36.2 KB
/srv/reproducible-results/rbuild-debian/r-b-build.kk1WWrGu/b1/nbconvert_5.6.1-3_amd64.changes vs.
/srv/reproducible-results/rbuild-debian/r-b-build.kk1WWrGu/b2/nbconvert_5.6.1-3_amd64.changes
394 B
Files
    
Offset 1, 4 lines modifiedOffset 1, 4 lines modified
  
1 ·e3b9271ceb1081ad3b0c56fd3d652594·17868·utils·optional·jupyter-nbconvert_5.6.1-3_all.deb1 ·e3b9271ceb1081ad3b0c56fd3d652594·17868·utils·optional·jupyter-nbconvert_5.6.1-3_all.deb
2 ·2aba0d8a8b864e00ebf7ad798fb769ab·546216·doc·optional·python-nbconvert-doc_5.6.1-3_all.deb2 ·43b60dca4e93c53c5db38d8311e81c9e·546204·doc·optional·python-nbconvert-doc_5.6.1-3_all.deb
3 ·63d9173b4b7a2efc72f57b02f2ad5df8·356304·python·optional·python3-nbconvert_5.6.1-3_all.deb3 ·63d9173b4b7a2efc72f57b02f2ad5df8·356304·python·optional·python3-nbconvert_5.6.1-3_all.deb
35.6 KB
python-nbconvert-doc_5.6.1-3_all.deb
367 B
file list
    
Offset 1, 3 lines modifiedOffset 1, 3 lines modified
1 -rw-r--r--···0········0········0········4·2021-02-19·15:12:30.000000·debian-binary1 -rw-r--r--···0········0········0········4·2021-02-19·15:12:30.000000·debian-binary
2 -rw-r--r--···0········0········0·····2420·2021-02-19·15:12:30.000000·control.tar.xz2 -rw-r--r--···0········0········0·····2420·2021-02-19·15:12:30.000000·control.tar.xz
3 -rw-r--r--···0········0········0···543604·2021-02-19·15:12:30.000000·data.tar.xz3 -rw-r--r--···0········0········0···543592·2021-02-19·15:12:30.000000·data.tar.xz
98.0 B
control.tar.xz
70.0 B
control.tar
48.0 B
./md5sums
30.0 B
./md5sums
Files differ
35.1 KB
data.tar.xz
35.1 KB
data.tar
35.1 KB
./usr/share/doc/python-nbconvert-doc/html/customizing.html
    
Offset 24934, 15 lines modifiedOffset 24934, 15 lines modified
24934 <span·class="kn">import</span>·<span·class="nn">numpy</span>·<span·class="k">as</span>·<span·class="nn">np</span>24934 <span·class="kn">import</span>·<span·class="nn">numpy</span>·<span·class="k">as</span>·<span·class="nn">np</span>
24935 <span·class="n">plt</span><span·class="o">.</span><span·class="n">ion</span><span·class="p">()</span>24935 <span·class="n">plt</span><span·class="o">.</span><span·class="n">ion</span><span·class="p">()</span>
  
