·class="o">=</span>·<span·class="n">np</span><span·class="o">.</span><span·class="n">sin</span><span·class="p">(</span><span·class="n">x</span><span·class="p">)</span> |
24938 | <span·class="n">plt</span><span·class="o">.</span><span·class="n">plot</span><span·class="p">(</span><span·class="n">x</span><span·class="p">,</span>·<span·class="n">y</span><span·class="p">)</span> | 24938 | <span·class="n">plt</span><span·class="o">.</span><span·class="n">plot</span><span·class="p">(</span><span·class="n">x</span><span·class="p">,</span>·<span·class="n">y</span><span·class="p">)</span> |
24939 | </pre></div></div></div></div><div·class="output_wrapper"><div·class="output"><div·class="output_area"><div·class="prompt·output_prompt"><p>Out[1]:</p> | 24939 | </pre></div></div></div></div><div·class="output_wrapper"><div·class="output"><div·class="output_area"><div·class="prompt·output_prompt"><p>Out[1]:</p> |
24940 | </div><div·class="output_text·output_subarea·output_execute_result"><pre>[<matplotlib.lines.Line2D·at·0x1111b2160>]</pre></div></div><div·class="output_area"><div·class="prompt"></div><div·class="output_png·output_subarea·"><p><img·alt="941a89ce81cc4793aa148ccfd49d36d3"·src=""·/></p> | 24940 | </div><div·class="output_text·output_subarea·output_execute_result"><pre>[<matplotlib.lines.Line2D·at·0x1111b2160>]</pre></div></div><div·class="output_area"><div·class="prompt"></div><div·class="output_png·output_subarea·"><p><img·alt="86fccc6194d641df8a8d9d30be9ad6d8"·src=""·/></p> |
24941 | </div></div></div></div></div><div·class="highlight-default·notranslate"><div·class="highlight"><pre><span></span><span·class="o"></</span><span·class="n">div</span><span·class="o">></span> | 24941 | </div></div></div></div></div><div·class="highlight-default·notranslate"><div·class="highlight"><pre><span></span><span·class="o"></</span><span·class="n">div</span><span·class="o">></span> |
24942 | </pre></div> | 24942 | </pre></div> |
24943 | </div> | 24943 | </div> |
24944 | <div·class="cell·border-box-sizing·code_cell·rendered"><div·class="input"><div·class="prompt·input_prompt"><p>In [ ]:</p> | 24944 | <div·class="cell·border-box-sizing·code_cell·rendered"><div·class="input"><div·class="prompt·input_prompt"><p>In [ ]:</p> |
24945 | </div><div·class="inner_cell"><div·class="input_area"><div·class="·highlight·hl-ipython3"><pre><span></span> | 24945 | </div><div·class="inner_cell"><div·class="input_area"><div·class="·highlight·hl-ipython3"><pre><span></span> |
24946 | </pre></div></div></div></div></div><div·class="highlight-default·notranslate"><div·class="highlight"><pre><span></span><span·class="o"></</span><span·class="n">div</span><span·class="o">></span> | 24946 | </pre></div></div></div></div></div><div·class="highlight-default·notranslate"><div·class="highlight"><pre><span></span><span·class="o"></</span><span·class="n">div</span><span·class="o">></span> |
24947 | </pre></div> | 24947 | </pre></div> |