24936 <span·class="n">x</span>·<span·class="o">=</span>·<span·class="n">np</span><span·class="o">.</span><span·class="n">linspace</span><span·class="p">(</span><span·class="mi">0</span><span·class="p">,</span>·<span·class="mi">2</span>·<span·class="o">*</span>·<span·class="n">np</span><span·class="o">.</span><span·class="n">pi</span><span·class="p">,</span>·<span·class="mi">100</span><span·class="p">)</span>24936 <span·class="n">x</span>·<span·class="o">=</span>·<span·class="n">np</span><span·class="o">.</span><span·class="n">linspace</span><span·class="p">(</span><span·class="mi">0</span><span·class="p">,</span>·<span·class="mi">2</span>·<span·class="o">*</span>·<span·class="n">np</span><span·class="o">.</span><span·class="n">pi</span><span·class="p">,</span>·<span·class="mi">100</span><span·class="p">)</span>
24937 <span·class="n">y</span>·<span·class="o">=</span>·<span·class="n">np</span><span·class="o">.</span><span·class="n">sin</span><span·class="p">(</span><span·class="n">x</span><span·class="p">)</span>24937 <span·class="n">y</span>·<span·class="o">=</span>·<span·class="n">np</span><span·class="o">.</span><span·class="n">sin</span><span·class="p">(</span><span·class="n">x</span><span·class="p">)</span>
24938 <span·class="n">plt</span><span·class="o">.</span><span·class="n">plot</span><span·class="p">(</span><span·class="n">x</span><span·class="p">,</span>·<span·class="n">y</span><span·class="p">)</span>24938 <span·class="n">plt</span><span·class="o">.</span><span·class="n">plot</span><span·class="p">(</span><span·class="n">x</span><span·class="p">,</span>·<span·class="n">y</span><span·class="p">)</span>
24939 </pre></div></div></div></div><div·class="output_wrapper"><div·class="output"><div·class="output_area"><div·class="prompt·output_prompt"><p>Out[1]:</p>24939 </pre></div></div></div></div><div·class="output_wrapper"><div·class="output"><div·class="output_area"><div·class="prompt·output_prompt"><p>Out[1]:</p>
24940 </div><div·class="output_text·output_subarea·output_execute_result"><pre>[&lt;matplotlib.lines.Line2D·at·0x1111b2160&gt;]</pre></div></div><div·class="output_area"><div·class="prompt"></div><div·class="output_png·output_subarea·"><p><img·alt="673d9dc4fac8436eb6df50847fad21da"·src=""·/></p>24940 </div><div·class="output_text·output_subarea·output_execute_result"><pre>[&lt;matplotlib.lines.Line2D·at·0x1111b2160&gt;]</pre></div></div><div·class="output_area"><div·class="prompt"></div><div·class="output_png·output_subarea·"><p><img·alt="78240e4b301d40e7a81b670b10cdd080"·src=""·/></p>
24941 </div></div></div></div></div><div·class="highlight-default·notranslate"><div·class="highlight"><pre><span></span><span·class="o">&lt;/</span><span·class="n">div</span><span·class="o">&gt;</span>24941 </div></div></div></div></div><div·class="highlight-default·notranslate"><div·class="highlight"><pre><span></span><span·class="o">&lt;/</span><span·class="n">div</span><span·class="o">&gt;</span>
24942 </pre></div>24942 </pre></div>
24943 </div>24943 </div>
24944 <div·class="cell·border-box-sizing·code_cell·rendered"><div·class="input"><div·class="prompt·input_prompt"><p>In [ ]:</p>24944 <div·class="cell·border-box-sizing·code_cell·rendered"><div·class="input"><div·class="prompt·input_prompt"><p>In [ ]:</p>
24945 </div><div·class="inner_cell"><div·class="input_area"><div·class="·highlight·hl-ipython3"><pre><span></span>24945 </div><div·class="inner_cell"><div·class="input_area"><div·class="·highlight·hl-ipython3"><pre><span></span>
24946 </pre></div></div></div></div></div><div·class="highlight-default·notranslate"><div·class="highlight"><pre><span></span><span·class="o">&lt;/</span><span·class="n">div</span><span·class="o">&gt;</span>24946 </pre></div></div></div></div></div><div·class="highlight-default·notranslate"><div·class="highlight"><pre><span></span><span·class="o">&lt;/</span><span·class="n">div</span><span·class="o">&gt;</span>
24947 </pre></div>24947 </pre></div>
484 B
html2text {}
    
Offset 684, 15 lines modifiedOffset 684, 15 lines modified
684 plt.ion()684 plt.ion()
  
685 x·=·np.linspace(0,·2·*·np.pi,·100)685 x·=·np.linspace(0,·2·*·np.pi,·100)
686 y·=·np.sin(x)686 y·=·np.sin(x)
687 plt.plot(x,·y)687 plt.plot(x,·y)
688 Out[1]:688 Out[1]:
689 [<matplotlib.lines.Line2D·at·0x1111b2160>]689 [<matplotlib.lines.Line2D·at·0x1111b2160>]
690 [673d9dc4fac8436eb6df50847fad21da]690 [78240e4b301d40e7a81b670b10cdd080]
691 </div>691 </div>
692 In [ ]:692 In [ ]:
693 </div>693 </div>
694 Next·Previous694 Next·Previous
695 ===============================================================================695 ===============================================================================
696 ©·Copyright·2015-2021,·Jupyter·Development·Team.696 ©·Copyright·2015-2021,·Jupyter·Development·Team.
697 Built·with·Sphinx·using·a·theme·provided·by·Read_the_Docs.697 Built·with·Sphinx·using·a·theme·provided·by·Read_the_Docs.